Research Article
BibTex RIS Cite

PREDICTING KONYA'S AIR TEMPERATURE: GENETIC PROGRAMMING, GRADIENT BOOSTING AND RANDOM FOREST APPROACHES

Year 2024, , 182 - 191, 31.12.2024
https://doi.org/10.62301/usmtd.1577839

Abstract

Average temperature prediction is important in many areas, such as climate change, agriculture, and energy management. It is also necessary for estimating energy demand, managing energy, and developing sustainable energy policies. In this study, using monthly average air temperature data between 1960-2017, temperature predictions were performed for Konya province using genetic programming, gradient boosting, and random forest techniques. The predicted average monthly temperature values between 2018-2021 were compared with the real values. Then, future predictions for the years 2022-2025 were also performed. Metrics such as R², RMSE, and MAE were used in model evaluations. R²=0.9477, RMSE=1.950 and MAE=1.500 for the genetic programming model, R²=0.9663, RMSE=1.564 and MAE=1.203 for the gradient boosting model, and R²=0.9905, RMSE=0.833 and MAE=0.625 for the random forest model. The same algorithms gave good results for future prediction of the average air temperature between 2022 and 2025. In conclusion, the applied machine learning methods gave successful results in monthly average air temperature predictions for Konya province, and these findings show that machine learning techniques can be used effectively in air temperature prediction.

