Review
BibTex RIS Cite

Trichoderma and Biological Control Mechanisms in Biological Control

Year 2021, , 201 - 224, 29.12.2021
https://doi.org/10.47137/usufedbid.979710

Abstract

Pesticides have been widely preferred in chemical control for many years in the management against plant diseases in agricultural production. Intensive and uncontrolled use of pesticides, deterioration of the natural balance, negative effects on the environment and human health, as well as residue problems of chemicals cause serious problems in marketing. Due to the prohibition of most chemical fungicides by the European Union, it has brought along the search for new methods in the control of plant diseases as a sustainable alternative. The first method that comes to mind in the management against plant diseases, which can be sustainable, environmentally friendly and effective for a long time, is biological control. In recent years, many studies have been conducted on biological agents. Trichoderma species from these biocontrol factors are used as biocontrol agents in the control of plant pathogenic fungi. At the present time, commercial products of Trichoderma are used as biopesticide, soil conditioner and plant growth regulator. In this review, the importance of Trichoderma in biological control, the mechanisms of action of Trichoderma species and their use in biotic and abiotic stress conditions were examined.

References

  • 1. FAO. The future of food and agriculture—trends and challenges. FAO, 2017; Rome, p 163.
  • 2. Koike ST and Gordon TR. Management of Fusarium wilt of strawberry, Crop Protection, 2015; 1-6.
  • 3. Cawoy H, Wagner B,Fickers B and Ongena M. Bacillus Based Biological Control Plnat Diseases, Pesticides in the Modern World: Pesticides Use and Management. China: InTech Europe; 2011.
  • 4. Naher L, Yusuf UK, Ismail A and Hossain K. Trıchoderma Spp.: A Bıocontrol agent for sustaınable management of plant dıseases, Pak. J. Bot., 2014;46(4): 1489-1493.
  • 5. Gouvea A, Kuhn OJ, Mazaro SM, May-De Mio LL, Deschamps C, Biasi LA. And Fonseca, V de C. Controle de doenças foliares e de flores e qualidade pós-colheita do morangueiro tratado com Saccharomyces cerevisiae. Hort. Bras., 2009; 27(4): 527-533.
  • 6. Noling JW. Nematode management in strawberries. University of Florida publication series no. ENY-031, USA, p 12, 2016.
  • 7. Abd-Elgawad MMM. Optimizing biological control agents for controlling nematodes of tomato in Egypt. Egypt J. Biol. Pest. Cont., 2020; 30:58.
  • 8. Howell CR. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis.,2003; 87:4–10.
  • 9. Benitez T, Rincon AM, Limon MC and Codon AC. Biocontrol mechanism of Trichoderma strains. International Microbiol., 2004; 7: 249-260.
  • 10. Papavizas, G.C. 1985. Trichodema and Gliocladium: Biology, ecology and potential for biocontrol. Ann. Rev. Phytopathol., 22: 23-54.
  • 11. Koumoutsi, A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franhe P, Vater J and Borris R. Structural and functional characterization of gene clusters directing nonribosomal syntheis of bioactive cyclie lipopepetides in Bacillus amyloli quefaciens strain FZB42. J. Bactriol., 2004; 186: 1084-1096.
  • 12. Mavrodi DV, Mavrodi OV, McSpaddenss-Gardener BB, Landa BB, Weller DM and Thomashow LS. Identification of differences in genome content among phID-positive Pseudomonas fluorescens strains by using PCR based substractive hybridization. Appl. Environ. Microbiol., 2002; 68: 5170-5776.
  • 13. Atehnkeng J, Ojiambo PS, Ikotum T, Sikora RA, Cotty PJ and Bandyopadhyay R. Evaluation of atoxigenic isolates of Aspergillus flavus as potential biocontrol agents for aflatoxin in maize. Food Additives & Contaminants: Part A., 2008; 25: 1266-1273.
  • 14. Gilardi G, Manker DC, Garibaddi A and Gullino ML. Efficacy of the biocontrol agents Bacillus subtilis and Ampebmyces quisqualis applied in combination with fungicides against powdery mildew of Zucchini. J. Plant Diseases Protect., 2008; 115: 208-213.
  • 15. Ahmed MFA, El-Fiki, IAI. Effect of biological control of root rot diseases of strawberry using Trichoderma spp. Middle East Journal of Applied Sciences, 2017;7(3): 482-492.
  • 16. Aydın MH. Bitki Fungal Hastalıklarıyla Biyolojik Savaşta Trichoderma’lar.Türkiye Tarımsal Araştırmalar Dergisi, 2015; 2:135-148.
  • 17. Chet I. Trichoderma-application, mode of action, and potential as a biocontrol agent of soilborne plant pathogenic fungi. In: Innovative approaches to plant disease control. (Ed.) Chet I. New York: John Wiley and Sons; 1987. pp.147-160.
  • 18. Harman, GE, Howell CR, Viterbo A, Chet I and Lorito M.. Trichoderma species-opportunistic, avirulent plant symbionts. Nature Rev. Microbiol., 2004a; 2: 43-56.
  • 19. Vinale, F, Sivasithamparam K, Ghisalberti LE, Marra R, Woo LS and Lorito M. Trichoderma-plant-pathogen interactions. Soil. Biol. Biochem., 2008; 40: 1-10.
  • 20. Spadaro D and Gullino ML . Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Protection, 2005;24(7):601-613.
  • 21. Yedidia I, Benhamou N and Chet I. Induction of defence responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl. Environ. Microbiol., 1999; 65: 10061-1070.
  • 22. Kredics L, Antal Z, Doczi I, Manczinger L, Kevei F and Nagy E. Clinical importance of the genus Trichoderma. A review. Acta Microbiol. Immunol. Hung., 2003; 50:105–117.
  • 23. Harman, GE. Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 2006; 96:190-194.
  • 24. Pandey RN, Jaisani P and Yadav DL. Trichoderma spp. in the management of stresses in plants and rural prosperity. Indian Phytopathology, 2021;74:453–467.
  • 25. Weindling R. Trichoderma lignorum as a parasite of other soil fungi. Phytopathology, 1932; 22: 837- 845.
  • 26. Wells DH. Trichoderma as a biocontrol agent. In: Biocontrol and plant diseases. (Eds.): Mukerji KG and Garg KL. Florida: CRC press; pp. 73. 1988.
  • 27. Weindling R. Studies on lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctinia solani and other soil fungi. Phytopathol., 1934; 24: 1153-1179.
  • 28. Samuels, GJ. Trichoderma: A review of biology and systematics of the genus. Mycol. Res., 1996; 100: 923-935.
  • 29. Irina D and Christian PK. Species and biodiversity in Trichoderma and Hypocera: from aggregate species to species clusters. J. of Zhejiang Uni. Sci., 2004; 6: 100-112.
  • 30. Chaverri P, Gazis R and Samuels GJ. Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and guianensis from the Amazon basin. Mycologia, 2011; 103:139–151.
  • 31. Mukherjee PK, Horwitz BA, Singh US, Mukherjee M and Schmoll M. Trichoderma in agriculture, industry and medicine: an overview. In: Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (eds) Trichoderma: biology and applications. Nosworthy: CABI; 2013. pp 1–9.
  • 32. Kubicek CP , Bissett J, Druzhinina I, Kullnig-Gradinger C and Szakacs G. Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates. Fungal Genetics and Biology, 2003; 38(3: 310-319.
  • 33. Christian R, Röhrich WM, Jaklitsch H, Voglmayr A, Iversen CZ, Christian B, Henry M, Meinckel R, Komon-Zelazowska M, Druzhinina I, Christian S, Kubicek P and Berg G. Fungal diversity in the rhizosphere of endemic plant species of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors. ISME J, 2009; 3:79–92
  • 34. Migheli Q, Balmas V, Komoñ-Zelazowska M, Scherm B, Fiori S, Caria R, Alexey G, Kopchinskiy A, Kubicek CP, Druzhinina IS. Soils of a Mediterranean hot spot of biodiversity and endemism (Sardinia, Tyrrhenian Islands) are inhabited by pan-European, invasive species of Hypocrea/Trichoderma. Environ. Microbiol. 2009; 11(1):35–46.
  • 35. Hatvani L, Antal Z, Manczinger L, Szekeres A, Druzhinina IS, Kubicek CP, Nagy A, Nagy E, Vagvolgyi C, Kredics L. Green mold diseases of Agaricus and Pleurotus spp. are caused by related but phylogenetically diferent Trichoderma species. Phytopathology, 2007; 97:532–537.
  • 36. Kredics L, García Jimenez L, Naeimi S, Czifra D, Urbán P, Manczinger L, Vágvölgyi C, Hatvani L A challenge to mushroom growers: the green mould disease of cultivated champignons. Topics in applied microbiology and microbial biotechnology, 2010; vol 1–2:295–30.
  • 37. Samuels GJ, Dodd SL, Gams W, Castlebury LA and Petrini O. Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia, 2002; 94(1): 146-170.
  • 38. Kredics L, Kocsubé S, Nagy L, Komon-Zelazowska M, Manczinger L, Sajben E, Nagy A, Vágvölgyi C, Kubicek CP, Druzhinina IS and Hatvani L. Molecular identifcation of Trichoderma species associated with Pleurotus ostreatus and natural substrates of the oyster mushroom. FEMS Microbiol Lett., 2009; 300:58–67.
  • 39. Kredics L, Antal Z, Szekeres A, Manczinger L, Doczi I, Kevei F and Nagy E. Production of extracellular proteases by human pathogenic Trichoderma longibrachiatum strains. Acta Microbiol Immunol Hung, 2004 ; 51:283–295.
  • 40. Petrini O. Fungal Endophytes of Tree Leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. New York :Springer; 1991.pp 179–197.
  • 41. Gazis R and Chaverri P. Diversity of fungal endophytes in leaves and stems of rubber trees (Hevea brasiliensis) in Tambopata. Peru Fungal Ecol.,2010; 4:94–102
  • 42. Patel JS, Kharwar RN, Singh HB, Upadhyay RS and Sarma BK. Trichoderma asperellum (T42) and Pseudomonas fluorescens (OKC)-enhances resistance of pea against Erysiphe pisi through enhanced ROS generation and lignifcations. Front Microbiol.,2017; 8:306.
  • 43. Cummings NJ, Ambrose A, Braithwaite M, Bissett J, Roslan HA, Abdullah J, Stewart A, Agbayani FV, Steyaert J and Hill RA. Diversity of root-endophytic Trichoderma from Malaysian Borneo. Mycol. Progress, 2016;15:50.
  • 44. Ghaffari MR, Ghabooli M, Khatabi B, Hajirezaei MR, Schweizer P and Salekdeh GH. Metabolic and transcriptional response of central metabolism afected by root endophytic fungus Piriformospora indica under salinity in barley. Plant Mol. Biol.,2016; 90:699–717.
  • 45. Chaverri P, Catlebury LA, Samuels GJ and Geiser MD. Multilocus phylogenetic structure within the Trichoderma harzianum/ Hypocrea lixii complex. Mol. Phylogenet. Evol., 2003; 27:302–313.
  • 46. El Komy MH, Saleh AA, Eranthodi A and Molan YY. Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato fusarium wilt. Plant Pathol. J., 2015; 31(1): 50–60.
  • 47. Leon VC, Raja M, Pandian RTP, Kumar A, Sharma P. Studies on opportunistic endophytism of Trichoderma species in rice (Pusa Basmati-1 (PB1)). Indian J. Exp. Biol., 2017; 56:121–128.
  • 48. Yuan ZL, Chen YC, Zhang CL, Lin FC and Chen LQ. Trichoderma chlorosporum, a new record of endophytic fungi from Dendrobium nobile in China (in Chinese). Mycosystema, 2008; 27:608–610.
  • 49. Hanada RE, de Jorge Souza T, Pomella AW, Hebbar KP, Pereira JO, Ismaiel A, Samuels GJ. Trichoderma martiale sp. nov., a new endophyte from sapwood of Theobroma cacao with a potential for biological control. Mycol Res., 2008; 112(Pt 11):1335–1143.
  • 50. Bae H, Sicher RC, Kim MS, KimSH, Strem MD, MeInice RL and Bailey BA. The beneficial endophyte Trichoderma hamatum isolate DS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Journal of Experimental Botany, 2009; 60: 3279-3295.
