Review
BibTex RIS Cite

Metalik Biyomalzemelerin Yaşam Döngüsü Değerlendirmesi

Year 2023, , 59 - 71, 30.06.2023
https://doi.org/10.47137/usufedbid.1307658

Abstract

Metalik olan biyomalzemelerin analiz edilmesi, özellikle implantların başarısını anlamak için kilit olan önemli bir faktördür. Bazı biyomalzemelerin konakçı üzerinde temas ettiği ortam korozif olabilir. Metalik biyomalzemeler ile vücudun biyolojik çevresinin etkileşimi hakkında bilgi, in-vivo çalışmalar ile canlı üzerine yerleştirilmiş olan biyomalzeme gruplarının uzun süreli hizmet göstermesi açısından birbirleri ile bağlantı olup, kullanım süreleri açısından çok önemlidir. Biyomalzemelerin insan vücudunun fizyolojik ortamındaki ortopedik implant ve protez gibi kullanım alanları üzerinde; korozyon ve metal duyarlılıkları uzun zamandır tartışma konusudur. Bu derleme, metalik biyomalzemelerin konakçı üzerindeki hizmet ömrü döngüsünde korozyon, korozyon çeşitleri ve metal duyarlılıkları hakkında genel bilgiler sunacaktır.

References

  • 1. Breme J and Biehl V. Metallic biomaterials, in Handbook of biomaterial properties Springer.1998;102(2):135-144.
  • 2. Patel SK et al. A review on NiTi alloys for biomedical applications and their biocompatibility. Materials Today: Proceedings. 2020;33:5548-5551.
  • 3. Jin S et al. Influence of TiN coating on the biocompatibility of medical NiTi alloy. Colloids and Surfaces B: Biointerfaces. 2013;101:343-349.
  • 4. Prasad K et al. Metallic biomaterials: Current challenges and opportunities. Materials.2017;10(8):884.
  • 5. McGivney BA et al. Characterization of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training. BMC genomics. 2010;11(1):1-17
  • 6. Balci E and Dağdelen F. Biyomalzeme Türleri ve Biyouyumlu Metalik Elementler. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi. 2023;(2):1179-1195
  • 7. Güven ŞY. Ortopedik malzemelerin biyouyumlulukları ve mekanik özelliklerine göre seçimi. in 2nd National Design and Manufacturing Congress, Balıkesir. 2010.
  • 8. Güven Ş. Biyouyumluluk ve biyomalzemelerin seçimi. Mühendislik Bilimleri ve Tasarım Dergisi, 2014;2:303-311.
  • 9. Johnson JL. Mass production of medical devices by metal injection molding. Medical Device and Diagnostic Industry. 2002;24:48-53.
  • 10. Gür AK and Taşkin M. Metalik biyomalzemeler ve biyouyum. Fırat Üniversitesi Doğu Araştırmaları Dergisi.2004;2:106-113.
  • 11. Hansen DC. Metal corrosion in the human body: the ultimate bio-corrosion scenario. The Electrochemical Society Interface.2008;17(2):31.
  • 12. Bahçe E et al. CoCrMo Alaşımı Üzerine TaN Esaslı İnce Film Kaplamaların Yüzey Özelliklerinin İncelenilmesi. Karadeniz Fen Bilimleri Dergisi. 2019;9(2):223-237.
  • 13. Arvidson K et al. Cytotoxic effects of cobalt‐chromium alloys on fibroblasts derived from human gingiva. European Journal of Oral Sciences. 1987;95(4):356-363.
  • 14. Masutani S et al. Temperature rise during polymerization of visible light-activated composite resins. Dental Materials. 1988;4(4):174-178.
  • 15. Tschernitschek H, L Borchers, and W Geurtsen. Nonalloyed titanium as a bioinert metal--a review. Quintessence international. 2005;36(7);102.
  • 16. Cranin N. The requirements and clinical performance of dental implants. Biocompatibility of dental materials. 1982.
