Review
BibTex RIS Cite

Kendi Gücünü Sağlayan Giyilebilir Elektronik Teknolojilerde Kullanılan Esnek Güneş Hücreler

Year 2022, Volume: 6 Issue: 1, 22 - 33, 28.06.2022
https://doi.org/10.47137/usufedbid.1050648

Abstract

Enerji teknolojik ve ekonomik kalkınma için önemli bir faktördür. Artan çevre bilinciyle birlikte elektronik cihazların hızlı gelişiminin neden olduğu büyük enerji tüketimi, yeşil ve yenilenebilir enerjiyi üretmek ve depolamak için yeni teknoloji gereksinimlerini arttırmıştır. Yenilenebilir enerji kaynakları arasında güneş enerjisi gün geçtikçe önem kazanmaktadır. Çünkü güneş enerjisi dünyadaki en bol, sürdürülebilir ve en temiz enerjidir. Işıktan elektrik üretim teknolojisinin sürekli gelişmesiyle birlikte, güneş enerjisinin diğer konvansiyonel enerjiler içindeki payı gittikçe artmakta ve fosil yakıtlara alternatif haline gelmektedir. Geliştirilen yeni teknolojiler ile güneş enerjisi değişik alanlarda kullanılmaktadır. Bu bağlamda, kendi gücünü sağlayan enerji teknolojisi, elektronik cihazların harici güç kaynağı olmadan sürekli çalışmasını sağlayabildiğinden, gelecekteki giyilebilir elektronikler için oldukça umut vericidir. Günümüzde farklı tipteki esnek güneş hücreleri (EGH’ler) kullanılarak kendi gücünü sağlayan giyilebilir elektronik teknolojiler geliştirilmektedir. Giyilebilir elektronikler son yıllarda büyük ilgi görmekte ve hızlı bir büyüme yaşamaktadır. Bu teknolojiler daha çok eğlence, akıllı izleme, kişisel sağlık ve egzersiz kontrolü amacıyla kullanılmaktadır Bu çalışmada, esnek güneş hücreleri ve bu hücreler kullanılarak geliştirilen kendi gücünü sağlayan giyilebilir elektronik teknolojiler özetlendi. Bu bağlamda, öncelikle, esnek silikon güneş hücreleri (ESGH'ler), esnek perovskit güneş hücreleri (EPGH'ler), esnek organik güneş hücreleri (EOGH 'ler) ve esnek boya duyarlı güneş hücreleri (EBDGH 'ler) ele alındı. Daha sonra esnek güneş hücrelere entegre kendi gücünü sağlayan giyilebilir enerji teknolojilerinden ter izleme, hareket izleme, giyilebilir kumaş, nabız izleme, gaz sensörü ve giyilebilir ekran sistemleri tanıtıldı. Son olarak giyilebilir teknolojilerin ve EGH’lerin önündeki zorluklar ve çözüm yolları ile gelecekteki durumları ile ilgili öngörüler sunuldu.