  • 51. Rosmana A, Samuels GJ, Ismaiel A, Ibrahim ES, Chaverri P, Herawati Y and Asman A. Trichoderma asperellum: a dominant endophyte species in cacao grown in Sulawesi with potential for controlling vascular streak dieback disease. Trop. Plant Pathol., 2015;40:19–25.
  • 52. Rinu K, Sati P and Pandey A. Trichoderma gamsii (NFCCI 2177): A newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain. J. Basic Microbiol., 2014, 54, 408–417.
  • 53. Chen JL, Sun SZ, Miao CP, Wu K, Chen YW, Xu LH, Guan HL, Zhao LX. Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. J. Ginseng Res.,2016; 40:315–324.
  • 54. Romeralo C, Santamaría O, Pando V and Diez JJ. Fungal endophytes reduce necrosis length produced by Gremmeniella abietina in Pinus halepensis seedlings. Biol. Control, 2015; 80:30–90.
  • 55. Samuels GJ, Dodd SL, Lu BS, Petrini O, Schroer HJ, Druzhinina IS. The Trichoderma koningii aggregate species. Stud. Mycol., 2006; 56:67–133.
  • 56. Druzhinina IS, Seidl-Seiboth, V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev I and Kubicek CP. Trichoderma-The genomics of opportunistic success. Nature Reviews Microbiology, 2011; 9: 749-759.
  • 57. Lorito M, Woo SL, Harman GE, Monte E. Translational research on Trichoderma: from omics to the feld. Ann. Rev. Phytopathol., 2010; 48:395–417.
  • 58. Hermosa R, Botella L, Keck E, Jiménez JA, Montero-Barrientos M, Arbona V, Gómez-Cadenas A, Monte E, Nicolás C. The overexpression in Arabidopsis thaliana of a Trichoderma harzianum gene that modulates glucosidase activity, and enhances tolerance to salt and osmotic stresses. .J Plant Physiol.,2011; 168:1295–1302.
  • 59. Pieterse CMJ, Reyes AL, Van der Ent S and Van Wees SCM. Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 2009; 5:308–316.
  • 60. Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A and Casas-Flores S. Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. European Journal of Plant Pathology, 2011; 131:15–26.
  • 61. Tucci M, Ruocco M, De Masi L, De Palma M, Lorito M. The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol. 2011;12:341–354.
  • 62. Sarrocco S, Guidi L, Fambrini S, DesI‟Innocenti E, Vannacci G Competition for cellulose exploitation between Rhizoctonia solani and two Trichoderma isolated in the decomposition of wheat straw. J. Plant Pathol, 2009; 91:331–338.
  • 63. Hjeljord, LG, Stensvand A and Tronsmo A. Effect of temperature and nutrient stress on the capacity of commercial Trichoderma products to control Botrytis cinerea and Mucor piriformis in greenhouse strawberries. Biolog Control, 2000; 19: 149-160.
  • 64. Christian R, Röhrich WM, Jaklitsch H, Voglmayr A, Iversen CZ, Christian B, Henry M, Meinckel R, Komon-Zelazowska M, Druzhinina I, Christian S, Kubicek P and Berg G. Fungal diversity in the rhizosphere of endemic plant species of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors. ISME J, 2009; 3:79–92
  • 65. Abbas A, Jiang D, Fu Y. Trichoderma spp. as antagonist of Rhizoctonia solani. J. Plant Pathol. Microbiol., 2017; 8 (3):402–409.
  • 66. Rey M, Delgado-Jarana J and Benítez T . Improved antifungal activity of a mutant of Trichoderma harzianum CECT 2413 which produces more extracellular proteins. Appl. Microbiol. Biotechnol., 2001; 55:604–608.
  • 67. Bull CT, Shetty KG, Subbarao KV. Interactions between Myxobacteria, plant pathogenic fungi, and biocontrol agents. Plant Dis., 2002; 86:889–896.
  • 68. Viterbo A, Ramot O, Chernin L and Chet I. Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens. Antonie Van Leeuwenheek, 2002; 81: 549-556.
  • 69. Sivan, A and Chet, I. Degradation fungal cell walls by lytic enzymes of Trichoderma harzianum J. Gen Microbiol., 1989; 135: 675-682.
  • 70. Elad, Y. Mycoparasitism. In: Kohmoto, K, Singh, US, Singh, RP (eds) Pathogenesis and host specifi cities in plant disease: histopathological, biochemical, genetic and molecular basis, eucaryotes. Vol. 2. Pergamon, Oxford, 1995. pp 289-307.
  • 71. Cherif M and Benhamou N. Cytochemical aspects of chitin breakdown during the parasitic action of Trichoderma sp. on Fusarium oxysporum f. sp. radicis-lycopersici. Phytopathology, 1990; 80: 1406-1412.
  • 72. Soglio FK, Bertagnolli BL, Sinclair JB, Yu GY and Eastburn DM. Production of chitinolytic enzymes and endoglucanase in the soybean rhizosphere in the presence of Trichoderma harzianum and Rhizoctonia solani. Biol. Control, 1998; 12: 111-117.
  • 73. Innocenti G, Roberti R, Montanari M and Zakrisson E.Efficacy of microorganisms antagonistic to Rhizoctonia ceralis and their cell wall degrading enzymatic activities. Mycol. Res., 2003; 107 (4): 421-427.
  • 74. Chet, I, Benhamou N and Harman S. Mycoparasitism and lytic enzymes. In: Trichoderma and Gliocladium Vol. 2. (Eds.): Harman GE and Kubick CP. London: Taylor and Francis; 1998. pp. 153-172.
  • 75. Steyaert JM, Ridgway HJ, Elad Y and Stewart A. Genetic basis of mycoparasitism: A mechanism of biological control by species of Trichoderma. J. Crop. Horticul. Sci., 2003; 31: 281-291.
  • 76. Carsolio, C, Benhamou N, Haran S, Cortes C, Gutierrez A, Chet I and Herrera-Estrella A.. Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Appl. Environ. Microbioly., 1999; 65: 929-935.
  • 77. Mukherjee KP, Nautiyal CS and Mukhopadhyay AN. Molecular mechanisms of plant and microbe coexistence. Heidelberg: Springer; 2008.
  • 78. Bolar JP, Norelli JL, Wong KW, Hayes, CK, Harman G and Aldwinckle HS. Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology, 2000; 90:72-77.
  • 79. Bolar JP, Norelli JL, Harman GE, Brown SK and Aldwinckle HS. Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants. Transgenic Res., 2001; 10:533- 543. 7.
  • 80. Mandels M. Microbial sources of cellulase. Biotechnol. Bioeng. Sym. 1975; 5:81-105.
  • 81. Mandels M and Reese ET. Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J. Bacteriol., 1957; 73:269-278.
  • 82. Benitez T, Delgado-Jarana J, Rincón AM, Rey M, Limón MC. Biofungicides: Trichoderma as a biocontrol agent against phytopathogenic fungi. In: Pandalai SG (ed) Recent research developments in microbiology, vol. 2. Research Signpost, Trivandrum, pp 129-150. 1998.
  • 83. Lorito M, Woo SL, Garcia-Fernandez I, Colucci G, Harman GE, Pintor-Toro JA, Filippone E, Muccifora S, Lawrence CB, Zoina A, Tuzun S, Scala F. Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci USA ;1998; 95:7860–7865.
  • 84. Lorito M, Woo SL, Donzelli B and Scala F. Synergistic, antifungal interactions of chitinolytic enzymes from fungi, bacteria and plants. in: Chitin Enzymology II. Muzzarelli RAA. ed. Atec, Grottammare (AP), Italy. P 157-164. 1996.
  • 85. Rincón AM. DoktoraTezi. Biyolojik mücadele üzerine araştırmalar
  • 86. Harman GE. Multifunctional fungal plant symbionts: new tools to enhance plant growth and productivity. New Phytol., 2011; 189(3):647–649.
  • 87. Vinale, F, Marra R, Scale F, Ghisalberti EL, Lorito M and Sivasithamparam K. Major secondary metabolites produced by two commercial Trichoderma strains active different phytopathogens. Letter in Applied Microbiol., 2006; 43: 143-148.
  • 88. Cutler, HG, Cox RH, Crumley FG and Cole PD. 6- Pentyl-apyrone from Trichoderma harzianum: Its plant growth inhibitory and antimicrobial properties. Agricul Biolog Chem., 1986; 50: 2943-2945.
  • 89. Cutler HG, Himmetsbach DS, Arrendale RF, Cole PD and Cox RH. Koninginin A: a novel plant regulator from Trichoderma koningii. Agricul. Biolog. Chem., 1989; 53: 2605-2611.
  • 90. Kashyap PL, Kumar S, Srivastava AK. Nanodiagnostics for plant pathogens. Environ. Chem. Lett., 2017; 15:7–13.
  • 91. Shoresh M, Mastouri F, Harman GH. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu.Rev. Phytopathol., 2010; 48:21–43
  • 92. Chowdappa P, Mohan Kumar SP, Jyothi Lakshmi M, Upreti KK. Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol. Control, 2013;65(1):109–11.
  • 93. Zhao, L., Liu, Q., Zhang, Y., Cui, Q. & Liang, Y. Effect of acid phosphatase produced by Trichoderma asperellum Q1 on growth of Arabidopsis under salt stress. J. Integr. Agric.,2017; 16, 1341–1346.
  • 94. Swain H, Adak T, Mukherjee AK, Mukherjee PK, Bhattacharyya P, Behera S. Novel Trichoderma strains isolated from tree barks as potential biocontrol agents and biofertilizers for direct seeded rice. Microbiol. Res.,2018;214:83–90.
  • 95. Mastouri F, Thomas B, Harman GE. Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water defcit. Mol Plant Microbe Interact., 2012; 25(9):1264–1271
  • 96. Doni F, Al-Shorgani NKN, Tibin EMM, Abuelhassan NN, Anizan I, Che-Radziah CMZ . Microbial involvement in growth of paddy. Curr Res J Biol Sci,2013; 5(6):285–290
  • 97. Harman, GE, Petzoldt R, Comis A and Chen J. Interactions between Trichoderma harzianum strain T22 and maize inbred line M017 and effects of these interactions on diseases by Pythium ultimum and Collectotrichum graminicola. Phytopathol., 2004b; 94: 147-153.
  • 98. Woo Sheridan L, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G and Lorito M. Trichoderma-based products and their widespread use in agriculture. Open Mycol. J. 2014; 8 (Suppl-1, M 4):71–126.
  • 99. Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y and Chet I. Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl. Environ. Microbiol., 2003; 69: 7343-7353.
  • 100. Hanson LE and Howell CR. Elicitors of plant defence responses from biocontrol strains of Trichoderma virens. Phytopathol., 2004; 94: 171-176.
  • 101. Alfano G, Lewis Ivey LM, Cakir C, Bos JIB, Miller SA, Madden Kamoun VL and Hoitink JAH. Systemic modulation of gene S. expression in tomato by Trichoderma hamatum 382. Biolog Control, 2007; 97: 429-437.
  • 102. Naher L, Ho CL, Tan SG, Yusuf UK and Abdullah F. Cloning transcripts encoding chitinases from Elaeis guineensis Jacq. and their expression profiles in response to fungal infections. Physiol. Mol. Plant Pathol., 2011; 76: 96-103.
  • 103. Ahmed AS, Sanchez CP and Candela ME. Evaluation of induction of systemic resistance in pepper plants (Capsicum annum) to Phytopthora capsici using Trichoderma harzianum and its relation with capsidiol accumulation. Eur. J. Plant Pathol., 2000; 106: 817-829.
  • 104. Lo, CT, Liao TF and Deng TC. Induction of systemic resistance of cucumber to cucumber green mosaic virus by the root-colonizing Trichoderma spp. Phytopathol., 2000; 90: S 47.
  • 105. Bae H, Roberts DP, Lim HS, Strem M, Park SC, Ryu CM. Endophytic Trichoderma isolates from tropical environments delay disease and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol Plant-Microbe Interact., 2011; 24:336–351.
  • 106. Hoitink, HAJ, Madden LV and Dorrance AE. Systemic resistance induced by Trichoderma spp.: Interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality. Phytopathol., 2006; 96: 186-189.
  • 107. De Meyer G, Bigirimana J, Elad Y, Hofte M. Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur. J. Plant Pathol., 1998; 104:279–286.
  • 108. Levy NO, Meller HY, Haile ZM, Elad Y, David E, Jurkevitch E, Katan J. Induced resistance to foliar diseases by soil solarization and Trichoderma harzianum. Plant Pathol., 2015; 64:365–374.
