Research Article
BibTex RIS Cite

Effect of oleuropein on element distributions in liver of diabetic rats

Year 2018, Volume: 2 Issue: 1, 1 - 9, 28.06.2018

Abstract

References

  • 1. Omagari K, Kato S, Tsuneyama K, Hatta H, Sato M, Hamasaki M & Tamaru S. Olive leaf extract prevents spontaneous occurrence of non-alcoholic steatohepatitis in SHR/NDmcr-cp rats. Pathology, 2010;42(1):66-72.
  • 2. Poudyal H, Campbell F & Brown L. Olive leaf extract attenuates cardiac, hepatic, and metabolic changes in high carbohydrate–, high fat–fed rats. The Journal of Nutrition, 2010;140(5):946-953.
  • 3. Fki I, Bouaziz M, Sahnoun Z & Sayadi S. Hypocholesterolemic effects of phenolicrich extracts of Chemlali olive cultivar in rats fed a cholesterol-rich diet. Bioorganic & Medicinal Chemistry, 2005;13(18):5362-5370.
  • 4. Lemai H, Bouaziz M, Fki I, El Feki A, Sayadi S. Hypolipidimic and antioxidant activities of oleuropein and its hydrolysis derivative-rich extracts from Chemlali olive leaves. Chemico-Biological Interactions, 2008;176(2–3):88-98
  • 5. Park S, Choi Y, Um SJ, Yoon SK & Park T. Oleuropein attenuates hepatic steatosis induced by high-fat diet in mice. Journal of Hepatology, 2011;54(5):984-993.
  • 6. Walter WM, Fleming HP & Etchells JL. Preparation of antimicrobial compounds by hydrolysis of oleuropein from green olives. Applied Microbiology, 1973;26(5): 773-776.
  • 7. Sirianni R, Chimento A, De Luca A, Casaburi I, Rizza P, Onofrio A & Pezzi V. Oleuropein and hydroxytyrosol inhibit MCF‐7 breast cancer cell proliferation interfering with ERK1/2 activation. Molecular Nutrition&Food Research, 2010;54(6):833-840.
  • 8. Odiatou EM, Skaltsounis AL & Constantinou AI. Identification of the factors responsible for the in vitro pro-oxidant and cytotoxic activities of the olive polyphenols oleuropein and hydroxytyrosol. Cancer Letters, 2013;330(1):113- 121.
  • 9. Andreadou I, Iliodromitis EK, Mikros E, Constantinou M, Agalias A, Magiatis P & Kremastinos DT. The olive constituent oleuropein exhibits anti-ischemic, antioxidative, and hypolipidemic effects in anesthetized rabbits. The Journal of Nutrition, 2006;136(8):2213-2219.
  • 10. Somova LI, Shode FO, Ramnanan P & Nadar A. Antihypertensive, antiatherosclerotic and antioxidant activity of triterpenoids isolated from Olea europaea, subspecies africana leaves. Journal of Ethnopharmacology, 2003;84(2- 3):299-305.
  • 11. Visioli F & Galli C. Biological properties of olive oil phytochemicals. Critical Reviews in Food Science and Nutrition, 2002;42(3):209-221.
  • 12. Goulas V, Exarchou V, Troganis AN, Psomiadou E, Fotsis T, Briasoulis E & Gerothanassis IP. Phytochemicals in olive‐leaf extracts and their antiproliferative activity against cancer and endothelial cells. Molecular Nutrition & Food Research, 2009;53(5):600-608.
  • 13. Hamdi HK & Castellon R. Oleuropein, a non-toxic olive iridoid, is an anti-tumor agent and cytoskeleton disruptor. Biochemical and Biophysical Research Communications, 2005;334(3):769-778.
  • 14. Ucar SK, Coker M, Sözmen E, Simsek DG & Darcan S. An association among iron, copper, zinc, and selenium, and antioxidative status in dyslipidemic pediatric patients with glycogen storage disease types IA and III. Journal of Trace Elements in Medicine and Biology, 2010;24(1):42-45.
  • 15. Nazıroğlu M, Güler M, Özgül C, Saydam G, Küçükayaz M & Sözbir E. Apple cider vinegar modulates serum lipid profile, erythrocyte, kidney, and liver membrane oxidative stress in ovariectomized mice fed high cholesterol. The Journal of Membrane Biology, 2014;247(8):667-673.
  • 16. Eaton JW & Qian M. Interactions of copper with glycated proteins: possible involvement in the etiology of diabetic neuropathy. Molecular and Cellular Biochemistry, 2002;234(1):135-142.
  • 17. Ahmadpour SH, Sadeghi Y, Hami J & Haghir H. Effect of insulin and ascorbic acid therapy on plasma Cu level in stereptozotocin-induced diabetic rats. J Birjand Univ Med Sci, 2008;15(3):26-32.
