Research Article
BibTex RIS Cite

Hydrothermal Treatment of Cellulose in Hot-Pressurized Water for the Production of Levulinic Acid

Year 2016, Volume: 21 Issue: 2, 415 - 434, 16.12.2016
https://doi.org/10.17482/uumfd.278150

Abstract

In this paper,
hot-pressurized water, operating above boiling point and below critical point
of water (374. 15 °C and 22.1 MPa), was used as a reaction medium for the decomposition
of cellulose to high-value chemicals, such levulinic acid. Effects of reaction
temperature, pressure, time, external oxidant type and concentration on the cellulose
degradation and product distribution were evaluated. In order to compare the
cellulose decomposition and yields of levulinic acid, experiments were
performed with and without addition of oxidizing agents (H2SO4
and H2O2). Analysis of the liqueur was monitored by HPLC
and GC-MS at different temperatures (150 - 280 °C), pressures (5-64 bars) and
reaction times (30 - 120 mins). Levulinic acid, 5-HMF and formic acid were
detected as main products. 73% cellulose conversion was achieved with 38%
levulinic acid yield when 125 mM of sulfuric acid was added to the reaction
medium at 200 °C for 60 min reaction time. 

References

  • Akiya, N. and Savage, P. E. (2002) Roles of water for chemical reactions in high-temperature water, Chem. Rev., 102, 2725-2750. doi: 10.1021/cr000668w
  • Asghari, F. S.; Yoshida H. (2010) Conversion of Japanese red pine wood (Pinus densiflora) into valuable chemicals under subcritical water conditions Carbohydr. Res., 345, 124-131. doi:10.1016/j.carres.2009.10.006
  • Bicker, M.; Endres, S.; Ott, L.; Vogel, H. (2005) Catalytical conversion of carbohydrates in subcritical water: A new chemical process for lactic acid production, J. Molecular Catal. A: Chem., 239, 151-157. doi:10.1016/j.molcata.2005.06.017
  • Cardenas-Toro, F. P.; Alcazar-Alay, S.C.; Forster-Carneiro, T.; Angela, M.; Meireles, A. (2014) Obtaining oligo- and monosaccharides from agroindustrial and agricultural residues using hydrothermal treatments, Food Chem., 4, 123-139. doi: 10.5923/j.fph.20140403.08
  • Chan, Y. H.; Yusup S.; Quitain A. T.; Uemura Y.; Sasaki M. (2014) Bio-oil production from oil palm biomass via subcritical and supercritical hydrothermal liquefaction, J. Supercritical Fluids, 95, 407-412. doi: 10.1016/j.supflu.2014.10.014
  • Dinjus E. and Kruse A (2004) Hot compressed water—a suitable and sustainable solvent and reaction medium?, J Phys.Condens. Mat. 16, 1161–1169, doi: 10.1088/0953-8984/16/14/026
  • Ehara, K. and Saka, S. (2005) Decomposition behavior of cellulose in supercritical water, subcritical water, and their combined treatments, J. Wood Sci., 51, 148-153. doi:10.1007/s10086-004-0626-2
  • Girisuta, B.; Janssen, L. P. B. M.; Heeres, H. J. (2006), A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid, Green Chem., 8, 701-709, doi: 10.1039/B518176C
  • Horvat, J.; Klaic, B.; Metelko, B.; Sunjic, V. (1985) Mechanism of levulinic acid formation, Tetrahedron Lett., 26, 17, 2111-2114. doi:10.1016/S0040-4039(00)94793-2
  • Kruse, A.; Henningsen, T.; Sinag, A.; Pfeiffer, J. (2003) Biomass gasification in supercritical water: Influence of the dry matter content and the formation of phenols, Ind. Eng. Chem. Res., 42, 3711-3717. doi: 10.1021/ie0209430
  • Kruse, A. and Gawlik A. (2003) Biomass conversion in water at 330-410 degrees C and 30-50 MPa. Identification of key compounds for indicating different chemical reaction pathways, Ind. & Eng. Chem. Res., 42, 2, 267-279. doi:10.1021/ie0202773
  • Pourali, O.; Asghari, F.S.; Yoshida, H. (2009) Sub-critical water treatment of rice bran to produce valuable materials, Food Chem., 115, 1-7. doi:10.1016/j.foodchem.2008.11.099
  • Promdej, C., and Matsumura Y. (2011), Temperature effect on hydrothermal decomposition of glucose in sub- and supercritical water, Ind. & Eng. Chem. Res. 50, 14, 8492-8497. doi: 10.1021/ie200298c
  • Rackemann, D. W., and Doherty W. O. S. (2011) The conversion of lignocellulosics to levulinic acid, Biofuels Bioproducts & Biorefining-Biofpr 5, 2, 198-214. doi: 10.1002/bbb.267
  • Saito, T.; Sasaki, M; Kawanabe, H.; Yoshino, Y.; Goto, M. (2009) Subcritical water reaction behavior of D-glucose as a model compound for biomass using two different continuous-flow reactor configurations, Chem. Eng. Technol., 32, 527-533. doi: 10.1002/ceat.200800537
  • Sasaki, M.; Yamamoto, K.; Goto, M. (2007) Reaction mechanism and pathway for the hydrothermal electrolysis of organic compounds, J. Mater. Cycles Waste Manage., 9, 40-46. doi: 10.1007/s10163-006-0170-9
  • Savage, P. E. (1999) Organic chemical reactions in supercritical water, Chem. Rev., 99, 603-621. doi: 10.1021/cr9700989
  • Rosatella, A.A.; Simeonov, S.P.; Fradea, R.F.M.; Carlos A. M. A. (2011) 5 – Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications, Green Chem., 13, 754-793. doi:10.1039/C0GC00401D
  • Takeuchi, Y.; Jin F. M.; Tohji K.; Enomoto H. (2008) Acid catalytic hydrothermal conversion of carbohydrate biomass into useful substances, J. Mat. Scien. 43, 7, 2472-2475. doi:10.1007/s10853-007-2021-z
  • Thompson, D. R. and Grethlein, H. E. (1979) Design and evaluation of a plug flow reactor for acid hydrolysis of cellulose, Ind. End. Chem. Prod. Res. Dev., 18, 166-169. doi:10.1021/i360071a003
  • Toor, S. S.; Rosendahl, S.; Rudolf, A. (2011) Hydrothermal liquefaction of biomass: A review of subcritical water technologies, Energy, 36, 2328-2342. doi:10.1016/j.energy.2011.03.013
  • Williams, P. T. and Onwudili, J. (2006) Subcritical and supercritical water gasification of cellulose, starch, glucose, and biomass waste, Energy & Fuels, 20, 1259-1265. doi: 10.1021/ef0503055
  • Yakaboylu, O.; G. Yapar; M. Recalde; J. Harinck; K. G. Smit; E. Martelli; W. de Jong. (2015) Supercritical water gasification of biomass: An integrated kinetic model for the prediction of product compounds, Industrial & Engineering Chemistry Research, 54, 33, 8100-8112. doi: 10.1021/acs.iecr.5b02019
  • Zeng, W.; Cheng, D.; Zhang, H.; Chen, F.; Zhan, X. (2010) Dehydration of glucose to levulinic acid over MFI-type zeolite in subcritical water at moderate conditions, Reac. Kinet. Mech. Cat., 100, 377-384. doi: 10.1007/s11144-010-0187-x