  • 109. Seaman A . Efcacy of OMRI-approved products for tomato foliar disease control. N Y State Integr Pest Manag Program Publ.,2003; 129:164–167.
  • 110. Koike N, Hyakumachi M, Kageyama K, Tsuyumu S, Doke N. Induction of systemic resistance in cucumber against several diseases by plant growth-promoting fungi: lignifcation and superoxide generation. Eur. J. Plant Pathol. 2001; 107:523–533.
  • 111. Shoresh M, Yedidia I, Chet I. Involvement of jasmonic acid/ ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology, 2005; 95:76–84.
  • 112. Alizadeh H, Behboudi K, Ahmadzadeh M, Javan-Nikkhah M, Zamioudis C, Pieterse CM, Bakker PA. Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biol. Control, 2013; 65(1):14–23.
  • 113. Salas-Marina MA, Isordia-Jasso M, Islas-Osuna MA, Delgado-Sánchez P, Jiménez-Bremont JF, Rodríguez-Kessler M, Rosales-Saavedra MT, Herrera-Estrella A, Casas-Flores S. The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens diferentially modulate systemic disease resistance against diferent life style pathogens in Solanum lycopersicum. Front. Plant Sci., 2015; 23:77.
  • 114. Howell CR, Hanson LE, Stipanovic RD and Puckhaber LS. Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathol., 2000; 90: 248-252.
  • 115. Ajitha PS and Lakshmedevi N. Effect of volatile and von-volatile compounds from Trichoderma spp. against Colletotrichum capsici incitant of anthracnose on Bell peppers. Nature and Sci., 2010; 8: 265-296.
  • 116. Sivasithamparam K and Ghisalberti EL. Secondary metabolism in Trichoderma and Gliocladium. In: Trichoderma and Gliocladium. (Eds.): Harman GE and Kubicek CP. Taylor and Francis, London, pp. 139-192, 1998.
  • 117. Demain AL and Fang A. The natural functions of secondary metabolites. Advances in Biochemi Engineer Biotechnol., 2000; 69: 1-39.
  • 118. Ghisalberti EL, Narbey MJ, Dewan MM and Sivasithamparam K. Variability among strains of Trichoderma harzianum in their ability to reduce take-all and to produce pyrones. Plant and Soil, 1990; 121: 287-291.
  • 119. Bruckner H and Graf H. Paracelsin, a peptide antibiotic containing alpha-aminoisobutyric acid, isolated from Trichoderma reesei Simmons Part A. Experientia., 1983; 139: 528-530.
  • 120. Bruckner H, Graf H and Bokel M. Paracelsin; characterization by NMR spectroscopy and circular dichroism, and hemolytic properties of a peptaibol antibiotic from the cellulolytically active mold Trichoderma reesei Part B. Experientia., 1984; 40: 1189-1197.
  • 121. Reese, ET. History of the cellulose program at the U.S. Army Natick development center. Biotechnol. Bioeng Sympos., 1976; 6: 9-20.
  • 122. Galante YM, Conti A and Monteverdi R. Application of Trichoderma enzymes in the food and food inductries. In: Trichoderma and Gliocladium, (Eds.): Harman GE and Kubicek CP. Vol. 2. Taylor and Francis, London, 1998b. pp. 327-342.
  • 123. Galante YM, Conti A and Monteverdi R. Application of Trichoderma enzymes in the textile industry. In: Trichoderma and Gliocladium, (Eds.): Harman GE and Kubicek CP. Vol. 2. Taylor and Francis, London, 1998a. pp. 311-326.
  • 124. Lin, Y and Tanaka S. Ethanol fermentation from biomass resources: current state and prospect. Appl. Microbiol. Biotechnol., 2006; 69: 627-624.
  • 125. Gimbert HS, Margeor A, Dolla A, Jan G, Molle D, Lignon S, Mathis H, Sigoillot CJ, Monot F and Asther M. Comparative secretoma analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol for Biofuels., 2008;1: 18.
  • 126. Nevalaines, H., Suominen P and Taimisto K. On the safety of Trichoderma reesei. J. Biotech., 1994; 37: 193-200.
  • 127. Schaster A and Schmoll M. Biology and Biotechnology of Trichoderma. Appl. Microbiol. Biotechnol., 2010; 87: 787-799.
  • 128. Anis M, Zaki MJ and Dawar S. Development of a Naalginate based bioformulation and its use in the management of charcoal rot sunflower (Helianthus annuus L.). Pak. J. Bot., 2012; 44: 1167-1170.
  • 129. Lumsden, RD, Lewis, JA and Lock JC. Managing soilborne plant pathogens with fungal antagonists. In: In pest management: Biology based technologies. American Chemical Society Publishers, Washington, 1993; pp. 196-203.
  • 130. Chou C, Castilla N, Hadi B, Tanaka T, Chib S, Sato I. Rice blast management in Cambodian rice felds using Trichoderma harzianum and a resistant variety. Crop Protect.,2020; 135:104864
  • 131. Pal KK and McSpadden Gardener B .Biological control of plant pathogens. The Plant Health Instructor, 2006; pp 1–25.
  • 132. Kannahi M, Dhivya S, Senthil kumar R. Biological control on rice false smut disease using Trichoderma species. Int. J. Pure. App. Biosci., 2016; 4(2):311–316.
  • 133. Aggarwal R, Srivastava KD, Singh DV, Bahadur P, Nagarajan S. Possible biocontrol of loose smut of wheat. J. Bio. Control, 1991;6:114–115.
  • 134. Aggarwal R, Singh DV, Srivastava KD, Bahadur P. The potential of antagonists for biocontrol of Neovossia indica causing Karnal bunt of wheat. Indian J. Biol. Control, 1996; 9:69–70.
  • 135. Kandasamy S, Li Y, Yu C, Wang Q, Wang M, Sun J, Gao J and Chen J. Efect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium Stalk rot. Sci Rep., 2017; 7:1771.
  • 136. Purohit J, Singh Y, Bisht S and Srinivasaraghvan A. Evaluation of antagonistic potential of Trichoderma harzianum and Pseudomonas fuorescens isolates against Gloeocercospora sorghi causing zonate leaf spot of sorghum. Bioscan 2013; 8(4):1327–1330.
  • 137. Wesam IA, Saber-Khalid M, GhoneemYounes MR, Abdulaziz A, Al Askar. Trichoderma harzianum WKY1: an indole acetic acid producer for growth improvement and anthracnose disease control in sorghum. Biocontrol Sci. Tech.,2017; 27(5):654–676.
  • 138. Pandey RN, Gohel NM and Jaisani P. Management of wilt and root rot of chickpea caused by Fusarium oxysporum f. sp. ciceri and Macrophomina phaseolina through seed biopriming and soil application of bio-Agents. Int. J. Curr. Microbiol. Appl. Sci., 2017; 6(5):2516–2522.
  • 139. Jaisani P, Prajapati HN, Yadav DL and Pandey RN. Seed biopriming and Trichoderma enriched FYM based soil application in management of chickpea (Cicer arietinum L.) wilt complex. J Pure Appl Microbiol., 2016;10(3):2453–2460
  • 140. Dubey SC, Tripathi A and Singh B.Combination of soil application and seed treatment formulations of Trichoderma species for integrated management of wet root rot caused by Rhizoctonia solani in chickpea (Cicer arietinum). Indian J Agric Sci.,2012; 82(4):357–364.
  • 141. Ram H and Pandey RN.Efcacy of bio-control agents and fungicides in the management of wilt of pigeon pea. Indian Phytopath., 2011; 64(3):269–271.
  • 142. Meena BN, Pandey RN and Dama R. Seed biopriming for management of root rot and blight of mungbean incited by Macrophomina phaseolina (Tassi) Goid. and Rhizoctonia solani Kuhn. J.Pure Appl. Microbiol., 2016; 10(2):0973–7510.
  • 143. Dubey SC and Patel B. Mass multiplication of antagonists and standardization of efective dose for management of web blight of urd and mung bean. Indian Phytopath., 2002; 55:338–341.
  • 144. Pandey RN, Gohel NM and Jaisani P. Management of wilt and root rot of chickpea caused by Fusarium oxysporum f. sp. ciceri and Macrophomina phaseolina through seed biopriming and soil application of bio-Agents. Int. J. Curr. Microbiol. Appl. Sci., 2017; 6(5):2516–2522.
  • 145. Falah Kuchlan PMMM, Ansari K, Kuchlan MM and Ansari MM. Effcient application of Trichoderma viride on soybean [Glycine max (L.) Merrill] seed using thin layer polymer coating. Legume Res.,2019; 42(2): p 60-64.
  • 146. Rakholiya KB and Jadeja KB. Efect of seed treatment of biocontrol agents and chemicals for the management of stem and pod rot of groundnut. Int. J. Plant Prot.,2010; 3(2):276–278.
  • 147. Hossain MH and Hossain I. Evaluation of three botanicals, bavistin and BAU-biofungicide for controlling Leaf spot of groundnut caused by Cercospora arachidicola and Cercosporidium personatum. Agriculturists, 2014; 12(1):41–49.
  • 148. Hicks E, Bıenkowskı D, Braıthwaıte M, Kirstin M, Richard Falloon R and Stewart A. Trichoderma strains suppress Rhizoctonia diseases and promote growth of potato. Phytopathologia Mediterranea , 2014; 53 (3) :pp. 502-514.
  • 149. Nirmalkar VK, Tiwari RKS and Singh S.Efcacy of bio-agents against damping of in solanaceous crops under nursery conditions. Int. J. Plant Protect., 2018; 11(1):1–9.
  • 150. Sharon E, Bar-Eyal M, Chet I, Herrera-Estrella A, Kleifeld O and Spiegel Y. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology,2001; 91:687–693.
  • 151. Yasmeen R and Siddiqui ZS. Physiological responses of crop plants against Trichoderma harzianum in saline environment. Acta Bot. Croat, 2017; 76(2):154–162.
  • 152. Hidangmayum A and Dwivedi P. Plant responses to Trichoderma spp. and their tolerance to abiotic stresses: a review. J Pharmacogn Phytochem., 2018;7(1):758–766.
  • 153. Pandey V, Ansari MW, Tula S, Yadav, Sahoo RK, Shukla N and Bains G. Dose-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes. Planta, 2016; 243:1251–1264.
  • 154. Harman GE. Myths and dogmas of biocontrol. Changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis., 2000; 84:377–393.
  • 155. Hashem Abeer EF, Abd_Allah AA, Alqarawi Asma A, Al Huqail, Egamberdieva D. Alleviation of abiotic salt stress in Ochradenus baccatus (Del.) by Trichoderma hamatum (Bonord.) Bainier. J. Plant Interact., 2014; 9(1): 857–868.
  • 156. Viterbo A, Landau U, Kim S, Chernin L and Chet I. Characterization of ACC deaminase from the biocontrol and plant growth promoting agent Trichoderma asperellum T203. FEMS Microbiol. Lett., 2010; 305:42–48.
  • 157. Zhang M, Liu JM, Zhao JL, Li N, Chen RD, Xie KB, Zhang WJ, Feng KP, Yan Z, Wang N and Dai JG. Two new diterpenoids from the endophytic fungus Trichoderma sp. Xy24 isolated from mangrove plant Xylocarpus granatum.Chinese Chemical Letters, 2016; 27(6) 957-960.
  • 158. Ahmad P, Abeer H, Elsayed FAA, Alqarawi AA, Rifat J, Dilfuza E. Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Front Plant Sci .,2015; 6:868.
  • 159. Tellez-Vargas J, Rodríguez-Monroy M, López-Meyer M, Montes-Belmont R, Sepúlveda-Jiménez G.) Trichoderma asperellum ameliorates phytotoxic efects of copper in onion (Allium cepa L.). Environ. Exp. Bot., 2017;136:85–93.
  • 160. Cao L, Jiang M, Zeng Z, Du A, Tan H and Liu Y. Trichoderma atroviride F6 improves phytoextraction efciency of mustard (Brassica juncea (L.) Coss.var. foliosa Bailey) in Cd, Ni contaminated soils. Chemosphere, 2008; 71(9):1769–1773
  • 161. Dana MM, Pintor-Toro JA and Cubero B . Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol., 2006; 142:722–730.
  • 162. Ghorbanpour A, Salimi A, Ghanbary MAT, Pirdashti H and Dehestani A. (The efect of Trichoderma harzianum in mitigating low temperature stress in tomato (Solanum lycopersicum L.) plants. Sci Hortic., 2018; 230:134–141.
  • 163. Montero-Barrientos M, Hermosa R, Cardoza, RE, Gutierrez S, Nicolás C and Monte E. Transgenic expression of the Trichoderma harzianum HSP70 gene increases Arabidopsis resistance to heat and other abiotic stresses. J. Plant Physiol.,2010; 167:659–665.