References

  • T.H. Abebe, Time Series Analysis of Monthly Average Temperature and Rainfall Using Seasonal ARIMA Model (in Case of Ambo Area, Ethiopia), Int. J. Theor. Appl. Math. 6 (5) (2020) 76-87.
  • J.Sillmann, T. Thorarinsdottir, N. Keenlyside, N. Schaller, L.V. Alexander, G. Hegerl, S.I. Seneviratne, R. Vautard, X. Zhang, F.W. Zwiers, Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities, Weather and Climate Extremes 18 (2017) 65-74.
  • E. Olmedo, A. Turiel, V. Gonzalez-Gambau, C. Gonzalez-Haro, A. Garcia-Espriu, C. Gabarro, M. Portabella, I. Corbella, M. Martin-Neira, M. Arias, R. Catany, R. Sabia, R. Oliva, K. Scipal, Increasing stratification as observed by satellite sea surface salinity measurements, Scientific Reports 12 (1) (2022)1-9.
  • X. Liu, P. Coulibaly, Downscaling ensemble weather predictions for improved week-2 hydrologic forecasting, Journal of Hydrometeorology 12 (6) (2011)1564-1580.
  • E.S. El-Mallah, S.G. Elsharkawy, Time-Series Modeling and Short Term Prediction of Annual Temperature Trend on Coast Libya Using the BoxJenkins ARIMA Model, Advances in Research 6 (5) (2016)1-11,
  • S. E. Perkins-Kirkpatrick, S.C. Lewis, Increasing trends in regional heatwaves, Nature Communications 11 (1) (2020)1-8.
  • A. Sulikowska, A. Wypych, Seasonal Variability of Trends in Regional Hot and Warm Temperature Extremes in Europe, Atmosphere 12 (5) (2021)1- 21.
  • S. Al-Yahyai, Y. Charabi, A. Gastli, Review of the use of numerical weather prediction (NWP) models for wind energy assessment, Renewable and Sustainable Energy Reviews 14(9) (2010) 3192-3198.
  • P. Bauer, A. Thorpe, G. Brunet, The quiet revolution of numerical weather prediction. Nature 525 (2015) 47–55.
  • A. Dai, Increasing drought under global warming in observations and models, Nature Climate Change 3 (2013) 52-58.
  • B. Özgür, The assessment of socio-economic impacts of climate change in rural areas: the case of Konya, Thesis (M.S.) Graduate School of Natural and Applied Sciences, City and Regional Planning. Middle East Technical University, Ankara, Türkiye, 2019.
  • J.W. Jones, J.W. Hansen, F.S. Royce, C. D. Messina, Potential benefits of climate forecasting to agriculture. Agriculture, Ecosystems & Environment 82(1-3) (2000)169-184.
  • C. Oğuz, A. Y. Ögür, Climate Change and Agriculture: The Case of Konya Province in Recent Academic Studies in Sciences, B Ranguelov R. Efe, M.S. DINU, E. Atasoy (Eds), Sofia: St. Kliment Ohridski University Press, (2021)1-20.
  • İ. Kınacı, Konya İli Sıcaklık Verilerinin Çift Doğrusal Zaman Serisi Modeli İle Modellenmesi, 3. Yenilenebilir Enerji Kaynakları Sempozyumu, Türkiye, Mersin, 2005
  • Ö. Terzi, T. Ersoy, Yapay Sinir Ağları ile Konya İli Kuraklık Tahmini. DSI Technical Bulletin/DSI Teknik Bülteni, (2018) (127).
  • A. A. Shafin, Machine learning approach to forecast average weather temperature of Bangladesh, Global Journal of Computer Science and Technology 19(3) (2019) 39-48.
  • S. Suzulmus, Prediction of average temperatures using artificial neural netwark methods: the case of Gaziantep Provnice, Turkey. Fresenius Environmental Bulletin 28(2A) (2019) 1494-1502.
  • A. Turgut, A. Temir, B. Aksoy, K. Özsoy, Yapay Zekâ Yöntemleri ile Hava Sıcaklığı Tahmini İçin Sistem Tasarımı ve Uygulaması, International Journal of 3D Printing Technologies and Digital Industry 3(3) (2019) 244-253.
  • J. Cifuentes, G. Marulanda, A. Bello, J. Reneses, Air temperature forecasting using machine learning techniques: a review, Energies 13(16) (2020) 4215.
  • A. Sevinç, B. Kaya, Derin öğrenme ve istatistiksel modelleme yöntemiyle sıcaklık tahmini ve karşılaştırılması. Avrupa Bilim ve Teknoloji Dergisi (28) (2021) 1222-1228.
  • R. M. Adnan, Z. Liang, A. Kuriqi, O. Kisi, A. Malik, B. Li, F. Mortazavizadeh, Air temperature prediction using different machine learning models, Indonesian Journal of Electrical Engineering and Computer Science 22(1) (2021) 534-541.
  • A. Sevinç, B. Kaya, Derin Öğrenme Yöntemleri ile Sıcaklık Tahmini: Diyarbakır İli Örneği, Computer Science Special (2021) 217-225.
  • B. Azari, K. Hassan, J. Pierce, S. Ebrahimi, Evaluation of machine learning methods application in temperature prediction, Computational Research Progress in Applied Science & Engineerıng (CRPASE) 8(1) (2022) 1-12.
  • D. Fister, J. Pérez-Aracil, C. Peláez-Rodríguez, J. Del Ser, S. Salcedo-Sanz, Accurate long-term air temperature prediction with machine learning models and data reduction techniques, Applied Soft Computing 136 (2023) 110118.
  • C. B. Yılmaz, H. Bodu, E. S. Yüce, V. Demir, M. F. Sevimli, Türkiye’nin uzun dönem ortalama sıcaklık (°C) değerlerinin üç farklı enterpolasyon yöntemi ile tahmini, Geomatik 8(1) (2023) 9-17.
  • S. Coşkun, tuz gölü-konya kapalı havzalarının yaz mevsimi ortalama sıcaklık, yağış, buharlaşma ve akım verilerindeki değişimlerin karşılaştırmalı trend analizi, The Journal of Social Sciences (46) (2024). 123-138.
  • C. Gagné, M. Parizeau, Genericity in evolutionary computation software tools: Principles and case-study, International Journal on Artificial Intelligence Tools 15(02) (2006) 173-194.
  • A. N. Sloss, S. Gustafson, 2019 evolutionary algorithms review, Genetic programming theory and practice XVII, (2020) 307-344.
  • A. Tripathi, R. Singh, A. K. Singh, P. Gupta, S. Vats, M. Singhal, Significance of Evolutionary Artificial Intelligence: A Detailed Overview of the Concepts, Techniques, and Applications, Artificial Intelligence, Machine Learning and User Interface Design 27(53) (2024) 27-53.
  • A. Natekin, A. Knoll, Gradient boosting machines, a tutorial, Frontiers in neurorobotics 7 (2013) 21.
  • I. Pence, R. Yıldırım, M. S. Cesmeli, A. Güngör, A. Akyüz, Evaluation of machine learning approaches for estimating thermodynamic properties of new generation refrigerant R513A. Sustainable Energy Technologies and Assessments 55 (2023) 102973.
  • S. Babu Nuthalapati, A. Nuthalapati, Accurate weather forecasting with dominant gradient boosting using machine learning, Int. J. Sci. Res. Arch 12(2) (2024) 408-422.
  • S. J. Rigatti, Random forest, Journal of Insurance Medicine 47(1) (2017) 31-39.
  • A. Parmar, R. Katariya, V. Patel, A review on random forest: An ensemble classifier. In International conference on intelligent data communication technologies and internet of things Springer International Publishing (ICICI) 2018 (2019) (pp. 758-763)
  • I. Pence, K. Kumas, M. S. Cesmeli, A. Akyüz, Animal-based CO2, CH4, and N2O emissions analysis: Machine learning predictions by agricultural regions and climate dynamics in varied scenarios, Computers and Electronics in Agriculture 226 (2024)109423.
  • Turkish State Meteorological Service (TSMS) Turkish State Meteorological Service https://www.mgm.gov.tr/tahmin/turkiye.aspx (accessed 6.22.23) Ankara Turkey

