Research Article
BibTex RIS Cite

INVESTIGATION OF PROCESS PARAMETERS OF DIRECT METAL LASER SINTERING (DMLS) BENCH FOR RESEARCH AND DEVELOPMENT PURPOSE

Year 2017, Volume: 9 Issue: 3, 15 - 32, 30.12.2017

Abstract

In 1970s rapid prototyping systems, aimed at producing the samples of design. Since the beginning of 1980s
people have started to talk manufacturing real part instead of sampling and they called the method of
manufacturing as additive manufacturing. In 1990s with the development of additive manufacturing systems it
has been started to manufacture direct end use functional part from metal and ceramic. Nowadays, with SLS
machines by using various metal powders the part which has so complex geometry that cannot be manufactured
by using conventional methods are able to be manufactured in many fields. DMLS bench which has first been
manufactured in our country and which has been designed within the project supported by ministry of
development was used in this study. Many experiments have been carried out aiming at determing bench process
parameters by using 316L stainless steel powder. Single line scan, multi line scan and single layer scan were
tried by changing the laser power between the range of 50W and 175W and scanning speed between the range of
5mm/s and 1000mm/s. Single line was achieved with a proper merging; the laser power was 100-175W and
scanning speed was 85-100mm/s. Fusion was observed when the laser power was 100W, 125W and scanning speed was 100mm/s,200mm/s. More successful layer formation was observed when the laser power was 100W,
scanning speed was 400mm/s and scanning distance 25µm