Biyolojik Mücadelede Trichodermalar ve Biyolojik Kontrol Mekanizmaları

Year 2021, , 201 - 224, 29.12.2021
https://doi.org/10.47137/usufedbid.979710

Abstract

Tarımsal üretimde bitki hastalıklarıyla mücadelede pestisitler uzun yıllardan bu yana kimyasal mücadelede yaygın olarak tercih edilmektedir. Pestisitlerin yoğun ve kontrolsüz bir şekilde kullanımı doğal dengenin bozulması, çevre ve insan sağlığına olumsuz etkileri ayrıca kimyasalların kalıntı sorunları da pazarlamada ciddi sıkıntılara sebep olmaktadır. Çoğu kimyasal fungisitlerin Avrupa Birliği tarafından yasaklanması nedeniyle sürdürülebilir bir alternatif olarak bitki hastalıklarının mücadelesinde yeni yöntem arayışlarını beraberinde getirmiştir. Bitki hastalıklarıyla mücadelede sürdürülebilir, çevre dostu ve uzun süre etkili olabilecek ilk akla gelen yöntem biyolojik mücadele olmaktadır. Son yıllarda biyolojik ajanlara yönelik yapılan çalışmalar hız kazanmaktadır. Bu biyokontrol etmenlerinden Trichoderma’lar bitki patojeni fungusların mücadelesinde uzun süredir çok yönlü biyokontrol ajanı olarak yer almakta ve günümüzde Trichoderma’ların ticari ürünleri; biyopestisit, toprak düzenleyici ve bitki gelişim düzenleyici olarak da kullanılmaktadır. Bu derlemede biyolojik mücadelede Trichoderma’nın önemi, Trichoderma türlerinin etki mekanizmaları ile biyotik ve abiyotik stres koşullarında kullanımları konusunda yapılan çalışmalara yer verilmiştir.

