Research Article
BibTex RIS Cite

LPG’ Lİ ARAÇLARIN RİSKLİ ALANLARDA BİLGİSAYARLI GÖRÜ TEKNİKLERİ İLE TESPİTİ

Year 2024, Volume: 8 Issue: 1, 26 - 43, 26.06.2024
https://doi.org/10.62301/usmtd.1493932

Abstract

Dünya nüfus artışına bağlı olarak araç kullanımı gün geçtikçe yaygınlaşmaktadır. Akıllı ulaşım sistemleri kapsamında artan araç sayısının neden olduğu sorunları çözmek için bilişim sektörü ile ulaşım sektörü entegre bir şekilde çalışmaktadır. Sensörler ve kameralarla elde edilen veriler, yapay zeka tabanlı bilişim teknolojileriyle analiz edilerek otonom araçlar, güvenlik, trafik yönetimi, navigasyon ve yolcu bilgilendirme sistemlerinde kullanılmaktadır. Bilgisayarlı görü, görüntü işleme ile derin öğrenme teknolojilerinin birlikte kullanılması sonucu makinelerin, görüntülerden anlamlı örüntüler ve ilişkiler çıkarmasını sağlamaktadır. Bilgisayarlı görü teknikleri turizm, sağlık, sanayi, savunma, ulaşım, hizmet, e-ticaret vb. birçok alanda uygulanmaktadır. Geliştirilen uygulamalar ulaşım sektöründe çeşitli zorluklara çözüm üretmektedir. Liquified Petroleum Gas (LPG) yakıtı kullanan araçlar için, LPG tanklarındaki gazların yanıcı olması ve patlama ihtimali yaratması nedeniyle, özellikle şehirlerdeki belirli alanlarda tehlike oluşturmaktadır. Kapalı otopark hizmeti bulunduran hastaneler, alışveriş merkezleri, oteller gibi kurum ve kuruluşlarda LPG’ li araçların girişi yasaklanmıştır. Yasağın denetim yöntemi ise bir personelin görevlendirilmesi ve araç bagajlarının kontrol edilmesiyle gerçekleştirilmektedir. Bu çalışmada LPG yakıtıyla çalışan araçların bilgisayarlı görü teknikleri kullanılarak otomatik bir şekilde tespiti yapılmıştır. Türkiye’de farklı illerde mobil kameralar aracılığıyla çekilen araç görüntü verileri dört farklı derin öğrenme modeli ile eğitilerek karşılaştırılmıştır. Modeller üzerinde eğitim ve performans testleri sonucu YOLOv8 modelinde, 0.994 mAP doğruluk ve 11.6 ms hız değerleri ile diğer modellerden daha etkili sonuç elde edilmiştir. Güncel hayatta gerçek zamanlı izleme açısından kararlı bir model olduğu gösterilmiştir. Geliştirilen sistemin, bilgisayarlı görü tekniği uygulamalarına katkıda bulunmasının yanı sıra ulusal ekonomiye, toplum can güvenliğine ve çevrenin korunmasına fayda sağlayabileceği öngörülmektedir.