  • 17. Yilmaz Y, Avci B, and H Demirören. Biyomalzeme sektöründe kullanılan titanyum ve alaşımları. 4 th International Symposium on Innovative Approaches in Engineering and Natural Sciences. Samsun,Turkey. 2019.
  • 18. Yolun A. Toz metalurjisi ile üretilen TiNb alaşımının biyouyumluluk özelliğinin incelenmesi. Yüksek Lisans, Fen Bilimleri Enstitüsü. Adıyaman Üniversitesi. 2016.
  • 19. Sykaras N et al. Implant materials, designs, and surface topographies: their effect on osseointegration. A literature review. International Journal of Oral & Maxillofacial Implants. 2000;15(5):63-114.
  • 20. Ravnholt G. Corrosion current and pH rise around titanium coupled to dental alloys. European Journal of Oral Sciences. 1988;96(5):466-472.
  • 21. Akman A. Termal sprey yöntemi ile hidroksi apatit kaplanmış Ti6Al4V ve 316LVM paslanmaz çelik implant malzemelerin karakterizasyonu.Yüksek Lisans, Fen Bilimleri Ensitütüsü. Sakarya Uygulamalı Bilimler Üniversitesi. 2022.
  • 22. Kirkik D et al. Dental uygulamalarda kullanılan biyomalzemeler. Nevşehir Bilim ve Teknoloji Dergisi, 2019;8:145-153.
  • 23. Kohal RJ et al. Loaded custom‐made zirconia and titanium implants show similar osseointegration: an animal experiment. Journal of periodontology. 2004;75(9): 1262-1268.
  • 24. Prithviraj D et al. A systematic review of zirconia as an implant material. Indian Journal of Dental Research. 2012;23(5) 643.
  • 25. Cranin AN et al. Alumina and zirconia coated vitallium oral endosteal implants in beagles. Journal of biomedical materials research. 1975;9(4):257-262.
  • 26. Çakmak Ö et al. Toz Metalurjisi ile Üretilen Gözenekli TiZr Alaşımının Mekanik Özellikleri ve Biyouyumluluğu Üzerine Sinterleme Sıcaklığının Etkileri. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi. 2022:9:71-79.
  • 27. Chiapasco M et al. Titanium–zirconium alloy narrow‐diameter implants for the rehabilitation of horizontally deficient edentulous ridges: prospective study on 18 consecutive patients. Clinical oral implants research. 2012;23(10):1136-1141.
  • 28. Saini M et al. Implant biomaterials: A comprehensive review. World Journal of Clinical Cases: WJCC. 2015;3(1):52.
  • 29. Zhen Z, T.-f. Xi, and Y.-f. Zheng. A review on in vitro corrosion performance test of biodegradable metallic materials. Transactions of Nonferrous Metals Society of China. 2013;23(8):2283-2293.
  • 30. Geetha M et al. Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Progress in materials science. 2009;54(3):397-425.
  • 31. Ratner BD et al. Biomaterials science: an introduction to materials in medicine. San Diego, California. 2004:5;162-4.
  • 32. Balcı E and Dagdelen F. Thermal, structural properties and potential dynamic corrosion study of Ti-27Ni-21Nb-2Ta SMA. Iranian Journal of Science and Technology, Transactions A: Science, 2022;46:353-359.
  • 33. Aksakal B, Yildirim Ö, and Gul H. Metallurgical failure analysis of various implant materials used in orthopedic applications. Journal of Failure Analysis and Prevention. 2004;4(3):17-23.
  • 34. Virtanen S et al. Special modes of corrosion under physiological and simulated physiological conditions. Acta biomaterialia. 2008;4(3):468-476.
  • 35. Williams D. Titanium: epitome of biocompatibility or cause for concern. The Journal of Bone and Joint Surgery. British volume. 1994.76(3): p. 348-349.