References

  • 1. FAO. The future of food and agriculture—trends and challenges. FAO, 2017; Rome, p 163.
  • 2. Koike ST and Gordon TR. Management of Fusarium wilt of strawberry, Crop Protection, 2015; 1-6.
  • 3. Cawoy H, Wagner B,Fickers B and Ongena M. Bacillus Based Biological Control Plnat Diseases, Pesticides in the Modern World: Pesticides Use and Management. China: InTech Europe; 2011.
  • 4. Naher L, Yusuf UK, Ismail A and Hossain K. Trıchoderma Spp.: A Bıocontrol agent for sustaınable management of plant dıseases, Pak. J. Bot., 2014;46(4): 1489-1493.
  • 5. Gouvea A, Kuhn OJ, Mazaro SM, May-De Mio LL, Deschamps C, Biasi LA. And Fonseca, V de C. Controle de doenças foliares e de flores e qualidade pós-colheita do morangueiro tratado com Saccharomyces cerevisiae. Hort. Bras., 2009; 27(4): 527-533.
  • 6. Noling JW. Nematode management in strawberries. University of Florida publication series no. ENY-031, USA, p 12, 2016.
  • 7. Abd-Elgawad MMM. Optimizing biological control agents for controlling nematodes of tomato in Egypt. Egypt J. Biol. Pest. Cont., 2020; 30:58.
  • 8. Howell CR. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis.,2003; 87:4–10.
  • 9. Benitez T, Rincon AM, Limon MC and Codon AC. Biocontrol mechanism of Trichoderma strains. International Microbiol., 2004; 7: 249-260.
  • 10. Papavizas, G.C. 1985. Trichodema and Gliocladium: Biology, ecology and potential for biocontrol. Ann. Rev. Phytopathol., 22: 23-54.
  • 11. Koumoutsi, A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franhe P, Vater J and Borris R. Structural and functional characterization of gene clusters directing nonribosomal syntheis of bioactive cyclie lipopepetides in Bacillus amyloli quefaciens strain FZB42. J. Bactriol., 2004; 186: 1084-1096.
  • 12. Mavrodi DV, Mavrodi OV, McSpaddenss-Gardener BB, Landa BB, Weller DM and Thomashow LS. Identification of differences in genome content among phID-positive Pseudomonas fluorescens strains by using PCR based substractive hybridization. Appl. Environ. Microbiol., 2002; 68: 5170-5776.
  • 13. Atehnkeng J, Ojiambo PS, Ikotum T, Sikora RA, Cotty PJ and Bandyopadhyay R. Evaluation of atoxigenic isolates of Aspergillus flavus as potential biocontrol agents for aflatoxin in maize. Food Additives & Contaminants: Part A., 2008; 25: 1266-1273.
  • 14. Gilardi G, Manker DC, Garibaddi A and Gullino ML. Efficacy of the biocontrol agents Bacillus subtilis and Ampebmyces quisqualis applied in combination with fungicides against powdery mildew of Zucchini. J. Plant Diseases Protect., 2008; 115: 208-213.
  • 15. Ahmed MFA, El-Fiki, IAI. Effect of biological control of root rot diseases of strawberry using Trichoderma spp. Middle East Journal of Applied Sciences, 2017;7(3): 482-492.
  • 16. Aydın MH. Bitki Fungal Hastalıklarıyla Biyolojik Savaşta Trichoderma’lar.Türkiye Tarımsal Araştırmalar Dergisi, 2015; 2:135-148.
  • 17. Chet I. Trichoderma-application, mode of action, and potential as a biocontrol agent of soilborne plant pathogenic fungi. In: Innovative approaches to plant disease control. (Ed.) Chet I. New York: John Wiley and Sons; 1987. pp.147-160.
  • 18. Harman, GE, Howell CR, Viterbo A, Chet I and Lorito M.. Trichoderma species-opportunistic, avirulent plant symbionts. Nature Rev. Microbiol., 2004a; 2: 43-56.
  • 19. Vinale, F, Sivasithamparam K, Ghisalberti LE, Marra R, Woo LS and Lorito M. Trichoderma-plant-pathogen interactions. Soil. Biol. Biochem., 2008; 40: 1-10.
  • 20. Spadaro D and Gullino ML . Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Protection, 2005;24(7):601-613.
  • 21. Yedidia I, Benhamou N and Chet I. Induction of defence responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl. Environ. Microbiol., 1999; 65: 10061-1070.
  • 22. Kredics L, Antal Z, Doczi I, Manczinger L, Kevei F and Nagy E. Clinical importance of the genus Trichoderma. A review. Acta Microbiol. Immunol. Hung., 2003; 50:105–117.
  • 23. Harman, GE. Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 2006; 96:190-194.
  • 24. Pandey RN, Jaisani P and Yadav DL. Trichoderma spp. in the management of stresses in plants and rural prosperity. Indian Phytopathology, 2021;74:453–467.
  • 25. Weindling R. Trichoderma lignorum as a parasite of other soil fungi. Phytopathology, 1932; 22: 837- 845.
  • 26. Wells DH. Trichoderma as a biocontrol agent. In: Biocontrol and plant diseases. (Eds.): Mukerji KG and Garg KL. Florida: CRC press; pp. 73. 1988.
  • 27. Weindling R. Studies on lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctinia solani and other soil fungi. Phytopathol., 1934; 24: 1153-1179.
  • 28. Samuels, GJ. Trichoderma: A review of biology and systematics of the genus. Mycol. Res., 1996; 100: 923-935.
  • 29. Irina D and Christian PK. Species and biodiversity in Trichoderma and Hypocera: from aggregate species to species clusters. J. of Zhejiang Uni. Sci., 2004; 6: 100-112.
  • 30. Chaverri P, Gazis R and Samuels GJ. Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and guianensis from the Amazon basin. Mycologia, 2011; 103:139–151.
  • 31. Mukherjee PK, Horwitz BA, Singh US, Mukherjee M and Schmoll M. Trichoderma in agriculture, industry and medicine: an overview. In: Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (eds) Trichoderma: biology and applications. Nosworthy: CABI; 2013. pp 1–9.
  • 32. Kubicek CP , Bissett J, Druzhinina I, Kullnig-Gradinger C and Szakacs G. Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates. Fungal Genetics and Biology, 2003; 38(3: 310-319.
  • 33. Christian R, Röhrich WM, Jaklitsch H, Voglmayr A, Iversen CZ, Christian B, Henry M, Meinckel R, Komon-Zelazowska M, Druzhinina I, Christian S, Kubicek P and Berg G. Fungal diversity in the rhizosphere of endemic plant species of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors. ISME J, 2009; 3:79–92
  • 34. Migheli Q, Balmas V, Komoñ-Zelazowska M, Scherm B, Fiori S, Caria R, Alexey G, Kopchinskiy A, Kubicek CP, Druzhinina IS. Soils of a Mediterranean hot spot of biodiversity and endemism (Sardinia, Tyrrhenian Islands) are inhabited by pan-European, invasive species of Hypocrea/Trichoderma. Environ. Microbiol. 2009; 11(1):35–46.
  • 35. Hatvani L, Antal Z, Manczinger L, Szekeres A, Druzhinina IS, Kubicek CP, Nagy A, Nagy E, Vagvolgyi C, Kredics L. Green mold diseases of Agaricus and Pleurotus spp. are caused by related but phylogenetically diferent Trichoderma species. Phytopathology, 2007; 97:532–537.
  • 36. Kredics L, García Jimenez L, Naeimi S, Czifra D, Urbán P, Manczinger L, Vágvölgyi C, Hatvani L A challenge to mushroom growers: the green mould disease of cultivated champignons. Topics in applied microbiology and microbial biotechnology, 2010; vol 1–2:295–30.
  • 37. Samuels GJ, Dodd SL, Gams W, Castlebury LA and Petrini O. Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia, 2002; 94(1): 146-170.
  • 38. Kredics L, Kocsubé S, Nagy L, Komon-Zelazowska M, Manczinger L, Sajben E, Nagy A, Vágvölgyi C, Kubicek CP, Druzhinina IS and Hatvani L. Molecular identifcation of Trichoderma species associated with Pleurotus ostreatus and natural substrates of the oyster mushroom. FEMS Microbiol Lett., 2009; 300:58–67.
  • 39. Kredics L, Antal Z, Szekeres A, Manczinger L, Doczi I, Kevei F and Nagy E. Production of extracellular proteases by human pathogenic Trichoderma longibrachiatum strains. Acta Microbiol Immunol Hung, 2004 ; 51:283–295.
  • 40. Petrini O. Fungal Endophytes of Tree Leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. New York :Springer; 1991.pp 179–197.
  • 41. Gazis R and Chaverri P. Diversity of fungal endophytes in leaves and stems of rubber trees (Hevea brasiliensis) in Tambopata. Peru Fungal Ecol.,2010; 4:94–102
  • 42. Patel JS, Kharwar RN, Singh HB, Upadhyay RS and Sarma BK. Trichoderma asperellum (T42) and Pseudomonas fluorescens (OKC)-enhances resistance of pea against Erysiphe pisi through enhanced ROS generation and lignifcations. Front Microbiol.,2017; 8:306.
  • 43. Cummings NJ, Ambrose A, Braithwaite M, Bissett J, Roslan HA, Abdullah J, Stewart A, Agbayani FV, Steyaert J and Hill RA. Diversity of root-endophytic Trichoderma from Malaysian Borneo. Mycol. Progress, 2016;15:50.
  • 44. Ghaffari MR, Ghabooli M, Khatabi B, Hajirezaei MR, Schweizer P and Salekdeh GH. Metabolic and transcriptional response of central metabolism afected by root endophytic fungus Piriformospora indica under salinity in barley. Plant Mol. Biol.,2016; 90:699–717.
  • 45. Chaverri P, Catlebury LA, Samuels GJ and Geiser MD. Multilocus phylogenetic structure within the Trichoderma harzianum/ Hypocrea lixii complex. Mol. Phylogenet. Evol., 2003; 27:302–313.
  • 46. El Komy MH, Saleh AA, Eranthodi A and Molan YY. Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato fusarium wilt. Plant Pathol. J., 2015; 31(1): 50–60.
  • 47. Leon VC, Raja M, Pandian RTP, Kumar A, Sharma P. Studies on opportunistic endophytism of Trichoderma species in rice (Pusa Basmati-1 (PB1)). Indian J. Exp. Biol., 2017; 56:121–128.
  • 48. Yuan ZL, Chen YC, Zhang CL, Lin FC and Chen LQ. Trichoderma chlorosporum, a new record of endophytic fungi from Dendrobium nobile in China (in Chinese). Mycosystema, 2008; 27:608–610.
  • 49. Hanada RE, de Jorge Souza T, Pomella AW, Hebbar KP, Pereira JO, Ismaiel A, Samuels GJ. Trichoderma martiale sp. nov., a new endophyte from sapwood of Theobroma cacao with a potential for biological control. Mycol Res., 2008; 112(Pt 11):1335–1143.
  • 50. Bae H, Sicher RC, Kim MS, KimSH, Strem MD, MeInice RL and Bailey BA. The beneficial endophyte Trichoderma hamatum isolate DS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Journal of Experimental Botany, 2009; 60: 3279-3295.
  • 51. Rosmana A, Samuels GJ, Ismaiel A, Ibrahim ES, Chaverri P, Herawati Y and Asman A. Trichoderma asperellum: a dominant endophyte species in cacao grown in Sulawesi with potential for controlling vascular streak dieback disease. Trop. Plant Pathol., 2015;40:19–25.
  • 52. Rinu K, Sati P and Pandey A. Trichoderma gamsii (NFCCI 2177): A newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain. J. Basic Microbiol., 2014, 54, 408–417.
  • 53. Chen JL, Sun SZ, Miao CP, Wu K, Chen YW, Xu LH, Guan HL, Zhao LX. Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. J. Ginseng Res.,2016; 40:315–324.
  • 54. Romeralo C, Santamaría O, Pando V and Diez JJ. Fungal endophytes reduce necrosis length produced by Gremmeniella abietina in Pinus halepensis seedlings. Biol. Control, 2015; 80:30–90.
  • 55. Samuels GJ, Dodd SL, Lu BS, Petrini O, Schroer HJ, Druzhinina IS. The Trichoderma koningii aggregate species. Stud. Mycol., 2006; 56:67–133.