References

  • [1] Ş.G. Taç, Karayolu ulaşımında meydana gelen trafik kazalarının önlenmesinde akıllı ulaşım sistemlerinin etkisi. Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi, 1(2) (2018) 12-21.
  • [2] F. Coşkun, H.D. Gülleroğlu, Yapay zekânın tarih içindeki gelişimi ve eğitimde kullanılması. Ankara University Journal of Faculty of Educational Sciences (JFES), 54(3) (2021) 947-966.
  • [3] P. Sermanet, Y. LeCun, Traffic sign recognition with multi-scale convolutional networks. In The 2011 international joint conference on neural networks, IEEE, (2011) (pp. 2809-2813).
  • [4] S. Ren, K. He, R. Girschich, J. Sun, Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, (2015) 28.
  • [5] S. Lange, F. Ulbrich, D. Goehring, Online Vehicle Detection Using Deep Neural Networks and Lidar Based Preselected Image Patches. In Proceedings of the 2016 IEEE Intelligent Vehicles Symposium (IV) (2016).
  • [6] U.K.K. Pillai, D. Valles, An initial deep CNN design approach for identification of vehicle color and type for amber and silver alerts. In 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC) IEEE. (2021) pp. 0903-0908.
  • [7] A. Gholamhosseinian, J. Seitz, Vehicle classification in intelligent transport systems: An overview, methods and software perspective. IEEE Open Journal of Intelligent Transportation Systems, (2021) (2) 173-194.
  • [8] J .N. Niroomand, C. Bach, M. Elser, Robust vehicle classification based on deep features learning. IEEE (2021) Access, 9, 95675-95685.
  • [9] J. Azimjonov, A. Özmen, A real-time vehicle detection and a novel vehicle tracking systems for estimating and monitoring traffic flow on highways. Advanced Engineering Informatics, (2021) (50) 101393.
  • [10] A. Sökülmez, Karayolu Bakış Açılı Görüntü İle Derin Öğrenme Tabanlı Araç Algılama- Sayma, Trafik Yoğunluğu Hesabı YApılması ve Google Haritalara Anlık Veri Sunma Sistemi. Yönetim Bilişim Sistemleri Ansiklopedi, 1.
  • [11] M.Z. Zaheer, J.H. Lee, S.I. Lee, B.S. Seo, A brief survey on contemporary methods for anomaly detection in videos. In 2019 International Conference on Information and Communication Technology Convergence (ICTC) IEEE (2019) (pp. 472-473).
  • [12] D.R. Patrikar, M.R. Parate, Anomaly detection using edge computing in video surveillance system. International Journal of Multimedia Information Retrieval, (2022) 11(2), 85-110.
  • [13] R. Nayak, U.C. Pati, S.K. Das, A comprehensive review on deep learning-based methods for video anomaly detection. Image and Vision Computing, (2021) (106) 104078.
  • [14] Y.J. Cruz, M. Rivas, R. Quiza, A. Villalonga, E.R. Haber, G. Beruvides, Ensemble of convolutional neural networks based on an evolutionary algorithm applied to an industrial welding process. Computers in Industry, (2021) (133) 103530.
  • [15] N. Turgut, Sıvılaştırılmış petrol gazı (LPG) sistemleri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, (2010) 14(1-2).
  • [16] https://www.verikaynagi.com/grafik/yakit-turlerine-gore-kara-tasit-sayisi/ (accessed 23.05.2024)
  • [17] J.S. Suri, Computer vision, pattern recognition and image processing in left ventricle segmentation: The last 50 years. Pattern Analysis & Applications, (2000) 3(3) 209-242.
  • [18] V. Wiley, T. Lucas, Computer vision and image processing: a paper review. International Journal of Artificial Intelligence Research, (2018) 2(1) 29-36.
  • [19] J. Deng, X. Xuan, W. Wang, Z. Li, H. Yao, Z. Wang, A review of research on object detection based on deep learning. In Journal of Physics: Conference Series (2020) (Vol. 1684, No. 1, p. 012028). IOP Publishing.
  • [20]https://documentation.sas.com/doc/en/pgmsascdc/v_050/casdlpg/p1np8zbnoyd0brn1dhehthuuxj4q.htm#p01r9nxiv9wu0in150lnlp23bfwb (accessed 23.05.2024)
  • [21] P. Chu, Z. Li, K. Lammers, R. Lu, X. Liu, Deep learning-based apple detection using a suppression mask R-CNN. Pattern Recognition Letters, (2021) (147) 206-211.
  • [22] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (2016) (pp. 779-788).
  • [23] D. Thuan, Evolution of Yolo algorithm and Yolov5: The State-of-the-Art object detention algorithm (2021).
  • [24] G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, Y. Kwon, J. Fang, M. Thanh Minh, ultralytics/yolov5: v6. 1-tensorrt, tensorflow edge tpu and openvino export and inference. Zenodo (2022).
  • [25] https://blog.roboflow.com/guide-to-yolo-models/ (accessed 23.05.2024)
  • [26] X. Cong, S. Li, F. Chen, C. Liu, Y. Meng, A review of YOLO object detection algorithms based on deep learning. Frontiers in Computing and Intelligent Systems, (2023) 4(2) 17-20.
  • [27] https://www.v7labs.com/blog/yolo-object-detection (accessed 23.05.2024)
  • [28] D. Chicco, M. J. Warrens, G. Jurman, The Coefficient of Determination R-Squared is More Informative than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation. PeerJ Computer Science, (2021) (7) e623.
  • [29] P. Steno, A. Alsadoon, P.W.C. Prasad, T. Al-Dala’in, O.H. Alsadoon, A novel enhanced region proposal network and modified loss function: threat object detection in secure screening using deep learning. The Journal of Supercomputing, (2021) (77) 3840-3869.
  • [30] R. Padilla, S. L. Netto, E.A. Da Silva, A Survey on Performance Metrics for Object-Detection Algorithms. In 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), (2020) 237-242.