References

  • Phuangpornpitak N, Kumar S. PV hybrid systems for rural electrification in Thailand. Renew Sustain Energy Rev. 2007;11(7):1530-1543.
  • Ahmad L, Khordehgah N, Malinauskaite J, Jouhara H. Recent advances and applications of solar photovoltaics and thermal technologies. Energy. 2020;207:118254. Elsevier Ltd,
  • Tripathy M, Sadhu PK, Panda SK. A critical review on building integrated photovoltaic products and their applications. Renew Sustain Energy Rev. 2016;61:451-465. Elsevier,
  • Pillai U. Drivers of cost reduction in solar photovoltaics. Energy Econ. 2015;50:286-293. Elsevier B.V.,
  • Zhao J, Zha J, Zeng Z, Tan C. Recent advances in wearable self-powered energy systems based on flexible energy storage devices integrated with flexible solar cells. J Mater Chem A. 2021;9(35):18887-18905. Royal Society of Chemistry,
  • Lund PD, Halme J, Hashmi G, Asghar I, Miettunen K. Flexible and Printed Electronics TOPICAL REVIEW Application of dye-sensitized and perovskite solar cells on flexible substrates. Published online 2018.
  • Weerasinghe HC, Huang F, Cheng YB. Fabrication of flexible dye sensitized solar cells on plastic substrates. Nano Energy. 2013;2(2):174-189. Elsevier,
  • Lin Y, Jin Y, Dong S, et al. Printed Nonfullerene Organic Solar Cells with the Highest Efficiency of 9.5%. Adv Energy Mater. 2018;8(13).
  • Yugis AR, Mansa RF, Sipaut CS. Review on metallic and plastic flexible dye sensitized solar cell. IOP Conf Ser Mater Sci Eng. 2015;78(1).
  • Jokic P, Magno M. Powering smart wearable systems with flexible solar energy harvesting. Proc - IEEE Int Symp Circuits Syst. Published online 2017.
  • Ichikawa Y, Yoshida T, Hama T, Sakai H, Harashima K. Production technology for amorphous silicon-based flexible solar cells. Sol Energy Mater Sol Cells. 2001;66(1-4):107-115.
  • Lee SM, Biswas R, Li W, Kang D, Chan L, Yoon J. Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics. ACS Nano. 2014;8(10):10507-10516.
  • Kim S, Quy H Van, Bark CW. Photovoltaic technologies for flexible solar cells: beyond silicon. Mater Today Energy. 2021;19:100583. Elsevier Ltd,
  • Li Q, Balilonda A, Ali A, et al. Flexible Solar Yarns with 15.7% Power Conversion Efficiency, Based on Electrospun Perovskite Composite Nanofibers. Sol RRL. 2020;4(9):1-12.
  • Kaltenbrunner M, White MS, Głowacki ED, et al. Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun. 2012;3.
  • Yun HG, Bae BS, Kang MG. A simple and highly efficient method for surface treatment of Ti substrates for use in dye-sensitized solar cells. Adv Energy Mater. 2011;1(3):337-342.
  • Wen Z, Yeh MH, Guo H, et al. Self-powered textile for Wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci Adv. 2016;2(10).
  • Tai LC, Gao W, Chao M, et al. Methylxanthine Drug Monitoring with Wearable Sweat Sensors. Adv Mater. 2018;30(23).
  • Zhao J, Lin Y, Wu J, et al. A Fully Integrated and Self-Powered Smartwatch for Continuous Sweat Glucose Monitoring. ACS Sensors. 2019;4(7):1925-1933.
  • Li C, Cong S, Tian Z, et al. Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors. Nano Energy. 2019;60(February):247-256. Elsevier Ltd,
  • Yang Z, Deng J, Sun X, Li H, Peng H. Stretchable, wearable dye-sensitized solar cells. Adv Mater. 2014;26(17):2643-2647.
  • Rajendran V, Mohan AMV, Jayaraman M, Nakagawa T. All-printed, interdigitated, freestanding serpentine interconnects based flexible solid state supercapacitor for self powered wearable electronics. Nano Energy. 2019;65(August):104055. Elsevier Ltd,
  • Mayr T, Abel T, Enko B, et al. A planar waveguide optical sensor employing simple light coupling. Analyst. 2009;134(8):1544-1547.
  • Tajima R, Member SID. Truly wearable display comprised of a fl exible battery , fl exible display panel , and fl exible printed circuit Bend-fix. Published online 2015:237-244.
  • Hashemi SA, Ramakrishna S, Aberle AG. Recent progress in flexible-wearable solar cells for self-powered electronic devices. Energy Environ Sci. 2020;13(3):685-743. Royal Society of Chemistry,

Flexible Solar Cells Used in Self-Powered Wearable Electronic Technologies

Year 2022, Volume: 6 Issue: 1, 22 - 33, 28.06.2022
https://doi.org/10.47137/usufedbid.1050648