  • 56. Druzhinina IS, Seidl-Seiboth, V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev I and Kubicek CP. Trichoderma-The genomics of opportunistic success. Nature Reviews Microbiology, 2011; 9: 749-759.
  • 57. Lorito M, Woo SL, Harman GE, Monte E. Translational research on Trichoderma: from omics to the feld. Ann. Rev. Phytopathol., 2010; 48:395–417.
  • 58. Hermosa R, Botella L, Keck E, Jiménez JA, Montero-Barrientos M, Arbona V, Gómez-Cadenas A, Monte E, Nicolás C. The overexpression in Arabidopsis thaliana of a Trichoderma harzianum gene that modulates glucosidase activity, and enhances tolerance to salt and osmotic stresses. .J Plant Physiol.,2011; 168:1295–1302.
  • 59. Pieterse CMJ, Reyes AL, Van der Ent S and Van Wees SCM. Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 2009; 5:308–316.
  • 60. Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A and Casas-Flores S. Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. European Journal of Plant Pathology, 2011; 131:15–26.
  • 61. Tucci M, Ruocco M, De Masi L, De Palma M, Lorito M. The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol. 2011;12:341–354.
  • 62. Sarrocco S, Guidi L, Fambrini S, DesI‟Innocenti E, Vannacci G Competition for cellulose exploitation between Rhizoctonia solani and two Trichoderma isolated in the decomposition of wheat straw. J. Plant Pathol, 2009; 91:331–338.
  • 63. Hjeljord, LG, Stensvand A and Tronsmo A. Effect of temperature and nutrient stress on the capacity of commercial Trichoderma products to control Botrytis cinerea and Mucor piriformis in greenhouse strawberries. Biolog Control, 2000; 19: 149-160.
  • 64. Christian R, Röhrich WM, Jaklitsch H, Voglmayr A, Iversen CZ, Christian B, Henry M, Meinckel R, Komon-Zelazowska M, Druzhinina I, Christian S, Kubicek P and Berg G. Fungal diversity in the rhizosphere of endemic plant species of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors. ISME J, 2009; 3:79–92
  • 65. Abbas A, Jiang D, Fu Y. Trichoderma spp. as antagonist of Rhizoctonia solani. J. Plant Pathol. Microbiol., 2017; 8 (3):402–409.
  • 66. Rey M, Delgado-Jarana J and Benítez T . Improved antifungal activity of a mutant of Trichoderma harzianum CECT 2413 which produces more extracellular proteins. Appl. Microbiol. Biotechnol., 2001; 55:604–608.
  • 67. Bull CT, Shetty KG, Subbarao KV. Interactions between Myxobacteria, plant pathogenic fungi, and biocontrol agents. Plant Dis., 2002; 86:889–896.
  • 68. Viterbo A, Ramot O, Chernin L and Chet I. Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens. Antonie Van Leeuwenheek, 2002; 81: 549-556.
  • 69. Sivan, A and Chet, I. Degradation fungal cell walls by lytic enzymes of Trichoderma harzianum J. Gen Microbiol., 1989; 135: 675-682.
  • 70. Elad, Y. Mycoparasitism. In: Kohmoto, K, Singh, US, Singh, RP (eds) Pathogenesis and host specifi cities in plant disease: histopathological, biochemical, genetic and molecular basis, eucaryotes. Vol. 2. Pergamon, Oxford, 1995. pp 289-307.
  • 71. Cherif M and Benhamou N. Cytochemical aspects of chitin breakdown during the parasitic action of Trichoderma sp. on Fusarium oxysporum f. sp. radicis-lycopersici. Phytopathology, 1990; 80: 1406-1412.
  • 72. Soglio FK, Bertagnolli BL, Sinclair JB, Yu GY and Eastburn DM. Production of chitinolytic enzymes and endoglucanase in the soybean rhizosphere in the presence of Trichoderma harzianum and Rhizoctonia solani. Biol. Control, 1998; 12: 111-117.
  • 73. Innocenti G, Roberti R, Montanari M and Zakrisson E.Efficacy of microorganisms antagonistic to Rhizoctonia ceralis and their cell wall degrading enzymatic activities. Mycol. Res., 2003; 107 (4): 421-427.
  • 74. Chet, I, Benhamou N and Harman S. Mycoparasitism and lytic enzymes. In: Trichoderma and Gliocladium Vol. 2. (Eds.): Harman GE and Kubick CP. London: Taylor and Francis; 1998. pp. 153-172.
  • 75. Steyaert JM, Ridgway HJ, Elad Y and Stewart A. Genetic basis of mycoparasitism: A mechanism of biological control by species of Trichoderma. J. Crop. Horticul. Sci., 2003; 31: 281-291.
  • 76. Carsolio, C, Benhamou N, Haran S, Cortes C, Gutierrez A, Chet I and Herrera-Estrella A.. Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Appl. Environ. Microbioly., 1999; 65: 929-935.
  • 77. Mukherjee KP, Nautiyal CS and Mukhopadhyay AN. Molecular mechanisms of plant and microbe coexistence. Heidelberg: Springer; 2008.
  • 78. Bolar JP, Norelli JL, Wong KW, Hayes, CK, Harman G and Aldwinckle HS. Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology, 2000; 90:72-77.
  • 79. Bolar JP, Norelli JL, Harman GE, Brown SK and Aldwinckle HS. Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants. Transgenic Res., 2001; 10:533- 543. 7.
  • 80. Mandels M. Microbial sources of cellulase. Biotechnol. Bioeng. Sym. 1975; 5:81-105.
  • 81. Mandels M and Reese ET. Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J. Bacteriol., 1957; 73:269-278.
  • 82. Benitez T, Delgado-Jarana J, Rincón AM, Rey M, Limón MC. Biofungicides: Trichoderma as a biocontrol agent against phytopathogenic fungi. In: Pandalai SG (ed) Recent research developments in microbiology, vol. 2. Research Signpost, Trivandrum, pp 129-150. 1998.
  • 83. Lorito M, Woo SL, Garcia-Fernandez I, Colucci G, Harman GE, Pintor-Toro JA, Filippone E, Muccifora S, Lawrence CB, Zoina A, Tuzun S, Scala F. Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci USA ;1998; 95:7860–7865.
  • 84. Lorito M, Woo SL, Donzelli B and Scala F. Synergistic, antifungal interactions of chitinolytic enzymes from fungi, bacteria and plants. in: Chitin Enzymology II. Muzzarelli RAA. ed. Atec, Grottammare (AP), Italy. P 157-164. 1996.
  • 85. Rincón AM. DoktoraTezi. Biyolojik mücadele üzerine araştırmalar
  • 86. Harman GE. Multifunctional fungal plant symbionts: new tools to enhance plant growth and productivity. New Phytol., 2011; 189(3):647–649.
  • 87. Vinale, F, Marra R, Scale F, Ghisalberti EL, Lorito M and Sivasithamparam K. Major secondary metabolites produced by two commercial Trichoderma strains active different phytopathogens. Letter in Applied Microbiol., 2006; 43: 143-148.
  • 88. Cutler, HG, Cox RH, Crumley FG and Cole PD. 6- Pentyl-apyrone from Trichoderma harzianum: Its plant growth inhibitory and antimicrobial properties. Agricul Biolog Chem., 1986; 50: 2943-2945.
  • 89. Cutler HG, Himmetsbach DS, Arrendale RF, Cole PD and Cox RH. Koninginin A: a novel plant regulator from Trichoderma koningii. Agricul. Biolog. Chem., 1989; 53: 2605-2611.
  • 90. Kashyap PL, Kumar S, Srivastava AK. Nanodiagnostics for plant pathogens. Environ. Chem. Lett., 2017; 15:7–13.
  • 91. Shoresh M, Mastouri F, Harman GH. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu.Rev. Phytopathol., 2010; 48:21–43
  • 92. Chowdappa P, Mohan Kumar SP, Jyothi Lakshmi M, Upreti KK. Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol. Control, 2013;65(1):109–11.
  • 93. Zhao, L., Liu, Q., Zhang, Y., Cui, Q. & Liang, Y. Effect of acid phosphatase produced by Trichoderma asperellum Q1 on growth of Arabidopsis under salt stress. J. Integr. Agric.,2017; 16, 1341–1346.
  • 94. Swain H, Adak T, Mukherjee AK, Mukherjee PK, Bhattacharyya P, Behera S. Novel Trichoderma strains isolated from tree barks as potential biocontrol agents and biofertilizers for direct seeded rice. Microbiol. Res.,2018;214:83–90.
  • 95. Mastouri F, Thomas B, Harman GE. Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water defcit. Mol Plant Microbe Interact., 2012; 25(9):1264–1271
  • 96. Doni F, Al-Shorgani NKN, Tibin EMM, Abuelhassan NN, Anizan I, Che-Radziah CMZ . Microbial involvement in growth of paddy. Curr Res J Biol Sci,2013; 5(6):285–290
  • 97. Harman, GE, Petzoldt R, Comis A and Chen J. Interactions between Trichoderma harzianum strain T22 and maize inbred line M017 and effects of these interactions on diseases by Pythium ultimum and Collectotrichum graminicola. Phytopathol., 2004b; 94: 147-153.
  • 98. Woo Sheridan L, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G and Lorito M. Trichoderma-based products and their widespread use in agriculture. Open Mycol. J. 2014; 8 (Suppl-1, M 4):71–126.
  • 99. Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y and Chet I. Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl. Environ. Microbiol., 2003; 69: 7343-7353.
  • 100. Hanson LE and Howell CR. Elicitors of plant defence responses from biocontrol strains of Trichoderma virens. Phytopathol., 2004; 94: 171-176.
  • 101. Alfano G, Lewis Ivey LM, Cakir C, Bos JIB, Miller SA, Madden Kamoun VL and Hoitink JAH. Systemic modulation of gene S. expression in tomato by Trichoderma hamatum 382. Biolog Control, 2007; 97: 429-437.
  • 102. Naher L, Ho CL, Tan SG, Yusuf UK and Abdullah F. Cloning transcripts encoding chitinases from Elaeis guineensis Jacq. and their expression profiles in response to fungal infections. Physiol. Mol. Plant Pathol., 2011; 76: 96-103.
  • 103. Ahmed AS, Sanchez CP and Candela ME. Evaluation of induction of systemic resistance in pepper plants (Capsicum annum) to Phytopthora capsici using Trichoderma harzianum and its relation with capsidiol accumulation. Eur. J. Plant Pathol., 2000; 106: 817-829.
  • 104. Lo, CT, Liao TF and Deng TC. Induction of systemic resistance of cucumber to cucumber green mosaic virus by the root-colonizing Trichoderma spp. Phytopathol., 2000; 90: S 47.
  • 105. Bae H, Roberts DP, Lim HS, Strem M, Park SC, Ryu CM. Endophytic Trichoderma isolates from tropical environments delay disease and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol Plant-Microbe Interact., 2011; 24:336–351.
  • 106. Hoitink, HAJ, Madden LV and Dorrance AE. Systemic resistance induced by Trichoderma spp.: Interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality. Phytopathol., 2006; 96: 186-189.
  • 107. De Meyer G, Bigirimana J, Elad Y, Hofte M. Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur. J. Plant Pathol., 1998; 104:279–286.
  • 108. Levy NO, Meller HY, Haile ZM, Elad Y, David E, Jurkevitch E, Katan J. Induced resistance to foliar diseases by soil solarization and Trichoderma harzianum. Plant Pathol., 2015; 64:365–374.
  • 109. Seaman A . Efcacy of OMRI-approved products for tomato foliar disease control. N Y State Integr Pest Manag Program Publ.,2003; 129:164–167.
  • 110. Koike N, Hyakumachi M, Kageyama K, Tsuyumu S, Doke N. Induction of systemic resistance in cucumber against several diseases by plant growth-promoting fungi: lignifcation and superoxide generation. Eur. J. Plant Pathol. 2001; 107:523–533.
  • 111. Shoresh M, Yedidia I, Chet I. Involvement of jasmonic acid/ ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology, 2005; 95:76–84.