KONYA'NIN HAVA SICAKLIĞININ TAHMİN EDİLMESİ: GENETİK PROGRAMLAMA, GRADİENT BOOSTİNG VE RASTGELE ORMAN YAKLAŞIMLARI

Year 2024, , 182 - 191, 31.12.2024
https://doi.org/10.62301/usmtd.1577839

Abstract

Ortalama sıcaklık tahmini iklim değişikliği, tarımsal ve enerji yönetimi gibi birçok alanda önemlidir. Ayrıca, enerji talep tahminleri, enerji yönetimi ve sürdürülebilir enerji politikalarının geliştirilmesi için de gereklidir. Bu çalışmada, 1960-2017 yılları arasındaki aylık ortalama hava sıcaklığı verileri kullanılarak Konya ili için genetik programlama, gradient boosting ve random forest teknikleri ile sıcaklık tahminleri gerçekleştirilmiştir. 2018-2021 yılları arasındaki her ay için tahmin edilen ortalama sıcaklık değerleri gerçek değerlerle karşılaştırılmıştır. Ardından, 2022-2025 yılları için gelecek tahminleri de yapılmıştır. Model değerlendirmelerinde R², RMSE’ve MAE gibi metrikler kullanılmıştır. Genetik programlama modeli için R²=0.9477, RMSE=1.950 ve MAE=1.5000, gradient boosting modeli için R²=0.9663, RMSE=1.564 ve MAE=1.203, random forest modeli için ise R²= 0.9905, RMSE=0.833 ve MAE=0.625 değerleri elde edilmiştir. 2022-2025 yılları arasındaki ortalama hava sıcaklığı içinde aynı algoritmalar gelecek tahmini iyi sonuçlar vermiştir. Sonuç olarak, uygulanan makine öğrenimi yöntemleri, Konya ili için aylık ortalama hava sıcaklığı tahminlerinde başarılı sonuçlar vermiştir ve bu bulgular, hava sıcaklığı tahmininde makine öğrenimi tekniklerinin etkili bir şekilde kullanılabileceğini göstermektedir.