Abstract

Energy is an important factor for technological and economic development. The huge energy consumption caused by the rapid development of electronic devices along with the increasing environmental awareness has increased the new technology requirements to produce and store green and renewable energy. Among the renewable energy sources, solar energy is gaining importance day by day. Because solar energy is the most abundant, sustainable and cleanest energy in the world. With the continuous development of electricity generation technology from light, the share of solar energy in other conventional energies is increasing and it is becoming an alternative to fossil fuels. With the new technologies developed, solar energy is used in different fields. In this context, self-powered energy technology is highly promising for future wearable electronics, as it can ensure continuous operation of electronic devices without external power supply. Today, self-powered wearable electronic technologies are being developed using different types of flexible solar cells (EGHs). Wearable electronics have attracted great interest in recent years and are experiencing rapid growth. These technologies are mostly used for entertainment, smart monitoring, personal health and exercise control. In this study, flexible solar cells and self-powered wearable electronic technologies developed using these cells are summarized. In this context, first of all, flexible silicon solar cells (ESGHs), flexible perovskite solar cells (EPGHs), flexible organic solar cells (EOGHs), and flexible dye-sensitized solar cells (EBDGHs) were discussed. Later, sweat monitoring, motion monitoring, wearable fabric, heart rate monitoring, gas sensor and wearable display systems, which are self-powered wearable energy technologies integrated into flexible solar cells, were introduced. Finally, the challenges in front of wearable technologies and EGHs, solutions and predictions about their future situations were presented.

References

  • Phuangpornpitak N, Kumar S. PV hybrid systems for rural electrification in Thailand. Renew Sustain Energy Rev. 2007;11(7):1530-1543.
  • Ahmad L, Khordehgah N, Malinauskaite J, Jouhara H. Recent advances and applications of solar photovoltaics and thermal technologies. Energy. 2020;207:118254. Elsevier Ltd,
  • Tripathy M, Sadhu PK, Panda SK. A critical review on building integrated photovoltaic products and their applications. Renew Sustain Energy Rev. 2016;61:451-465. Elsevier,
  • Pillai U. Drivers of cost reduction in solar photovoltaics. Energy Econ. 2015;50:286-293. Elsevier B.V.,
  • Zhao J, Zha J, Zeng Z, Tan C. Recent advances in wearable self-powered energy systems based on flexible energy storage devices integrated with flexible solar cells. J Mater Chem A. 2021;9(35):18887-18905. Royal Society of Chemistry,
  • Lund PD, Halme J, Hashmi G, Asghar I, Miettunen K. Flexible and Printed Electronics TOPICAL REVIEW Application of dye-sensitized and perovskite solar cells on flexible substrates. Published online 2018.
  • Weerasinghe HC, Huang F, Cheng YB. Fabrication of flexible dye sensitized solar cells on plastic substrates. Nano Energy. 2013;2(2):174-189. Elsevier,
  • Lin Y, Jin Y, Dong S, et al. Printed Nonfullerene Organic Solar Cells with the Highest Efficiency of 9.5%. Adv Energy Mater. 2018;8(13).
  • Yugis AR, Mansa RF, Sipaut CS. Review on metallic and plastic flexible dye sensitized solar cell. IOP Conf Ser Mater Sci Eng. 2015;78(1).
  • Jokic P, Magno M. Powering smart wearable systems with flexible solar energy harvesting. Proc - IEEE Int Symp Circuits Syst. Published online 2017.
  • Ichikawa Y, Yoshida T, Hama T, Sakai H, Harashima K. Production technology for amorphous silicon-based flexible solar cells. Sol Energy Mater Sol Cells. 2001;66(1-4):107-115.
  • Lee SM, Biswas R, Li W, Kang D, Chan L, Yoon J. Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics. ACS Nano. 2014;8(10):10507-10516.
  • Kim S, Quy H Van, Bark CW. Photovoltaic technologies for flexible solar cells: beyond silicon. Mater Today Energy. 2021;19:100583. Elsevier Ltd,
  • Li Q, Balilonda A, Ali A, et al. Flexible Solar Yarns with 15.7% Power Conversion Efficiency, Based on Electrospun Perovskite Composite Nanofibers. Sol RRL. 2020;4(9):1-12.
  • Kaltenbrunner M, White MS, Głowacki ED, et al. Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun. 2012;3.
  • Yun HG, Bae BS, Kang MG. A simple and highly efficient method for surface treatment of Ti substrates for use in dye-sensitized solar cells. Adv Energy Mater. 2011;1(3):337-342.
  • Wen Z, Yeh MH, Guo H, et al. Self-powered textile for Wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci Adv. 2016;2(10).
  • Tai LC, Gao W, Chao M, et al. Methylxanthine Drug Monitoring with Wearable Sweat Sensors. Adv Mater. 2018;30(23).
  • Zhao J, Lin Y, Wu J, et al. A Fully Integrated and Self-Powered Smartwatch for Continuous Sweat Glucose Monitoring. ACS Sensors. 2019;4(7):1925-1933.
  • Li C, Cong S, Tian Z, et al. Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors. Nano Energy. 2019;60(February):247-256. Elsevier Ltd,
  • Yang Z, Deng J, Sun X, Li H, Peng H. Stretchable, wearable dye-sensitized solar cells. Adv Mater. 2014;26(17):2643-2647.
  • Rajendran V, Mohan AMV, Jayaraman M, Nakagawa T. All-printed, interdigitated, freestanding serpentine interconnects based flexible solid state supercapacitor for self powered wearable electronics. Nano Energy. 2019;65(August):104055. Elsevier Ltd,
  • Mayr T, Abel T, Enko B, et al. A planar waveguide optical sensor employing simple light coupling. Analyst. 2009;134(8):1544-1547.
  • Tajima R, Member SID. Truly wearable display comprised of a fl exible battery , fl exible display panel , and fl exible printed circuit Bend-fix. Published online 2015:237-244.
  • Hashemi SA, Ramakrishna S, Aberle AG. Recent progress in flexible-wearable solar cells for self-powered electronic devices. Energy Environ Sci. 2020;13(3):685-743. Royal Society of Chemistry,
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Review Article
Authors