  • 112. Alizadeh H, Behboudi K, Ahmadzadeh M, Javan-Nikkhah M, Zamioudis C, Pieterse CM, Bakker PA. Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biol. Control, 2013; 65(1):14–23.
  • 113. Salas-Marina MA, Isordia-Jasso M, Islas-Osuna MA, Delgado-Sánchez P, Jiménez-Bremont JF, Rodríguez-Kessler M, Rosales-Saavedra MT, Herrera-Estrella A, Casas-Flores S. The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens diferentially modulate systemic disease resistance against diferent life style pathogens in Solanum lycopersicum. Front. Plant Sci., 2015; 23:77.
  • 114. Howell CR, Hanson LE, Stipanovic RD and Puckhaber LS. Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathol., 2000; 90: 248-252.
  • 115. Ajitha PS and Lakshmedevi N. Effect of volatile and von-volatile compounds from Trichoderma spp. against Colletotrichum capsici incitant of anthracnose on Bell peppers. Nature and Sci., 2010; 8: 265-296.
  • 116. Sivasithamparam K and Ghisalberti EL. Secondary metabolism in Trichoderma and Gliocladium. In: Trichoderma and Gliocladium. (Eds.): Harman GE and Kubicek CP. Taylor and Francis, London, pp. 139-192, 1998.
  • 117. Demain AL and Fang A. The natural functions of secondary metabolites. Advances in Biochemi Engineer Biotechnol., 2000; 69: 1-39.
  • 118. Ghisalberti EL, Narbey MJ, Dewan MM and Sivasithamparam K. Variability among strains of Trichoderma harzianum in their ability to reduce take-all and to produce pyrones. Plant and Soil, 1990; 121: 287-291.
  • 119. Bruckner H and Graf H. Paracelsin, a peptide antibiotic containing alpha-aminoisobutyric acid, isolated from Trichoderma reesei Simmons Part A. Experientia., 1983; 139: 528-530.
  • 120. Bruckner H, Graf H and Bokel M. Paracelsin; characterization by NMR spectroscopy and circular dichroism, and hemolytic properties of a peptaibol antibiotic from the cellulolytically active mold Trichoderma reesei Part B. Experientia., 1984; 40: 1189-1197.
  • 121. Reese, ET. History of the cellulose program at the U.S. Army Natick development center. Biotechnol. Bioeng Sympos., 1976; 6: 9-20.
  • 122. Galante YM, Conti A and Monteverdi R. Application of Trichoderma enzymes in the food and food inductries. In: Trichoderma and Gliocladium, (Eds.): Harman GE and Kubicek CP. Vol. 2. Taylor and Francis, London, 1998b. pp. 327-342.
  • 123. Galante YM, Conti A and Monteverdi R. Application of Trichoderma enzymes in the textile industry. In: Trichoderma and Gliocladium, (Eds.): Harman GE and Kubicek CP. Vol. 2. Taylor and Francis, London, 1998a. pp. 311-326.
  • 124. Lin, Y and Tanaka S. Ethanol fermentation from biomass resources: current state and prospect. Appl. Microbiol. Biotechnol., 2006; 69: 627-624.
  • 125. Gimbert HS, Margeor A, Dolla A, Jan G, Molle D, Lignon S, Mathis H, Sigoillot CJ, Monot F and Asther M. Comparative secretoma analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol for Biofuels., 2008;1: 18.
  • 126. Nevalaines, H., Suominen P and Taimisto K. On the safety of Trichoderma reesei. J. Biotech., 1994; 37: 193-200.
  • 127. Schaster A and Schmoll M. Biology and Biotechnology of Trichoderma. Appl. Microbiol. Biotechnol., 2010; 87: 787-799.
  • 128. Anis M, Zaki MJ and Dawar S. Development of a Naalginate based bioformulation and its use in the management of charcoal rot sunflower (Helianthus annuus L.). Pak. J. Bot., 2012; 44: 1167-1170.
  • 129. Lumsden, RD, Lewis, JA and Lock JC. Managing soilborne plant pathogens with fungal antagonists. In: In pest management: Biology based technologies. American Chemical Society Publishers, Washington, 1993; pp. 196-203.
  • 130. Chou C, Castilla N, Hadi B, Tanaka T, Chib S, Sato I. Rice blast management in Cambodian rice felds using Trichoderma harzianum and a resistant variety. Crop Protect.,2020; 135:104864
  • 131. Pal KK and McSpadden Gardener B .Biological control of plant pathogens. The Plant Health Instructor, 2006; pp 1–25.
  • 132. Kannahi M, Dhivya S, Senthil kumar R. Biological control on rice false smut disease using Trichoderma species. Int. J. Pure. App. Biosci., 2016; 4(2):311–316.
  • 133. Aggarwal R, Srivastava KD, Singh DV, Bahadur P, Nagarajan S. Possible biocontrol of loose smut of wheat. J. Bio. Control, 1991;6:114–115.
  • 134. Aggarwal R, Singh DV, Srivastava KD, Bahadur P. The potential of antagonists for biocontrol of Neovossia indica causing Karnal bunt of wheat. Indian J. Biol. Control, 1996; 9:69–70.
  • 135. Kandasamy S, Li Y, Yu C, Wang Q, Wang M, Sun J, Gao J and Chen J. Efect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium Stalk rot. Sci Rep., 2017; 7:1771.
  • 136. Purohit J, Singh Y, Bisht S and Srinivasaraghvan A. Evaluation of antagonistic potential of Trichoderma harzianum and Pseudomonas fuorescens isolates against Gloeocercospora sorghi causing zonate leaf spot of sorghum. Bioscan 2013; 8(4):1327–1330.
  • 137. Wesam IA, Saber-Khalid M, GhoneemYounes MR, Abdulaziz A, Al Askar. Trichoderma harzianum WKY1: an indole acetic acid producer for growth improvement and anthracnose disease control in sorghum. Biocontrol Sci. Tech.,2017; 27(5):654–676.
  • 138. Pandey RN, Gohel NM and Jaisani P. Management of wilt and root rot of chickpea caused by Fusarium oxysporum f. sp. ciceri and Macrophomina phaseolina through seed biopriming and soil application of bio-Agents. Int. J. Curr. Microbiol. Appl. Sci., 2017; 6(5):2516–2522.
  • 139. Jaisani P, Prajapati HN, Yadav DL and Pandey RN. Seed biopriming and Trichoderma enriched FYM based soil application in management of chickpea (Cicer arietinum L.) wilt complex. J Pure Appl Microbiol., 2016;10(3):2453–2460
  • 140. Dubey SC, Tripathi A and Singh B.Combination of soil application and seed treatment formulations of Trichoderma species for integrated management of wet root rot caused by Rhizoctonia solani in chickpea (Cicer arietinum). Indian J Agric Sci.,2012; 82(4):357–364.
  • 141. Ram H and Pandey RN.Efcacy of bio-control agents and fungicides in the management of wilt of pigeon pea. Indian Phytopath., 2011; 64(3):269–271.
  • 142. Meena BN, Pandey RN and Dama R. Seed biopriming for management of root rot and blight of mungbean incited by Macrophomina phaseolina (Tassi) Goid. and Rhizoctonia solani Kuhn. J.Pure Appl. Microbiol., 2016; 10(2):0973–7510.
  • 143. Dubey SC and Patel B. Mass multiplication of antagonists and standardization of efective dose for management of web blight of urd and mung bean. Indian Phytopath., 2002; 55:338–341.
  • 144. Pandey RN, Gohel NM and Jaisani P. Management of wilt and root rot of chickpea caused by Fusarium oxysporum f. sp. ciceri and Macrophomina phaseolina through seed biopriming and soil application of bio-Agents. Int. J. Curr. Microbiol. Appl. Sci., 2017; 6(5):2516–2522.
  • 145. Falah Kuchlan PMMM, Ansari K, Kuchlan MM and Ansari MM. Effcient application of Trichoderma viride on soybean [Glycine max (L.) Merrill] seed using thin layer polymer coating. Legume Res.,2019; 42(2): p 60-64.
  • 146. Rakholiya KB and Jadeja KB. Efect of seed treatment of biocontrol agents and chemicals for the management of stem and pod rot of groundnut. Int. J. Plant Prot.,2010; 3(2):276–278.
  • 147. Hossain MH and Hossain I. Evaluation of three botanicals, bavistin and BAU-biofungicide for controlling Leaf spot of groundnut caused by Cercospora arachidicola and Cercosporidium personatum. Agriculturists, 2014; 12(1):41–49.
  • 148. Hicks E, Bıenkowskı D, Braıthwaıte M, Kirstin M, Richard Falloon R and Stewart A. Trichoderma strains suppress Rhizoctonia diseases and promote growth of potato. Phytopathologia Mediterranea , 2014; 53 (3) :pp. 502-514.
  • 149. Nirmalkar VK, Tiwari RKS and Singh S.Efcacy of bio-agents against damping of in solanaceous crops under nursery conditions. Int. J. Plant Protect., 2018; 11(1):1–9.
  • 150. Sharon E, Bar-Eyal M, Chet I, Herrera-Estrella A, Kleifeld O and Spiegel Y. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology,2001; 91:687–693.
  • 151. Yasmeen R and Siddiqui ZS. Physiological responses of crop plants against Trichoderma harzianum in saline environment. Acta Bot. Croat, 2017; 76(2):154–162.
  • 152. Hidangmayum A and Dwivedi P. Plant responses to Trichoderma spp. and their tolerance to abiotic stresses: a review. J Pharmacogn Phytochem., 2018;7(1):758–766.
  • 153. Pandey V, Ansari MW, Tula S, Yadav, Sahoo RK, Shukla N and Bains G. Dose-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes. Planta, 2016; 243:1251–1264.
  • 154. Harman GE. Myths and dogmas of biocontrol. Changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis., 2000; 84:377–393.
  • 155. Hashem Abeer EF, Abd_Allah AA, Alqarawi Asma A, Al Huqail, Egamberdieva D. Alleviation of abiotic salt stress in Ochradenus baccatus (Del.) by Trichoderma hamatum (Bonord.) Bainier. J. Plant Interact., 2014; 9(1): 857–868.
  • 156. Viterbo A, Landau U, Kim S, Chernin L and Chet I. Characterization of ACC deaminase from the biocontrol and plant growth promoting agent Trichoderma asperellum T203. FEMS Microbiol. Lett., 2010; 305:42–48.
  • 157. Zhang M, Liu JM, Zhao JL, Li N, Chen RD, Xie KB, Zhang WJ, Feng KP, Yan Z, Wang N and Dai JG. Two new diterpenoids from the endophytic fungus Trichoderma sp. Xy24 isolated from mangrove plant Xylocarpus granatum.Chinese Chemical Letters, 2016; 27(6) 957-960.
  • 158. Ahmad P, Abeer H, Elsayed FAA, Alqarawi AA, Rifat J, Dilfuza E. Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Front Plant Sci .,2015; 6:868.
  • 159. Tellez-Vargas J, Rodríguez-Monroy M, López-Meyer M, Montes-Belmont R, Sepúlveda-Jiménez G.) Trichoderma asperellum ameliorates phytotoxic efects of copper in onion (Allium cepa L.). Environ. Exp. Bot., 2017;136:85–93.
  • 160. Cao L, Jiang M, Zeng Z, Du A, Tan H and Liu Y. Trichoderma atroviride F6 improves phytoextraction efciency of mustard (Brassica juncea (L.) Coss.var. foliosa Bailey) in Cd, Ni contaminated soils. Chemosphere, 2008; 71(9):1769–1773
  • 161. Dana MM, Pintor-Toro JA and Cubero B . Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol., 2006; 142:722–730.
  • 162. Ghorbanpour A, Salimi A, Ghanbary MAT, Pirdashti H and Dehestani A. (The efect of Trichoderma harzianum in mitigating low temperature stress in tomato (Solanum lycopersicum L.) plants. Sci Hortic., 2018; 230:134–141.
  • 163. Montero-Barrientos M, Hermosa R, Cardoza, RE, Gutierrez S, Nicolás C and Monte E. Transgenic expression of the Trichoderma harzianum HSP70 gene increases Arabidopsis resistance to heat and other abiotic stresses. J. Plant Physiol.,2010; 167:659–665.
There are 163 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Review Article
Authors