  • 36. Okazaki Y and Gotoh E. Metal release from stainless steel, Co–Cr–Mo–Ni–Fe and Ni–Ti alloys in vascular implants. Corrosion science. 2008; 50(12):3429-3438.
  • 37. Kamachimudali U, T Sridhar, and B Raj, Corrosion of bio implants. Sadhana. 2003;28(3):601-637.
  • 38. Chaturvedi T. An overview of the corrosion aspect of dental implants (titanium and its alloys). Indian Journal of Dental Research. 2009;20(1):91
  • 39. Reclaru L et al. Pitting, crevice and galvanic corrosion of REX stainless-steel/CoCr orthopedic implant material. Biomaterials. 2002;23(16):3479-3485.
  • 40. Willert H et al. Crevice corrosion of cemented titanium alloy stems in total hip replacements. Clinical orthopaedics and related research. 1996;333:51-75.
  • 41. Clerc CO et al. Assessment of wrought ASTM F1058 cobalt alloy properties for permanent surgical implants. Journal of biomedical materials research. 1997; 38(3):229-234.
  • 42. Manivasagam G, Dhinasekaran D, and Rajamanickam A. Biomedical implants: corrosion and its prevention-a review. Recent patents on corrosion science.2010; 2(1):21.
  • 43. Willert HG et al. Crevice corrosion of cemented titanium alloy stems in total hip replacements. Clinical Orthopaedics and Related Research. 1996;333:51-75.
  • 44. Watanabe H et al. Pseudotumor and deep venous thrombosis due to crevice corrosion of the head–neck junction in metal-on-polyethylene total hip arthroplasty. Journal of Orthopaedic Science. 2015;20(6):1142-1147.
  • 45. Seminara P et al. Assessing and Monitoring of Building Performance by Diverse Methods. Sustainability. 2022;14(3):1242.
  • 46. Lalzawmliana V et al. Marine organisms as a source of natural matrix for bone tissue engineering. Ceramics International. 2019;45(2):1469-1481.
  • 47. Richard A. Laboratory corrosion testing of medical implants. ASM International, Newyark, Delaware, USA. 2003.
  • 48. Przygoda RT. Safety assessment and global regulatory requirements for genetic toxicity evaluations of medical devices. Environmental and Molecular Mutagenesis. 2017;58(5):375-379.
  • 49. Jacobs JJ, Gilbert JL and R.M. Urban. Current concepts review-corrosion of metal orthopaedic implants. Jbjs. 1998; 80(2): 268-82.
  • 50. Black J. Systemic effects of biomaterials. The biomaterials: silver jubilee compendium. 1984:27-34.
  • 51. Simoes TA et al. Evidence for the dissolution of molybdenum during tribocorrosion of CoCrMo hip implants in the presence of serum protein. Acta Biomaterialia. 2016;45:410-418.
  • 52. Baxmann M et al. Biomechanical evaluation of the fatigue performance, the taper corrosion and the metal ion release of a dual taper hip prosthesis under physiological environmental conditions. Biotribology. 2017;12:1-7.
  • 53. Black J. Biological performance of materials: fundamentals of biocompatibility. 2005.
  • 54. Hallab N, Merritt K and Jacobs JJ. Metal sensitivity in patients with orthopaedic implants. JBJS. 2001;83(3):428.
  • 55. Biller-Takahashi JD and Urbinati EC. Fish Immunology. The modification and manipulation of the innate immune system: Brazilian studies. Anais da Academia Brasileira de Ciências.2014;86:1484-1506.
  • 56. Hallab NJ and Jacobs JJ. Chemokines associated with pathologic responses to orthopedic implant debris. Frontiers in endocrinology.2017;8:5.