References

  • T.H. Abebe, Time Series Analysis of Monthly Average Temperature and Rainfall Using Seasonal ARIMA Model (in Case of Ambo Area, Ethiopia), Int. J. Theor. Appl. Math. 6 (5) (2020) 76-87.
  • J.Sillmann, T. Thorarinsdottir, N. Keenlyside, N. Schaller, L.V. Alexander, G. Hegerl, S.I. Seneviratne, R. Vautard, X. Zhang, F.W. Zwiers, Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities, Weather and Climate Extremes 18 (2017) 65-74.
  • E. Olmedo, A. Turiel, V. Gonzalez-Gambau, C. Gonzalez-Haro, A. Garcia-Espriu, C. Gabarro, M. Portabella, I. Corbella, M. Martin-Neira, M. Arias, R. Catany, R. Sabia, R. Oliva, K. Scipal, Increasing stratification as observed by satellite sea surface salinity measurements, Scientific Reports 12 (1) (2022)1-9.
  • X. Liu, P. Coulibaly, Downscaling ensemble weather predictions for improved week-2 hydrologic forecasting, Journal of Hydrometeorology 12 (6) (2011)1564-1580.
  • E.S. El-Mallah, S.G. Elsharkawy, Time-Series Modeling and Short Term Prediction of Annual Temperature Trend on Coast Libya Using the BoxJenkins ARIMA Model, Advances in Research 6 (5) (2016)1-11,
  • S. E. Perkins-Kirkpatrick, S.C. Lewis, Increasing trends in regional heatwaves, Nature Communications 11 (1) (2020)1-8.
  • A. Sulikowska, A. Wypych, Seasonal Variability of Trends in Regional Hot and Warm Temperature Extremes in Europe, Atmosphere 12 (5) (2021)1- 21.
  • S. Al-Yahyai, Y. Charabi, A. Gastli, Review of the use of numerical weather prediction (NWP) models for wind energy assessment, Renewable and Sustainable Energy Reviews 14(9) (2010) 3192-3198.
  • P. Bauer, A. Thorpe, G. Brunet, The quiet revolution of numerical weather prediction. Nature 525 (2015) 47–55.
  • A. Dai, Increasing drought under global warming in observations and models, Nature Climate Change 3 (2013) 52-58.
  • B. Özgür, The assessment of socio-economic impacts of climate change in rural areas: the case of Konya, Thesis (M.S.) Graduate School of Natural and Applied Sciences, City and Regional Planning. Middle East Technical University, Ankara, Türkiye, 2019.
  • J.W. Jones, J.W. Hansen, F.S. Royce, C. D. Messina, Potential benefits of climate forecasting to agriculture. Agriculture, Ecosystems & Environment 82(1-3) (2000)169-184.
  • C. Oğuz, A. Y. Ögür, Climate Change and Agriculture: The Case of Konya Province in Recent Academic Studies in Sciences, B Ranguelov R. Efe, M.S. DINU, E. Atasoy (Eds), Sofia: St. Kliment Ohridski University Press, (2021)1-20.
  • İ. Kınacı, Konya İli Sıcaklık Verilerinin Çift Doğrusal Zaman Serisi Modeli İle Modellenmesi, 3. Yenilenebilir Enerji Kaynakları Sempozyumu, Türkiye, Mersin, 2005
  • Ö. Terzi, T. Ersoy, Yapay Sinir Ağları ile Konya İli Kuraklık Tahmini. DSI Technical Bulletin/DSI Teknik Bülteni, (2018) (127).
  • A. A. Shafin, Machine learning approach to forecast average weather temperature of Bangladesh, Global Journal of Computer Science and Technology 19(3) (2019) 39-48.
  • S. Suzulmus, Prediction of average temperatures using artificial neural netwark methods: the case of Gaziantep Provnice, Turkey. Fresenius Environmental Bulletin 28(2A) (2019) 1494-1502.
  • A. Turgut, A. Temir, B. Aksoy, K. Özsoy, Yapay Zekâ Yöntemleri ile Hava Sıcaklığı Tahmini İçin Sistem Tasarımı ve Uygulaması, International Journal of 3D Printing Technologies and Digital Industry 3(3) (2019) 244-253.
  • J. Cifuentes, G. Marulanda, A. Bello, J. Reneses, Air temperature forecasting using machine learning techniques: a review, Energies 13(16) (2020) 4215.