DETECTION OF LPG VEHICLES IN RISKY AREAS WITH COMPUTER VISION TECHNIQUES

Year 2024, Volume: 8 Issue: 1, 26 - 43, 26.06.2024
https://doi.org/10.62301/usmtd.1493932

Abstract

Vehicle use is becoming more widespread day by day due to the world population growth. Within the scope of intelligent transportation systems, the information technologies sector and the transportation sector work in an integrated manner to solve the problems caused by the increasing number of vehicles. Data obtained with sensors and cameras are analyzed with artificial intelligence-based information technologies and used in autonomous vehicles, security, traffic management, navigation and passenger information systems. Computer vision enables machines to extract meaningful patterns and relationships from images by combining image processing and deep learning technologies. Computer vision techniques are applied in many fields such as tourism, health, industry, defense, transportation, service, e-commerce, etc. The applications developed provide solutions to various challenges in the transportation sector. For vehicles using Liquified Petroleum Gas (LPG) fuel, the gases in LPG tanks are flammable and pose a potential explosion hazard, especially in certain areas in cities. Entry of LPG vehicles is prohibited in institutions and organizations such as hospitals, shopping malls, hotels that have indoor parking services. The control method of the ban is carried out by assigning a personnel and checking the vehicle trunks. In this study, LPG fueled vehicles were automatically detected using computer vision techniques. Vehicle image data captured by mobile cameras in different provinces in Turkey were trained and compared with four different deep learning models. As a result of training and performance tests on the models, the YOLOv8 model was more effective than the other models with an accuracy of 0.994 mAP and a speed of 11.6 ms. It has been shown to be a stable model in terms of real-time monitoring in real life. It is envisaged that the developed system can contribute to the applications of computer vision techniques as well as benefit the national economy, public life safety and environmental protection.