References

  • Baydar, M.L., Kayacan, M.C., Yorgancıgil, H., Varol R., Eroğlu, E., Kayacan, R., Bekçi, U., Çolak, O., Taylan, F., İlkaz, S., Sofu, M.M., Hamamcı, E., Salman, Ö., (2005). Lazer Sinterleme Yöntemiyle Metal Tozundan Hızlı Prototipleme Yapan Cihaz Tasarımı Ve İmalatı. Proje No: 2003K121020/11, 180s.
  • Calignano, F., Manfredi, D., Ambrosio, E.P., Iuliano, L., Fino, P., (2013). Influence Of Process Parameters On Surface Roughness of Aluminum Parts Produced by DMLS. Int. J. Adv. Manuf. Technol., 67, 42743-2751.
  • Casalino, G., Campanelli, L., Contuzzi, N., Ludovico, A.D., (2015). Experimental Investigation And Statistical Optimisation Of The Selective Laser Melting Process Of A Maraging Steel. Optics&Laser Technology, 65, 151-158.
  • Catholic University of Leuven (CUL), http://www.mech.kuleuven.be/pp/facilities/sms2, 1425. (2014.12.18).
  • Çelik, İ., Karakoç, F., Çakır, M. C., Duysak, A. (2013). Hızlı Prototipleme Teknolojileri ve Uygulama Alanları. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 31, 53-69.
  • Chatterjee, N., Kumar, S., Saha, P., Mishra, P.K., Choudhury, A.R., (2003). An Experimental Design Approach To Selective Laser Sintering Of Low Carbon Steel. Department of Mechanical Engineering, Indian Institute of Technology, India.
  • CustomPartNet, Inc., http://www.custompartnet.com/wu/additive-fabrication (2014.03.20) Das, S., (2003). Physical Aspects of Process Control in Selective Laser Sintering of Metals. Advanced Engineering Materials, 5,10, 701-711.
  • Deckard, C., (1989). Method And Apparatus For Producing Parts By Selective Sintering. US Patent 4,863,538.
  • Delgado, J., Ciurana, J., Rodríguez, C.A., (2012). Influence Of Process Parameters On Part Quality And Mechanical Properties For DMLS And SLM With Iron-Based Materials. Int. J. Adv. Manuf. Technol., 60, 601-610.
  • Elsen, M.V., (2007). Complexity of Selective Laser Melting: A New Optimization Approach. Catholic University Leuven, Faculty Of Engineering, Department of Mechanical Engineering, Ph.D. Thesis, 185p, Belgium.
  • Giannatsis, J., Dedoussis, V. (2009). Additive Fabrication Technologies Applied To Medicine And Health Care: A Review, Int. J. Adv. Manuf. Technol., 40, 116-127.
  • Gusarov, A.V., Yadroitsev, I., Bertrand, Ph., Smurov, I. I., (2007). Heat Transfer Modelling and Stability Analysis of Selective Laser Melting. ELSEVIER, Applied Surface Science, 254, 975-979.
  • Hauser, C., (2003). Selective Laser Sintering Of A Stainless Steel Powder. University Of Leeds, School of Mechanical Engineering, Ph.D. Thesis, 279p, UK.
  • Jia, Q., Gu, D., (2014). Selective Laser Melting Additive Manufacturing Of Inconel 718 Superalloy Parts: Densification, Microstructure and Properties. Journal of Alloys and Compounds, 585, 713-721.
  • Joo, B.D., Jang, J.H., Lee, J.H., Son, Y.M., Moon, Y.H., (2010). Effect of Laser Parameters on Sintered Powder Morphology. J. Mater. Sci. Technol., 26(4), 375-378.
  • Kempen, K., Thijs, L., Yasa, E., Badrossamay, M., Verheecke, W., Kruth, J.-P., (2011). Process Optimization And Microstructural Analysis For Selective Laser Melting Of AlSi10Mg. Catholic University of Leuven, Departement of Mechanical Engineering, Belgium, 484-495.
  • King, D., Tansey, T., (2002). Alternative materials for rapid tooling. Journal of Materials Processing Technology, 121, 313–317.
  • Klocke, F., Wagner, C., Ader, C., (2003). Development Of An Integrated Model For Selective Metal Laser Sintering. Progress In Virtual Manufacturing Systems: Proceedings. 36th CIRP International Seminar on Manufacturing Systems, Saarland University, 03-05 June 2003, Saarbrücken, Germany.
  • Kruth, J.-P., B. Vandenbroucke, B., Van Vaerenbergh, J., Naert, I., (2005). Rapid Manufacturing of Dental Prostheses by means of Selective Laser Sintering/Melting. Proceedings of the AFPR, 4.
  • Laohaprapanon, A., Jeamwatthanachai, P., Wongcumchang, M., Chantarapanich, N., Chantaweroad, S., Sitthiseripratip, K., Wisutmethangoon, S., (2011). Optimal Scanning Condition of Selective Laser Melting Processing with Stainless Steel 316L Powder. Advanced Materials Research, 341-342, 816-820.
  • Li, R., Liu, J., Shi, Y., Wang, L., Jiang, W., (2012). Balling Behavior Of Stainless Steel And Nickel Powder During Selective Laser Melting Process. Int. J. Adv. Manuf. Technol., 59, 1025-1035.
  • Neğiş, E., (2014). http://www.turkcadcam.net/rapor/autofab/ (2014.09.09).
  • Partee, B., Hollister, S.J., Das, S., (2006). Selective Laser Sintering Process Optimization for Layered Manufacturing of CAPA® 6501 Polycaprolactone Bone Tissue Engineering Scaffolds. Journal of Manufacturing Science and Engineering (ASME), 128, 531-540. Senthilkumaran, K., Pandey, P.M., Rao, P.V.M., (2009). Influence Of Building Strategies On The Accuracy Of Parts In Selective Laser Sintering. Materials and Design, 30, 2946- 2954.
  • Shellabear, M., Nyrhilä, O., (2004). DMLS – Development History and State of the Art. LANE 2004 conference, Sept., Erlangen, Germany, 21-24.
  • SLM Solutions GmbH, (2011) http://www.slm-solutions.com/en/products/slmequipment/slm280-hl/, (2012.12.06).
  • Society of Manufacturing Engineers (SME), (1970).
  • http://www.sme.org/Tertiary.aspx?id=17485#sthash.gkpsIRmg.dpuf (2014.03.20). Stanch Stainless Steel Co. Ltd., http://www.stanch.com/stainless-steel-316L.htm, (2014.05.12).
  • Stratasys Ltd. (1989). http://www.stratasys.com (2014.10.19).
  • Wang, X.J., Zhang, L.C., Fang, M.H., Sercombe, T.B., (2014). The Effect Of Atmosphere On The Structure And Properties Of A Selective Laser Melted Al–12Si Alloy. Materials Science & Engineering A, 597, 370-375.
  • Wen, S.F., Yan, C.Z., Wei, Q.S., Zhang, L.C., Zhao, X., Zhu, W., Shi, Y.S., (2014). Investigation And Development Of Large-Scale Equipment And High Performance Materials For Powder Bed Laser Fusion Additive Manufacturing, Virtual and Physical Prototyping, 9,4, 213-223.
  • Yadroitsev, I., Bertrand, P., Smurov, I., (2007). Parametric Analysis Of The Selective Laser Melting Process. Applied Surface Science, 253, 8064-8069.
  • Yadroitsev, I., Gusarov, A., Yadroitsava, I., Smurov, I., (2010). Single Track Formation in Selective Laser Melting of Metal Powders. Journal of Materials Processing Technology, 210, 12, 1624-1631.
  • Yadroitsev, I., Yadroitsava, I., Bertrand, P., Smurov, I., (2012). Factor Analysis Of Selective Laser Melting Process Parameters And Geometrical Characteristics Of Synthesized Single Tracks. Rapid Prototyping Journal, 18, 3, 201-208.29. 3ddt, (2011).
  • http://www.3ddt.com.tr/en/content.php?sec=1&cat=1&scat=1&getDetail=57, (2012.12.06).