  • A. Sevinç, B. Kaya, Derin öğrenme ve istatistiksel modelleme yöntemiyle sıcaklık tahmini ve karşılaştırılması. Avrupa Bilim ve Teknoloji Dergisi (28) (2021) 1222-1228.
  • R. M. Adnan, Z. Liang, A. Kuriqi, O. Kisi, A. Malik, B. Li, F. Mortazavizadeh, Air temperature prediction using different machine learning models, Indonesian Journal of Electrical Engineering and Computer Science 22(1) (2021) 534-541.
  • A. Sevinç, B. Kaya, Derin Öğrenme Yöntemleri ile Sıcaklık Tahmini: Diyarbakır İli Örneği, Computer Science Special (2021) 217-225.
  • B. Azari, K. Hassan, J. Pierce, S. Ebrahimi, Evaluation of machine learning methods application in temperature prediction, Computational Research Progress in Applied Science & Engineerıng (CRPASE) 8(1) (2022) 1-12.
  • D. Fister, J. Pérez-Aracil, C. Peláez-Rodríguez, J. Del Ser, S. Salcedo-Sanz, Accurate long-term air temperature prediction with machine learning models and data reduction techniques, Applied Soft Computing 136 (2023) 110118.
  • C. B. Yılmaz, H. Bodu, E. S. Yüce, V. Demir, M. F. Sevimli, Türkiye’nin uzun dönem ortalama sıcaklık (°C) değerlerinin üç farklı enterpolasyon yöntemi ile tahmini, Geomatik 8(1) (2023) 9-17.
  • S. Coşkun, tuz gölü-konya kapalı havzalarının yaz mevsimi ortalama sıcaklık, yağış, buharlaşma ve akım verilerindeki değişimlerin karşılaştırmalı trend analizi, The Journal of Social Sciences (46) (2024). 123-138.
  • C. Gagné, M. Parizeau, Genericity in evolutionary computation software tools: Principles and case-study, International Journal on Artificial Intelligence Tools 15(02) (2006) 173-194.
  • A. N. Sloss, S. Gustafson, 2019 evolutionary algorithms review, Genetic programming theory and practice XVII, (2020) 307-344.
  • A. Tripathi, R. Singh, A. K. Singh, P. Gupta, S. Vats, M. Singhal, Significance of Evolutionary Artificial Intelligence: A Detailed Overview of the Concepts, Techniques, and Applications, Artificial Intelligence, Machine Learning and User Interface Design 27(53) (2024) 27-53.
  • A. Natekin, A. Knoll, Gradient boosting machines, a tutorial, Frontiers in neurorobotics 7 (2013) 21.
  • I. Pence, R. Yıldırım, M. S. Cesmeli, A. Güngör, A. Akyüz, Evaluation of machine learning approaches for estimating thermodynamic properties of new generation refrigerant R513A. Sustainable Energy Technologies and Assessments 55 (2023) 102973.
  • S. Babu Nuthalapati, A. Nuthalapati, Accurate weather forecasting with dominant gradient boosting using machine learning, Int. J. Sci. Res. Arch 12(2) (2024) 408-422.
  • S. J. Rigatti, Random forest, Journal of Insurance Medicine 47(1) (2017) 31-39.
  • A. Parmar, R. Katariya, V. Patel, A review on random forest: An ensemble classifier. In International conference on intelligent data communication technologies and internet of things Springer International Publishing (ICICI) 2018 (2019) (pp. 758-763)
  • I. Pence, K. Kumas, M. S. Cesmeli, A. Akyüz, Animal-based CO2, CH4, and N2O emissions analysis: Machine learning predictions by agricultural regions and climate dynamics in varied scenarios, Computers and Electronics in Agriculture 226 (2024)109423.
  • Turkish State Meteorological Service (TSMS) Turkish State Meteorological Service https://www.mgm.gov.tr/tahmin/turkiye.aspx (accessed 6.22.23) Ankara Turkey
There are 36 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Kazım Kumaş 0000-0002-2348-4664