  • 18. Sakamoto K, Brownlee M (2003) Type 1 Diabetes Biochemistry and Molecular Biology of Diabetic Complications. Nephrourol Mon. 375-92
  • 19. Guimarães MM, Martins Silva Carvalho AC & Silva MS. Chromium nicotinate has no effect on insulin sensitivity, glycemic control, and lipid profile in subjects with type 2 diabetes. Journal of the American College of Nutrition, 2013;32(4):243-
  • 20. Furman B. Streptozotocin‐Induced Diabetic Models in Mice and Rats. Current protocols Pharnacology, 2015;1-5.
  • 21. Karabag-Coban F, Bulduk I, Liman R, Ince S, Cigerci I & Hazman O. Oleuropein alleviates malathion-induced oxidative stress and DNA damage in rats. Toxicological & Environmental Chemistry, 2016;98(1):101-108.
  • 22. Ohkawa H, Ohishi N & Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 1979;95(2):351-358.
  • 23. Sun YI, Oberley LW & Li Y. A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 1988;34(3):497-500.
  • 24. Aebi H. Catalase in Vitro. Methods in Enzymology, 1984;10):121-126.
  • 25. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry, 2004;37(4):277-285.
  • 26. Erel O. A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry, 2005;38(12):1103-1111.
  • 27. Viktorínová A, Tošerová E, Križko M & Ďuračková Z. Altered metabolism of copper, zinc, and magnesium is associated with increased levels of glycated hemoglobin in patients with diabetes mellitus. Metabolism-Clinical and Experimental, 2009;58(10):1477-1482.
  • 28. Al-Timimi DJ & Mahmoud HM. Evaluation of zinc status among patients with diabetes mellitus. Duhok Med. J, 2011;5(2):1-10.
  • 29. Capdor J, Foster M, Petocz P & Samman S. Zinc and glycemic control: a metaanalysis of randomised placebo controlled supplementation trials in humans. Journal of Trace Elements in Medicine and Biology, 2013;27(2):137-142.
  • 30. Soinio M, Marniemi J, Laakso M, Pyörälä K, Lehto S & Rönnemaa T. Serum zinc level and coronary heart disease events in patients with type 2 diabetes. Diabetes Care, 2007;30(3):523-528.
  • 31. Govindan K., Rajendran S., Sarkis J., Murugesan P Multi criteria decision making approaches for green supplier evaluation and selection: a literature review, 2015; (98) 66- 83.
  • 32. Bahijri SM. Effect of chromium supplementation on glucose tolerance and lipid profile. Saudi Medical Journal, 2000;21(1):45-50.
  • 33. Shahbah D, Hassan T, Morsy S, El Saadany H, Fathy M, Al-Ghobashy A & El Gebaly S. Oral magnesium supplementation improves glycemic control and lipid profile in children with type 1 diabetes and hypomagnesaemia. Medicine, 2017;96(11):6352.
  • 34. Sivrikaya A, Bicer M, Akil M, Baltaci AK & Mogulkoc R. Effects of zinc supplementation on the element distribution in kidney tissue of diabetic rats subjected to acute swimming. Biological Trace Element Research, 2012;147(1-3): 195-199.
  • 35. Bicer M, Akil M, Sivrikaya A, Kara E, Baltaci AK & Mogulkoc R. Effect of zinc supplementation on the distribution of various elements in the serum of diabetic rats subjected to an acute swimming exercise. Journal of Physiology and Biochemistry, 2011;67(4):511.
  • 36. Lynch CJ, Patson BJ, Goodman SA, Trapolsi D & Kimball SR. Zinc stimulates the activity of the insulin-and nutrient-regulated protein kinase mTOR. American Journal of Physiology-Endocrinology and Metabolism, 2001;281(1): E25-E34.
  • 37. Tapiero H & Tew KD. Trace elements in human physiology and pathology: zinc and metallothioneins. Biomedicine&Pharmacotherapy, 2003;57(9):399-411.
  • 38. Jemai H, El Feki A and Sayadi S. Toward a High Yield Recovery of Antioxidants and Purified Hydroxytyrosol from Olive Mill Wastewaters. J. Agric. Food Chem, 2009;57:8798-8804.
  • 39. Murotomi K, Umeno A, Yasunaga M, Shichiri M, Ishida N, Koike T, Matsuo T, Abe H, Yoshida Y, and Nakajima Y. Antioxidative and Antidiabetic Effects of Natural Polyphenols and Isoflavones. J. Agric. Food Chem, 2015;63,6715-6722.