AR-GE AMAÇLI DOĞRUDAN METAL LAZER SİNTERLEME (DMLS) TEZGÂHI İŞLEM PARAMETRELERİNİN ARAŞTIRILMASI

Year 2017, Volume: 9 Issue: 3, 15 - 32, 30.12.2017

Abstract

Eklemeli imalat teknolojileri 1970 yıllarında, tasarımların numunelerini hızlıca imal etmeyi amaçlayan hızlı
prototipleme sistemleri ile başlanmıştır. 80’li yılların başından itibaren numune yerine gerçek parça imalata
gündeme gelmeye başlamış ve imalat yönteminin adı Eklemeli İmalat olarak ifade edilmiştir. 90’lı yıllarda da
eklemeli imalat sistemlerindeki gelişmelerle metal ve seramikten son kullanım amaçlı doğrudan fonksiyonel
parçalar imal etme denemelerine başlanmıştır. Günümüzde de Seçmeli Lazer Sinterleme/Ergitme (SLS/E)
makineleri ile birçok alanda çeşitli metal tozları kullanılarak klasik imalat yöntemleri ile imal edilemeyecek
kadar karmaşık geometride olan parçaların göreceli olarak çok hızlı bir şekilde imalatı yapılabilmektedir. Bu
çalışmada, Kalkınma bakanlığı destekli proje kapsamında tasarlanıp, ülkemizde ilk olarak imalatı yapılan,
Doğrudan Metal Lazer Sinterleme tezgâhı kullanılmıştır. Tezgâh işlem parametrelerini belirleme amaçlı 316L
paslanmaz çelik tozu kullanılarak; lazer gücü 50W-175W, tarama hızı 5mm/s-1000mm/s aralıklarında
değiştirilerek tekli çizgi tarama, çoklu çizgi tarama ve tek katman tarama halinde deneyler yapılmıştır. Lazer
gücünün 100-175W değerlerinde ve tarama hızının 85,100mm/s değerlerinde daha düzgün bir birleşme ile tekli
çizgi elde edilmiştir. Lazer gücünün 100W, 125W değerleri ile tarama hızının 100mm/s,200mm/s değerlerinde
kaynaşma görülmüştür. Lazer gücü 100W, tarama hızı 400mm/s ve tarama mesafesi 25µm değerlerinde iken
daha başarılı katman oluşumu gözlemlenmiştir.