Mesut Ekmekçi 0000-0001-7170-0010

Publication Date June 28, 2022
Submission Date December 29, 2021
Acceptance Date March 21, 2022
Published in Issue Year 2022 Volume: 6 Issue: 1

Cite

APA Ekmekçi, M. (2022). Kendi Gücünü Sağlayan Giyilebilir Elektronik Teknolojilerde Kullanılan Esnek Güneş Hücreler. Uşak Üniversitesi Fen Ve Doğa Bilimleri Dergisi, 6(1), 22-33. https://doi.org/10.47137/usufedbid.1050648
AMA Ekmekçi M. Kendi Gücünü Sağlayan Giyilebilir Elektronik Teknolojilerde Kullanılan Esnek Güneş Hücreler. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi. June 2022;6(1):22-33. doi:10.47137/usufedbid.1050648
Chicago Ekmekçi, Mesut. “Kendi Gücünü Sağlayan Giyilebilir Elektronik Teknolojilerde Kullanılan Esnek Güneş Hücreler”. Uşak Üniversitesi Fen Ve Doğa Bilimleri Dergisi 6, no. 1 (June 2022): 22-33. https://doi.org/10.47137/usufedbid.1050648.
EndNote Ekmekçi M (June 1, 2022) Kendi Gücünü Sağlayan Giyilebilir Elektronik Teknolojilerde Kullanılan Esnek Güneş Hücreler. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi 6 1 22–33.
IEEE M. Ekmekçi, “Kendi Gücünü Sağlayan Giyilebilir Elektronik Teknolojilerde Kullanılan Esnek Güneş Hücreler”, Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi, vol. 6, no. 1, pp. 22–33, 2022, doi: 10.47137/usufedbid.1050648.
ISNAD Ekmekçi, Mesut. “Kendi Gücünü Sağlayan Giyilebilir Elektronik Teknolojilerde Kullanılan Esnek Güneş Hücreler”. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi 6/1 (June 2022), 22-33. https://doi.org/10.47137/usufedbid.1050648.
JAMA Ekmekçi M. Kendi Gücünü Sağlayan Giyilebilir Elektronik Teknolojilerde Kullanılan Esnek Güneş Hücreler. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi. 2022;6:22–33.
MLA Ekmekçi, Mesut. “Kendi Gücünü Sağlayan Giyilebilir Elektronik Teknolojilerde Kullanılan Esnek Güneş Hücreler”. Uşak Üniversitesi Fen Ve Doğa Bilimleri Dergisi, vol. 6, no. 1, 2022, pp. 22-33, doi:10.47137/usufedbid.1050648.
Vancouver Ekmekçi M. Kendi Gücünü Sağlayan Giyilebilir Elektronik Teknolojilerde Kullanılan Esnek Güneş Hücreler. Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi. 2022;6(1):22-33.