References

  • [1] Ş.G. Taç, Karayolu ulaşımında meydana gelen trafik kazalarının önlenmesinde akıllı ulaşım sistemlerinin etkisi. Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi, 1(2) (2018) 12-21.
  • [2] F. Coşkun, H.D. Gülleroğlu, Yapay zekânın tarih içindeki gelişimi ve eğitimde kullanılması. Ankara University Journal of Faculty of Educational Sciences (JFES), 54(3) (2021) 947-966.
  • [3] P. Sermanet, Y. LeCun, Traffic sign recognition with multi-scale convolutional networks. In The 2011 international joint conference on neural networks, IEEE, (2011) (pp. 2809-2813).
  • [4] S. Ren, K. He, R. Girschich, J. Sun, Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, (2015) 28.
  • [5] S. Lange, F. Ulbrich, D. Goehring, Online Vehicle Detection Using Deep Neural Networks and Lidar Based Preselected Image Patches. In Proceedings of the 2016 IEEE Intelligent Vehicles Symposium (IV) (2016).
  • [6] U.K.K. Pillai, D. Valles, An initial deep CNN design approach for identification of vehicle color and type for amber and silver alerts. In 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC) IEEE. (2021) pp. 0903-0908.
  • [7] A. Gholamhosseinian, J. Seitz, Vehicle classification in intelligent transport systems: An overview, methods and software perspective. IEEE Open Journal of Intelligent Transportation Systems, (2021) (2) 173-194.
  • [8] J .N. Niroomand, C. Bach, M. Elser, Robust vehicle classification based on deep features learning. IEEE (2021) Access, 9, 95675-95685.
  • [9] J. Azimjonov, A. Özmen, A real-time vehicle detection and a novel vehicle tracking systems for estimating and monitoring traffic flow on highways. Advanced Engineering Informatics, (2021) (50) 101393.
  • [10] A. Sökülmez, Karayolu Bakış Açılı Görüntü İle Derin Öğrenme Tabanlı Araç Algılama- Sayma, Trafik Yoğunluğu Hesabı YApılması ve Google Haritalara Anlık Veri Sunma Sistemi. Yönetim Bilişim Sistemleri Ansiklopedi, 1.
  • [11] M.Z. Zaheer, J.H. Lee, S.I. Lee, B.S. Seo, A brief survey on contemporary methods for anomaly detection in videos. In 2019 International Conference on Information and Communication Technology Convergence (ICTC) IEEE (2019) (pp. 472-473).
  • [12] D.R. Patrikar, M.R. Parate, Anomaly detection using edge computing in video surveillance system. International Journal of Multimedia Information Retrieval, (2022) 11(2), 85-110.
  • [13] R. Nayak, U.C. Pati, S.K. Das, A comprehensive review on deep learning-based methods for video anomaly detection. Image and Vision Computing, (2021) (106) 104078.
  • [14] Y.J. Cruz, M. Rivas, R. Quiza, A. Villalonga, E.R. Haber, G. Beruvides, Ensemble of convolutional neural networks based on an evolutionary algorithm applied to an industrial welding process. Computers in Industry, (2021) (133) 103530.
  • [15] N. Turgut, Sıvılaştırılmış petrol gazı (LPG) sistemleri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, (2010) 14(1-2).
  • [16] https://www.verikaynagi.com/grafik/yakit-turlerine-gore-kara-tasit-sayisi/ (accessed 23.05.2024)
  • [17] J.S. Suri, Computer vision, pattern recognition and image processing in left ventricle segmentation: The last 50 years. Pattern Analysis & Applications, (2000) 3(3) 209-242.
  • [18] V. Wiley, T. Lucas, Computer vision and image processing: a paper review. International Journal of Artificial Intelligence Research, (2018) 2(1) 29-36.
  • [19] J. Deng, X. Xuan, W. Wang, Z. Li, H. Yao, Z. Wang, A review of research on object detection based on deep learning. In Journal of Physics: Conference Series (2020) (Vol. 1684, No. 1, p. 012028). IOP Publishing.
  • [20]https://documentation.sas.com/doc/en/pgmsascdc/v_050/casdlpg/p1np8zbnoyd0brn1dhehthuuxj4q.htm#p01r9nxiv9wu0in150lnlp23bfwb (accessed 23.05.2024)
  • [21] P. Chu, Z. Li, K. Lammers, R. Lu, X. Liu, Deep learning-based apple detection using a suppression mask R-CNN. Pattern Recognition Letters, (2021) (147) 206-211.
  • [22] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (2016) (pp. 779-788).
  • [23] D. Thuan, Evolution of Yolo algorithm and Yolov5: The State-of-the-Art object detention algorithm (2021).
  • [24] G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, Y. Kwon, J. Fang, M. Thanh Minh, ultralytics/yolov5: v6. 1-tensorrt, tensorflow edge tpu and openvino export and inference. Zenodo (2022).
  • [25] https://blog.roboflow.com/guide-to-yolo-models/ (accessed 23.05.2024)
  • [26] X. Cong, S. Li, F. Chen, C. Liu, Y. Meng, A review of YOLO object detection algorithms based on deep learning. Frontiers in Computing and Intelligent Systems, (2023) 4(2) 17-20.
  • [27] https://www.v7labs.com/blog/yolo-object-detection (accessed 23.05.2024)
  • [28] D. Chicco, M. J. Warrens, G. Jurman, The Coefficient of Determination R-Squared is More Informative than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation. PeerJ Computer Science, (2021) (7) e623.
  • [29] P. Steno, A. Alsadoon, P.W.C. Prasad, T. Al-Dala’in, O.H. Alsadoon, A novel enhanced region proposal network and modified loss function: threat object detection in secure screening using deep learning. The Journal of Supercomputing, (2021) (77) 3840-3869.
  • [30] R. Padilla, S. L. Netto, E.A. Da Silva, A Survey on Performance Metrics for Object-Detection Algorithms. In 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), (2020) 237-242.
There are 30 citations in total.