References

  • Baydar, M.L., Kayacan, M.C., Yorgancıgil, H., Varol R., Eroğlu, E., Kayacan, R., Bekçi, U., Çolak, O., Taylan, F., İlkaz, S., Sofu, M.M., Hamamcı, E., Salman, Ö., (2005). Lazer Sinterleme Yöntemiyle Metal Tozundan Hızlı Prototipleme Yapan Cihaz Tasarımı Ve İmalatı. Proje No: 2003K121020/11, 180s.
  • Calignano, F., Manfredi, D., Ambrosio, E.P., Iuliano, L., Fino, P., (2013). Influence Of Process Parameters On Surface Roughness of Aluminum Parts Produced by DMLS. Int. J. Adv. Manuf. Technol., 67, 42743-2751.
  • Casalino, G., Campanelli, L., Contuzzi, N., Ludovico, A.D., (2015). Experimental Investigation And Statistical Optimisation Of The Selective Laser Melting Process Of A Maraging Steel. Optics&Laser Technology, 65, 151-158.
  • Catholic University of Leuven (CUL), http://www.mech.kuleuven.be/pp/facilities/sms2, 1425. (2014.12.18).
  • Çelik, İ., Karakoç, F., Çakır, M. C., Duysak, A. (2013). Hızlı Prototipleme Teknolojileri ve Uygulama Alanları. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 31, 53-69.
  • Chatterjee, N., Kumar, S., Saha, P., Mishra, P.K., Choudhury, A.R., (2003). An Experimental Design Approach To Selective Laser Sintering Of Low Carbon Steel. Department of Mechanical Engineering, Indian Institute of Technology, India.
  • CustomPartNet, Inc., http://www.custompartnet.com/wu/additive-fabrication (2014.03.20) Das, S., (2003). Physical Aspects of Process Control in Selective Laser Sintering of Metals. Advanced Engineering Materials, 5,10, 701-711.
  • Deckard, C., (1989). Method And Apparatus For Producing Parts By Selective Sintering. US Patent 4,863,538.
  • Delgado, J., Ciurana, J., Rodríguez, C.A., (2012). Influence Of Process Parameters On Part Quality And Mechanical Properties For DMLS And SLM With Iron-Based Materials. Int. J. Adv. Manuf. Technol., 60, 601-610.
  • Elsen, M.V., (2007). Complexity of Selective Laser Melting: A New Optimization Approach. Catholic University Leuven, Faculty Of Engineering, Department of Mechanical Engineering, Ph.D. Thesis, 185p, Belgium.
  • Giannatsis, J., Dedoussis, V. (2009). Additive Fabrication Technologies Applied To Medicine And Health Care: A Review, Int. J. Adv. Manuf. Technol., 40, 116-127.
  • Gusarov, A.V., Yadroitsev, I., Bertrand, Ph., Smurov, I. I., (2007). Heat Transfer Modelling and Stability Analysis of Selective Laser Melting. ELSEVIER, Applied Surface Science, 254, 975-979.
  • Hauser, C., (2003). Selective Laser Sintering Of A Stainless Steel Powder. University Of Leeds, School of Mechanical Engineering, Ph.D. Thesis, 279p, UK.
  • Jia, Q., Gu, D., (2014). Selective Laser Melting Additive Manufacturing Of Inconel 718 Superalloy Parts: Densification, Microstructure and Properties. Journal of Alloys and Compounds, 585, 713-721.
  • Joo, B.D., Jang, J.H., Lee, J.H., Son, Y.M., Moon, Y.H., (2010). Effect of Laser Parameters on Sintered Powder Morphology. J. Mater. Sci. Technol., 26(4), 375-378.
  • Kempen, K., Thijs, L., Yasa, E., Badrossamay, M., Verheecke, W., Kruth, J.-P., (2011). Process Optimization And Microstructural Analysis For Selective Laser Melting Of AlSi10Mg. Catholic University of Leuven, Departement of Mechanical Engineering, Belgium, 484-495.
  • King, D., Tansey, T., (2002). Alternative materials for rapid tooling. Journal of Materials Processing Technology, 121, 313–317.
  • Klocke, F., Wagner, C., Ader, C., (2003). Development Of An Integrated Model For Selective Metal Laser Sintering. Progress In Virtual Manufacturing Systems: Proceedings. 36th CIRP International Seminar on Manufacturing Systems, Saarland University, 03-05 June 2003, Saarbrücken, Germany.