LIFE CYCLE ASSESSMENT OF METALLIC BIOMATERIALS

Year 2023, , 59 - 71, 30.06.2023
https://doi.org/10.47137/usufedbid.1307658

Abstract

Analyzing biomaterials that are metallic is an important factor, especially key to understanding the success of implants. The environment in which some biomaterials come into contact on the host can be corrosive. Information about the interaction of metallic biomaterials and the biological environment of the body is very important in terms of the duration of use and the connection with each other in terms of long-term service of the biomaterial groups placed on the living thing with in-vivo studies. On the usage areas of biomaterials such as orthopedic implants and prostheses in the physiological environment of the human body; corrosion and metal sensitivities have been the subject of debate for a long time. This review will provide general information about corrosion, types of corrosion and metal susceptibility of metallic biomaterials in the service life cycle on the host.

References

  • 1. Breme J and Biehl V. Metallic biomaterials, in Handbook of biomaterial properties Springer.1998;102(2):135-144.
  • 2. Patel SK et al. A review on NiTi alloys for biomedical applications and their biocompatibility. Materials Today: Proceedings. 2020;33:5548-5551.
  • 3. Jin S et al. Influence of TiN coating on the biocompatibility of medical NiTi alloy. Colloids and Surfaces B: Biointerfaces. 2013;101:343-349.
  • 4. Prasad K et al. Metallic biomaterials: Current challenges and opportunities. Materials.2017;10(8):884.
  • 5. McGivney BA et al. Characterization of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training. BMC genomics. 2010;11(1):1-17
  • 6. Balci E and Dağdelen F. Biyomalzeme Türleri ve Biyouyumlu Metalik Elementler. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi. 2023;(2):1179-1195
  • 7. Güven ŞY. Ortopedik malzemelerin biyouyumlulukları ve mekanik özelliklerine göre seçimi. in 2nd National Design and Manufacturing Congress, Balıkesir. 2010.
  • 8. Güven Ş. Biyouyumluluk ve biyomalzemelerin seçimi. Mühendislik Bilimleri ve Tasarım Dergisi, 2014;2:303-311.
  • 9. Johnson JL. Mass production of medical devices by metal injection molding. Medical Device and Diagnostic Industry. 2002;24:48-53.
  • 10. Gür AK and Taşkin M. Metalik biyomalzemeler ve biyouyum. Fırat Üniversitesi Doğu Araştırmaları Dergisi.2004;2:106-113.
  • 11. Hansen DC. Metal corrosion in the human body: the ultimate bio-corrosion scenario. The Electrochemical Society Interface.2008;17(2):31.
  • 12. Bahçe E et al. CoCrMo Alaşımı Üzerine TaN Esaslı İnce Film Kaplamaların Yüzey Özelliklerinin İncelenilmesi. Karadeniz Fen Bilimleri Dergisi. 2019;9(2):223-237.
  • 13. Arvidson K et al. Cytotoxic effects of cobalt‐chromium alloys on fibroblasts derived from human gingiva. European Journal of Oral Sciences. 1987;95(4):356-363.
  • 14. Masutani S et al. Temperature rise during polymerization of visible light-activated composite resins. Dental Materials. 1988;4(4):174-178.
  • 15. Tschernitschek H, L Borchers, and W Geurtsen. Nonalloyed titanium as a bioinert metal--a review. Quintessence international. 2005;36(7);102.
  • 16. Cranin N. The requirements and clinical performance of dental implants. Biocompatibility of dental materials. 1982.
  • 17. Yilmaz Y, Avci B, and H Demirören. Biyomalzeme sektöründe kullanılan titanyum ve alaşımları. 4 th International Symposium on Innovative Approaches in Engineering and Natural Sciences. Samsun,Turkey. 2019.
  • 18. Yolun A. Toz metalurjisi ile üretilen TiNb alaşımının biyouyumluluk özelliğinin incelenmesi. Yüksek Lisans, Fen Bilimleri Enstitüsü. Adıyaman Üniversitesi. 2016.
  • 19. Sykaras N et al. Implant materials, designs, and surface topographies: their effect on osseointegration. A literature review. International Journal of Oral & Maxillofacial Implants. 2000;15(5):63-114.
  • 20. Ravnholt G. Corrosion current and pH rise around titanium coupled to dental alloys. European Journal of Oral Sciences. 1988;96(5):466-472.
  • 21. Akman A. Termal sprey yöntemi ile hidroksi apatit kaplanmış Ti6Al4V ve 316LVM paslanmaz çelik implant malzemelerin karakterizasyonu.Yüksek Lisans, Fen Bilimleri Ensitütüsü. Sakarya Uygulamalı Bilimler Üniversitesi. 2022.
  • 22. Kirkik D et al. Dental uygulamalarda kullanılan biyomalzemeler. Nevşehir Bilim ve Teknoloji Dergisi, 2019;8:145-153.
  • 23. Kohal RJ et al. Loaded custom‐made zirconia and titanium implants show similar osseointegration: an animal experiment. Journal of periodontology. 2004;75(9): 1262-1268.
  • 24. Prithviraj D et al. A systematic review of zirconia as an implant material. Indian Journal of Dental Research. 2012;23(5) 643.
  • 25. Cranin AN et al. Alumina and zirconia coated vitallium oral endosteal implants in beagles. Journal of biomedical materials research. 1975;9(4):257-262.
  • 26. Çakmak Ö et al. Toz Metalurjisi ile Üretilen Gözenekli TiZr Alaşımının Mekanik Özellikleri ve Biyouyumluluğu Üzerine Sinterleme Sıcaklığının Etkileri. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi. 2022:9:71-79.