Details

Primary Language English
Subjects Software Engineering (Other)
Journal Section Research Articles
Authors

Öznur Suçeken 0000-0002-6184-2442

Gül Fatma Türker 0000-0001-5714-5102

Publication Date June 26, 2024
Submission Date June 1, 2024
Acceptance Date June 12, 2024
Published in Issue Year 2024 Volume: 8 Issue: 1

Cite

APA Suçeken, Ö., & Türker, G. F. (2024). DETECTION OF LPG VEHICLES IN RISKY AREAS WITH COMPUTER VISION TECHNIQUES. Uluslararası Sürdürülebilir Mühendislik Ve Teknoloji Dergisi, 8(1), 26-43. https://doi.org/10.62301/usmtd.1493932
AMA Suçeken Ö, Türker GF. DETECTION OF LPG VEHICLES IN RISKY AREAS WITH COMPUTER VISION TECHNIQUES. Sistem Güncelleme. June 2024;8(1):26-43. doi:10.62301/usmtd.1493932
Chicago Suçeken, Öznur, and Gül Fatma Türker. “DETECTION OF LPG VEHICLES IN RISKY AREAS WITH COMPUTER VISION TECHNIQUES”. Uluslararası Sürdürülebilir Mühendislik Ve Teknoloji Dergisi 8, no. 1 (June 2024): 26-43. https://doi.org/10.62301/usmtd.1493932.
EndNote Suçeken Ö, Türker GF (June 1, 2024) DETECTION OF LPG VEHICLES IN RISKY AREAS WITH COMPUTER VISION TECHNIQUES. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi 8 1 26–43.
IEEE Ö. Suçeken and G. F. Türker, “DETECTION OF LPG VEHICLES IN RISKY AREAS WITH COMPUTER VISION TECHNIQUES”, Sistem Güncelleme, vol. 8, no. 1, pp. 26–43, 2024, doi: 10.62301/usmtd.1493932.
ISNAD Suçeken, Öznur - Türker, Gül Fatma. “DETECTION OF LPG VEHICLES IN RISKY AREAS WITH COMPUTER VISION TECHNIQUES”. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi 8/1 (June 2024), 26-43. https://doi.org/10.62301/usmtd.1493932.
JAMA Suçeken Ö, Türker GF. DETECTION OF LPG VEHICLES IN RISKY AREAS WITH COMPUTER VISION TECHNIQUES. Sistem Güncelleme. 2024;8:26–43.
MLA Suçeken, Öznur and Gül Fatma Türker. “DETECTION OF LPG VEHICLES IN RISKY AREAS WITH COMPUTER VISION TECHNIQUES”. Uluslararası Sürdürülebilir Mühendislik Ve Teknoloji Dergisi, vol. 8, no. 1, 2024, pp. 26-43, doi:10.62301/usmtd.1493932.
Vancouver Suçeken Ö, Türker GF. DETECTION OF LPG VEHICLES IN RISKY AREAS WITH COMPUTER VISION TECHNIQUES. Sistem Güncelleme. 2024;8(1):26-43.