  • Kruth, J.-P., B. Vandenbroucke, B., Van Vaerenbergh, J., Naert, I., (2005). Rapid Manufacturing of Dental Prostheses by means of Selective Laser Sintering/Melting. Proceedings of the AFPR, 4.
  • Laohaprapanon, A., Jeamwatthanachai, P., Wongcumchang, M., Chantarapanich, N., Chantaweroad, S., Sitthiseripratip, K., Wisutmethangoon, S., (2011). Optimal Scanning Condition of Selective Laser Melting Processing with Stainless Steel 316L Powder. Advanced Materials Research, 341-342, 816-820.
  • Li, R., Liu, J., Shi, Y., Wang, L., Jiang, W., (2012). Balling Behavior Of Stainless Steel And Nickel Powder During Selective Laser Melting Process. Int. J. Adv. Manuf. Technol., 59, 1025-1035.
  • Neğiş, E., (2014). http://www.turkcadcam.net/rapor/autofab/ (2014.09.09).
  • Partee, B., Hollister, S.J., Das, S., (2006). Selective Laser Sintering Process Optimization for Layered Manufacturing of CAPA® 6501 Polycaprolactone Bone Tissue Engineering Scaffolds. Journal of Manufacturing Science and Engineering (ASME), 128, 531-540. Senthilkumaran, K., Pandey, P.M., Rao, P.V.M., (2009). Influence Of Building Strategies On The Accuracy Of Parts In Selective Laser Sintering. Materials and Design, 30, 2946- 2954.
  • Shellabear, M., Nyrhilä, O., (2004). DMLS – Development History and State of the Art. LANE 2004 conference, Sept., Erlangen, Germany, 21-24.
  • SLM Solutions GmbH, (2011) http://www.slm-solutions.com/en/products/slmequipment/slm280-hl/, (2012.12.06).
  • Society of Manufacturing Engineers (SME), (1970).
  • http://www.sme.org/Tertiary.aspx?id=17485#sthash.gkpsIRmg.dpuf (2014.03.20). Stanch Stainless Steel Co. Ltd., http://www.stanch.com/stainless-steel-316L.htm, (2014.05.12).
  • Stratasys Ltd. (1989). http://www.stratasys.com (2014.10.19).
  • Wang, X.J., Zhang, L.C., Fang, M.H., Sercombe, T.B., (2014). The Effect Of Atmosphere On The Structure And Properties Of A Selective Laser Melted Al–12Si Alloy. Materials Science & Engineering A, 597, 370-375.
  • Wen, S.F., Yan, C.Z., Wei, Q.S., Zhang, L.C., Zhao, X., Zhu, W., Shi, Y.S., (2014). Investigation And Development Of Large-Scale Equipment And High Performance Materials For Powder Bed Laser Fusion Additive Manufacturing, Virtual and Physical Prototyping, 9,4, 213-223.
  • Yadroitsev, I., Bertrand, P., Smurov, I., (2007). Parametric Analysis Of The Selective Laser Melting Process. Applied Surface Science, 253, 8064-8069.
  • Yadroitsev, I., Gusarov, A., Yadroitsava, I., Smurov, I., (2010). Single Track Formation in Selective Laser Melting of Metal Powders. Journal of Materials Processing Technology, 210, 12, 1624-1631.
  • Yadroitsev, I., Yadroitsava, I., Bertrand, P., Smurov, I., (2012). Factor Analysis Of Selective Laser Melting Process Parameters And Geometrical Characteristics Of Synthesized Single Tracks. Rapid Prototyping Journal, 18, 3, 201-208.29. 3ddt, (2011).
  • http://www.3ddt.com.tr/en/content.php?sec=1&cat=1&scat=1&getDetail=57, (2012.12.06).
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Articles
Authors

Burhan Duman

M. Cengiz Kayacan

Publication Date December 30, 2017
Published in Issue Year 2017 Volume: 9 Issue: 3

Cite

IEEE B. Duman and M. C. Kayacan, “AR-GE AMAÇLI DOĞRUDAN METAL LAZER SİNTERLEME (DMLS) TEZGÂHI İŞLEM PARAMETRELERİNİN ARAŞTIRILMASI”, UTBD, vol. 9, no. 3, pp. 15–32, 2017.

Dergi isminin Türkçe kısaltması "UTBD" ingilizce kısaltması "IJTS" şeklindedir.

Dergimizde yayınlanan makalelerin tüm bilimsel sorumluluğu yazar(lar)a aittir. Editör, yardımcı editör ve yayıncı dergide yayınlanan yazılar için herhangi bir sorumluluk kabul etmez.