  • 27. Chiapasco M et al. Titanium–zirconium alloy narrow‐diameter implants for the rehabilitation of horizontally deficient edentulous ridges: prospective study on 18 consecutive patients. Clinical oral implants research. 2012;23(10):1136-1141.
  • 28. Saini M et al. Implant biomaterials: A comprehensive review. World Journal of Clinical Cases: WJCC. 2015;3(1):52.
  • 29. Zhen Z, T.-f. Xi, and Y.-f. Zheng. A review on in vitro corrosion performance test of biodegradable metallic materials. Transactions of Nonferrous Metals Society of China. 2013;23(8):2283-2293.
  • 30. Geetha M et al. Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Progress in materials science. 2009;54(3):397-425.
  • 31. Ratner BD et al. Biomaterials science: an introduction to materials in medicine. San Diego, California. 2004:5;162-4.
  • 32. Balcı E and Dagdelen F. Thermal, structural properties and potential dynamic corrosion study of Ti-27Ni-21Nb-2Ta SMA. Iranian Journal of Science and Technology, Transactions A: Science, 2022;46:353-359.
  • 33. Aksakal B, Yildirim Ö, and Gul H. Metallurgical failure analysis of various implant materials used in orthopedic applications. Journal of Failure Analysis and Prevention. 2004;4(3):17-23.
  • 34. Virtanen S et al. Special modes of corrosion under physiological and simulated physiological conditions. Acta biomaterialia. 2008;4(3):468-476.
  • 35. Williams D. Titanium: epitome of biocompatibility or cause for concern. The Journal of Bone and Joint Surgery. British volume. 1994.76(3): p. 348-349.
  • 36. Okazaki Y and Gotoh E. Metal release from stainless steel, Co–Cr–Mo–Ni–Fe and Ni–Ti alloys in vascular implants. Corrosion science. 2008; 50(12):3429-3438.
  • 37. Kamachimudali U, T Sridhar, and B Raj, Corrosion of bio implants. Sadhana. 2003;28(3):601-637.
  • 38. Chaturvedi T. An overview of the corrosion aspect of dental implants (titanium and its alloys). Indian Journal of Dental Research. 2009;20(1):91
  • 39. Reclaru L et al. Pitting, crevice and galvanic corrosion of REX stainless-steel/CoCr orthopedic implant material. Biomaterials. 2002;23(16):3479-3485.
  • 40. Willert H et al. Crevice corrosion of cemented titanium alloy stems in total hip replacements. Clinical orthopaedics and related research. 1996;333:51-75.
  • 41. Clerc CO et al. Assessment of wrought ASTM F1058 cobalt alloy properties for permanent surgical implants. Journal of biomedical materials research. 1997; 38(3):229-234.
  • 42. Manivasagam G, Dhinasekaran D, and Rajamanickam A. Biomedical implants: corrosion and its prevention-a review. Recent patents on corrosion science.2010; 2(1):21.
  • 43. Willert HG et al. Crevice corrosion of cemented titanium alloy stems in total hip replacements. Clinical Orthopaedics and Related Research. 1996;333:51-75.
  • 44. Watanabe H et al. Pseudotumor and deep venous thrombosis due to crevice corrosion of the head–neck junction in metal-on-polyethylene total hip arthroplasty. Journal of Orthopaedic Science. 2015;20(6):1142-1147.
  • 45. Seminara P et al. Assessing and Monitoring of Building Performance by Diverse Methods. Sustainability. 2022;14(3):1242.
  • 46. Lalzawmliana V et al. Marine organisms as a source of natural matrix for bone tissue engineering. Ceramics International. 2019;45(2):1469-1481.
  • 47. Richard A. Laboratory corrosion testing of medical implants. ASM International, Newyark, Delaware, USA. 2003.
  • 48. Przygoda RT. Safety assessment and global regulatory requirements for genetic toxicity evaluations of medical devices. Environmental and Molecular Mutagenesis. 2017;58(5):375-379.
  • 49. Jacobs JJ, Gilbert JL and R.M. Urban. Current concepts review-corrosion of metal orthopaedic implants. Jbjs. 1998; 80(2): 268-82.
  • 50. Black J. Systemic effects of biomaterials. The biomaterials: silver jubilee compendium. 1984:27-34.
  • 51. Simoes TA et al. Evidence for the dissolution of molybdenum during tribocorrosion of CoCrMo hip implants in the presence of serum protein. Acta Biomaterialia. 2016;45:410-418.
  • 52. Baxmann M et al. Biomechanical evaluation of the fatigue performance, the taper corrosion and the metal ion release of a dual taper hip prosthesis under physiological environmental conditions. Biotribology. 2017;12:1-7.
  • 53. Black J. Biological performance of materials: fundamentals of biocompatibility. 2005.
  • 54. Hallab N, Merritt K and Jacobs JJ. Metal sensitivity in patients with orthopaedic implants. JBJS. 2001;83(3):428.
  • 55. Biller-Takahashi JD and Urbinati EC. Fish Immunology. The modification and manipulation of the innate immune system: Brazilian studies. Anais da Academia Brasileira de Ciências.2014;86:1484-1506.
  • 56. Hallab NJ and Jacobs JJ. Chemokines associated with pathologic responses to orthopedic implant debris. Frontiers in endocrinology.2017;8:5.
There are 56 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Review Article
Authors