Effect of oleuropein on element distributions in liver of diabetic rats

Year 2018, Volume: 2 Issue: 1, 1 - 9, 28.06.2018

Abstract

There is accumulating
evidence demonstrating that the metabolism of many trace elements is modified
in diabetes mellitus.
In
addition, essential elements and minerals are key to nutrition and sound health.
Oleuropein,
a major phenolic compound in olives, is known to reduce the blood glucose
levels in alloxaninduced diabetic rats and rabbits. The purpose of this study was to
compare the levels of essential trace elements, selenium (Se), manganese (Mn), copper
(Cu),
chromium (Cr) and zinc (Zn) in Strepsttozotocin (STZ)-induced diabetic rats and to evaluate the effects
of oleuropein on trace elements levels. Animals were apportioned into 4 groups
of 8 rats each. The control group was fed with standard rat provender and got
no added treatment. In the oleuropein group, 20 mg/kg dosages of oleuropein
were given to normal animals intraperitoneally (i.p) for 28 days. In the
diabetic group, STZ was injected to rats at a single dose of 50 mg/kg i.p. The
last group, 20 mg/kg dosages of oleuropein were given to diabetic animals i.p
for 28 days. In this study, trace elements levels were evaluated by using
ICP-MS and MDA, SOD CAT levels were evaluated by using spectrophotometers
methods.

Trace elements levels were
significantly (p <0,05) decreased in diabetic rats liver but oleuropein was
significantly (p<0,05) increased trace element levels in this group.

In the diabetic group, serum blood glucose levels were significantly (p <0,05)  increased and STZ
increased t
otal oxidant status (TOS), malondialdehyde (MDA) in the liver, whereas it
decreased superoxide dismutase (SOD) and catalase (CAT) and total antioxidant
capacity (TAS) in diabetic rats liver.







As a consequence, oleuropein
treatment shows an antioxidant and in diabetes by reducing oxidative stress and
it was increased trace element levels.