Ali Özhan Akyüz 0000-0001-9265-7293

Publication Date December 31, 2024
Submission Date November 1, 2024
Acceptance Date December 2, 2024
Published in Issue Year 2024

Cite

APA Kumaş, K., & Akyüz, A. Ö. (2024). PREDICTING KONYA’S AIR TEMPERATURE: GENETIC PROGRAMMING, GRADIENT BOOSTING AND RANDOM FOREST APPROACHES. Uluslararası Sürdürülebilir Mühendislik Ve Teknoloji Dergisi, 8(2), 182-191. https://doi.org/10.62301/usmtd.1577839
AMA Kumaş K, Akyüz AÖ. PREDICTING KONYA’S AIR TEMPERATURE: GENETIC PROGRAMMING, GRADIENT BOOSTING AND RANDOM FOREST APPROACHES. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. December 2024;8(2):182-191. doi:10.62301/usmtd.1577839
Chicago Kumaş, Kazım, and Ali Özhan Akyüz. “PREDICTING KONYA’S AIR TEMPERATURE: GENETIC PROGRAMMING, GRADIENT BOOSTING AND RANDOM FOREST APPROACHES”. Uluslararası Sürdürülebilir Mühendislik Ve Teknoloji Dergisi 8, no. 2 (December 2024): 182-91. https://doi.org/10.62301/usmtd.1577839.
EndNote Kumaş K, Akyüz AÖ (December 1, 2024) PREDICTING KONYA’S AIR TEMPERATURE: GENETIC PROGRAMMING, GRADIENT BOOSTING AND RANDOM FOREST APPROACHES. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi 8 2 182–191.
IEEE K. Kumaş and A. Ö. Akyüz, “PREDICTING KONYA’S AIR TEMPERATURE: GENETIC PROGRAMMING, GRADIENT BOOSTING AND RANDOM FOREST APPROACHES”, Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi, vol. 8, no. 2, pp. 182–191, 2024, doi: 10.62301/usmtd.1577839.
ISNAD Kumaş, Kazım - Akyüz, Ali Özhan. “PREDICTING KONYA’S AIR TEMPERATURE: GENETIC PROGRAMMING, GRADIENT BOOSTING AND RANDOM FOREST APPROACHES”. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi 8/2 (December 2024), 182-191. https://doi.org/10.62301/usmtd.1577839.
JAMA Kumaş K, Akyüz AÖ. PREDICTING KONYA’S AIR TEMPERATURE: GENETIC PROGRAMMING, GRADIENT BOOSTING AND RANDOM FOREST APPROACHES. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. 2024;8:182–191.
MLA Kumaş, Kazım and Ali Özhan Akyüz. “PREDICTING KONYA’S AIR TEMPERATURE: GENETIC PROGRAMMING, GRADIENT BOOSTING AND RANDOM FOREST APPROACHES”. Uluslararası Sürdürülebilir Mühendislik Ve Teknoloji Dergisi, vol. 8, no. 2, 2024, pp. 182-91, doi:10.62301/usmtd.1577839.
Vancouver Kumaş K, Akyüz AÖ. PREDICTING KONYA’S AIR TEMPERATURE: GENETIC PROGRAMMING, GRADIENT BOOSTING AND RANDOM FOREST APPROACHES. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. 2024;8(2):182-91.