Esra Balci 0000-0003-0127-7602

Publication Date June 30, 2023
Submission Date May 31, 2023
Acceptance Date June 22, 2023
Published in Issue Year 2023

Cite

APA Balci, E. (2023). Metalik Biyomalzemelerin Yaşam Döngüsü Değerlendirmesi. Uşak Üniversitesi Fen Ve Doğa Bilimleri Dergisi, 7(1), 59-71. https://doi.org/10.47137/usufedbid.1307658
AMA Balci E. Metalik Biyomalzemelerin Yaşam Döngüsü Değerlendirmesi. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi. June 2023;7(1):59-71. doi:10.47137/usufedbid.1307658
Chicago Balci, Esra. “Metalik Biyomalzemelerin Yaşam Döngüsü Değerlendirmesi”. Uşak Üniversitesi Fen Ve Doğa Bilimleri Dergisi 7, no. 1 (June 2023): 59-71. https://doi.org/10.47137/usufedbid.1307658.
EndNote Balci E (June 1, 2023) Metalik Biyomalzemelerin Yaşam Döngüsü Değerlendirmesi. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi 7 1 59–71.
IEEE E. Balci, “Metalik Biyomalzemelerin Yaşam Döngüsü Değerlendirmesi”, Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi, vol. 7, no. 1, pp. 59–71, 2023, doi: 10.47137/usufedbid.1307658.
ISNAD Balci, Esra. “Metalik Biyomalzemelerin Yaşam Döngüsü Değerlendirmesi”. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi 7/1 (June 2023), 59-71. https://doi.org/10.47137/usufedbid.1307658.
JAMA Balci E. Metalik Biyomalzemelerin Yaşam Döngüsü Değerlendirmesi. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi. 2023;7:59–71.
MLA Balci, Esra. “Metalik Biyomalzemelerin Yaşam Döngüsü Değerlendirmesi”. Uşak Üniversitesi Fen Ve Doğa Bilimleri Dergisi, vol. 7, no. 1, 2023, pp. 59-71, doi:10.47137/usufedbid.1307658.
Vancouver Balci E. Metalik Biyomalzemelerin Yaşam Döngüsü Değerlendirmesi. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi. 2023;7(1):59-71.