References

  • 1. Omagari K, Kato S, Tsuneyama K, Hatta H, Sato M, Hamasaki M & Tamaru S. Olive leaf extract prevents spontaneous occurrence of non-alcoholic steatohepatitis in SHR/NDmcr-cp rats. Pathology, 2010;42(1):66-72.
  • 2. Poudyal H, Campbell F & Brown L. Olive leaf extract attenuates cardiac, hepatic, and metabolic changes in high carbohydrate–, high fat–fed rats. The Journal of Nutrition, 2010;140(5):946-953.
  • 3. Fki I, Bouaziz M, Sahnoun Z & Sayadi S. Hypocholesterolemic effects of phenolicrich extracts of Chemlali olive cultivar in rats fed a cholesterol-rich diet. Bioorganic & Medicinal Chemistry, 2005;13(18):5362-5370.
  • 4. Lemai H, Bouaziz M, Fki I, El Feki A, Sayadi S. Hypolipidimic and antioxidant activities of oleuropein and its hydrolysis derivative-rich extracts from Chemlali olive leaves. Chemico-Biological Interactions, 2008;176(2–3):88-98
  • 5. Park S, Choi Y, Um SJ, Yoon SK & Park T. Oleuropein attenuates hepatic steatosis induced by high-fat diet in mice. Journal of Hepatology, 2011;54(5):984-993.
  • 6. Walter WM, Fleming HP & Etchells JL. Preparation of antimicrobial compounds by hydrolysis of oleuropein from green olives. Applied Microbiology, 1973;26(5): 773-776.
  • 7. Sirianni R, Chimento A, De Luca A, Casaburi I, Rizza P, Onofrio A & Pezzi V. Oleuropein and hydroxytyrosol inhibit MCF‐7 breast cancer cell proliferation interfering with ERK1/2 activation. Molecular Nutrition&Food Research, 2010;54(6):833-840.
  • 8. Odiatou EM, Skaltsounis AL & Constantinou AI. Identification of the factors responsible for the in vitro pro-oxidant and cytotoxic activities of the olive polyphenols oleuropein and hydroxytyrosol. Cancer Letters, 2013;330(1):113- 121.
  • 9. Andreadou I, Iliodromitis EK, Mikros E, Constantinou M, Agalias A, Magiatis P & Kremastinos DT. The olive constituent oleuropein exhibits anti-ischemic, antioxidative, and hypolipidemic effects in anesthetized rabbits. The Journal of Nutrition, 2006;136(8):2213-2219.
  • 10. Somova LI, Shode FO, Ramnanan P & Nadar A. Antihypertensive, antiatherosclerotic and antioxidant activity of triterpenoids isolated from Olea europaea, subspecies africana leaves. Journal of Ethnopharmacology, 2003;84(2- 3):299-305.
  • 11. Visioli F & Galli C. Biological properties of olive oil phytochemicals. Critical Reviews in Food Science and Nutrition, 2002;42(3):209-221.
  • 12. Goulas V, Exarchou V, Troganis AN, Psomiadou E, Fotsis T, Briasoulis E & Gerothanassis IP. Phytochemicals in olive‐leaf extracts and their antiproliferative activity against cancer and endothelial cells. Molecular Nutrition & Food Research, 2009;53(5):600-608.
  • 13. Hamdi HK & Castellon R. Oleuropein, a non-toxic olive iridoid, is an anti-tumor agent and cytoskeleton disruptor. Biochemical and Biophysical Research Communications, 2005;334(3):769-778.
  • 14. Ucar SK, Coker M, Sözmen E, Simsek DG & Darcan S. An association among iron, copper, zinc, and selenium, and antioxidative status in dyslipidemic pediatric patients with glycogen storage disease types IA and III. Journal of Trace Elements in Medicine and Biology, 2010;24(1):42-45.
  • 15. Nazıroğlu M, Güler M, Özgül C, Saydam G, Küçükayaz M & Sözbir E. Apple cider vinegar modulates serum lipid profile, erythrocyte, kidney, and liver membrane oxidative stress in ovariectomized mice fed high cholesterol. The Journal of Membrane Biology, 2014;247(8):667-673.
  • 16. Eaton JW & Qian M. Interactions of copper with glycated proteins: possible involvement in the etiology of diabetic neuropathy. Molecular and Cellular Biochemistry, 2002;234(1):135-142.
  • 17. Ahmadpour SH, Sadeghi Y, Hami J & Haghir H. Effect of insulin and ascorbic acid therapy on plasma Cu level in stereptozotocin-induced diabetic rats. J Birjand Univ Med Sci, 2008;15(3):26-32.
  • 18. Sakamoto K, Brownlee M (2003) Type 1 Diabetes Biochemistry and Molecular Biology of Diabetic Complications. Nephrourol Mon. 375-92
  • 19. Guimarães MM, Martins Silva Carvalho AC & Silva MS. Chromium nicotinate has no effect on insulin sensitivity, glycemic control, and lipid profile in subjects with type 2 diabetes. Journal of the American College of Nutrition, 2013;32(4):243-
  • 20. Furman B. Streptozotocin‐Induced Diabetic Models in Mice and Rats. Current protocols Pharnacology, 2015;1-5.
  • 21. Karabag-Coban F, Bulduk I, Liman R, Ince S, Cigerci I & Hazman O. Oleuropein alleviates malathion-induced oxidative stress and DNA damage in rats. Toxicological & Environmental Chemistry, 2016;98(1):101-108.
  • 22. Ohkawa H, Ohishi N & Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 1979;95(2):351-358.
  • 23. Sun YI, Oberley LW & Li Y. A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 1988;34(3):497-500.
  • 24. Aebi H. Catalase in Vitro. Methods in Enzymology, 1984;10):121-126.
  • 25. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry, 2004;37(4):277-285.
  • 26. Erel O. A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry, 2005;38(12):1103-1111.
  • 27. Viktorínová A, Tošerová E, Križko M & Ďuračková Z. Altered metabolism of copper, zinc, and magnesium is associated with increased levels of glycated hemoglobin in patients with diabetes mellitus. Metabolism-Clinical and Experimental, 2009;58(10):1477-1482.
  • 28. Al-Timimi DJ & Mahmoud HM. Evaluation of zinc status among patients with diabetes mellitus. Duhok Med. J, 2011;5(2):1-10.
  • 29. Capdor J, Foster M, Petocz P & Samman S. Zinc and glycemic control: a metaanalysis of randomised placebo controlled supplementation trials in humans. Journal of Trace Elements in Medicine and Biology, 2013;27(2):137-142.
  • 30. Soinio M, Marniemi J, Laakso M, Pyörälä K, Lehto S & Rönnemaa T. Serum zinc level and coronary heart disease events in patients with type 2 diabetes. Diabetes Care, 2007;30(3):523-528.
  • 31. Govindan K., Rajendran S., Sarkis J., Murugesan P Multi criteria decision making approaches for green supplier evaluation and selection: a literature review, 2015; (98) 66- 83.
  • 32. Bahijri SM. Effect of chromium supplementation on glucose tolerance and lipid profile. Saudi Medical Journal, 2000;21(1):45-50.
  • 33. Shahbah D, Hassan T, Morsy S, El Saadany H, Fathy M, Al-Ghobashy A & El Gebaly S. Oral magnesium supplementation improves glycemic control and lipid profile in children with type 1 diabetes and hypomagnesaemia. Medicine, 2017;96(11):6352.
  • 34. Sivrikaya A, Bicer M, Akil M, Baltaci AK & Mogulkoc R. Effects of zinc supplementation on the element distribution in kidney tissue of diabetic rats subjected to acute swimming. Biological Trace Element Research, 2012;147(1-3): 195-199.
  • 35. Bicer M, Akil M, Sivrikaya A, Kara E, Baltaci AK & Mogulkoc R. Effect of zinc supplementation on the distribution of various elements in the serum of diabetic rats subjected to an acute swimming exercise. Journal of Physiology and Biochemistry, 2011;67(4):511.
  • 36. Lynch CJ, Patson BJ, Goodman SA, Trapolsi D & Kimball SR. Zinc stimulates the activity of the insulin-and nutrient-regulated protein kinase mTOR. American Journal of Physiology-Endocrinology and Metabolism, 2001;281(1): E25-E34.
  • 37. Tapiero H & Tew KD. Trace elements in human physiology and pathology: zinc and metallothioneins. Biomedicine&Pharmacotherapy, 2003;57(9):399-411.
  • 38. Jemai H, El Feki A and Sayadi S. Toward a High Yield Recovery of Antioxidants and Purified Hydroxytyrosol from Olive Mill Wastewaters. J. Agric. Food Chem, 2009;57:8798-8804.
  • 39. Murotomi K, Umeno A, Yasunaga M, Shichiri M, Ishida N, Koike T, Matsuo T, Abe H, Yoshida Y, and Nakajima Y. Antioxidative and Antidiabetic Effects of Natural Polyphenols and Isoflavones. J. Agric. Food Chem, 2015;63,6715-6722.
There are 39 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Funda Karabağ Çoban