Deniz Kılınç 0000-0002-9879-7091

Havva Dinler 0000-0002-7011-5183

Publication Date December 29, 2021
Submission Date August 6, 2021
Acceptance Date October 13, 2021
Published in Issue Year 2021

Cite

APA Kılınç, D., & Dinler, H. (2021). Biyolojik Mücadelede Trichodermalar ve Biyolojik Kontrol Mekanizmaları. Uşak Üniversitesi Fen Ve Doğa Bilimleri Dergisi, 5(2), 201-224. https://doi.org/10.47137/usufedbid.979710
AMA Kılınç D, Dinler H. Biyolojik Mücadelede Trichodermalar ve Biyolojik Kontrol Mekanizmaları. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi. December 2021;5(2):201-224. doi:10.47137/usufedbid.979710
Chicago Kılınç, Deniz, and Havva Dinler. “Biyolojik Mücadelede Trichodermalar Ve Biyolojik Kontrol Mekanizmaları”. Uşak Üniversitesi Fen Ve Doğa Bilimleri Dergisi 5, no. 2 (December 2021): 201-24. https://doi.org/10.47137/usufedbid.979710.
EndNote Kılınç D, Dinler H (December 1, 2021) Biyolojik Mücadelede Trichodermalar ve Biyolojik Kontrol Mekanizmaları. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi 5 2 201–224.
IEEE D. Kılınç and H. Dinler, “Biyolojik Mücadelede Trichodermalar ve Biyolojik Kontrol Mekanizmaları”, Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi, vol. 5, no. 2, pp. 201–224, 2021, doi: 10.47137/usufedbid.979710.
ISNAD Kılınç, Deniz - Dinler, Havva. “Biyolojik Mücadelede Trichodermalar Ve Biyolojik Kontrol Mekanizmaları”. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi 5/2 (December 2021), 201-224. https://doi.org/10.47137/usufedbid.979710.
JAMA Kılınç D, Dinler H. Biyolojik Mücadelede Trichodermalar ve Biyolojik Kontrol Mekanizmaları. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi. 2021;5:201–224.
MLA Kılınç, Deniz and Havva Dinler. “Biyolojik Mücadelede Trichodermalar Ve Biyolojik Kontrol Mekanizmaları”. Uşak Üniversitesi Fen Ve Doğa Bilimleri Dergisi, vol. 5, no. 2, 2021, pp. 201-24, doi:10.47137/usufedbid.979710.
Vancouver Kılınç D, Dinler H. Biyolojik Mücadelede Trichodermalar ve Biyolojik Kontrol Mekanizmaları. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi. 2021;5(2):201-24.