Ali Osman Albayrak This is me

Publication Date June 28, 2018
Submission Date May 8, 2018
Acceptance Date June 11, 2018
Published in Issue Year 2018 Volume: 2 Issue: 1

Cite

APA Karabağ Çoban, F., & Albayrak, A. O. (2018). Effect of oleuropein on element distributions in liver of diabetic rats. Uşak Üniversitesi Fen Ve Doğa Bilimleri Dergisi, 2(1), 1-9.
AMA Karabağ Çoban F, Albayrak AO. Effect of oleuropein on element distributions in liver of diabetic rats. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi. June 2018;2(1):1-9.
Chicago Karabağ Çoban, Funda, and Ali Osman Albayrak. “Effect of Oleuropein on Element Distributions in Liver of Diabetic Rats”. Uşak Üniversitesi Fen Ve Doğa Bilimleri Dergisi 2, no. 1 (June 2018): 1-9.
EndNote Karabağ Çoban F, Albayrak AO (June 1, 2018) Effect of oleuropein on element distributions in liver of diabetic rats. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi 2 1 1–9.
IEEE F. Karabağ Çoban and A. O. Albayrak, “Effect of oleuropein on element distributions in liver of diabetic rats”, Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi, vol. 2, no. 1, pp. 1–9, 2018.
ISNAD Karabağ Çoban, Funda - Albayrak, Ali Osman. “Effect of Oleuropein on Element Distributions in Liver of Diabetic Rats”. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi 2/1 (June 2018), 1-9.
JAMA Karabağ Çoban F, Albayrak AO. Effect of oleuropein on element distributions in liver of diabetic rats. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi. 2018;2:1–9.
MLA Karabağ Çoban, Funda and Ali Osman Albayrak. “Effect of Oleuropein on Element Distributions in Liver of Diabetic Rats”. Uşak Üniversitesi Fen Ve Doğa Bilimleri Dergisi, vol. 2, no. 1, 2018, pp. 1-9.
Vancouver Karabağ Çoban F, Albayrak AO. Effect of oleuropein on element distributions in liver of diabetic rats. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi. 2018;2(1):1-9.