LEVULİNİK ASİT ÜRETİMİ İÇİN SELÜLOZUN SICAK-BASINÇLI SUDA HİDROTERMAL MUAMELESİ

Year 2016, Volume: 21 Issue: 2, 415 - 434, 16.12.2016
https://doi.org/10.17482/uumfd.278150

Abstract

Bu
makalede selülozu değerli kimyasallara, özellikle levulinik asite, parçalamak amacı
ile suyun kaynama noktası üzerinde ve kritik noktası altında (374. 15 °C ve
22.1 MPa) çalışılan sıcak-basınçlı su, reaksiyon ortamı olarak kullanılmıştır.
Reaksiyon sıcaklığı, basıncı, süresi, oksitleme ajanı çeşidi ve miktarının
selülozun parçalanmasına ve ürün dağılımına olan etkileri incelenmiştir. Selüloz
bozunma yüzdesi ve levulinik asit oluşum verimini kıyaslamak amacı ile deneyler
hem oksitleme ajanı (H2SO4 ve H2O2)
kullanarak, hem de kullanmayarak gerçekleştirilmiştir. Farklı sıcaklık (150 -
280 °C), basınç  (5-64 bar) ve tepkime
sürelerinde (30 - 120 dk.) oluşan likit ürünlerin analizleri HPLC ve GC-MS ile
gerçekleştirilmiştir. Ana sıvı ürünler olarak levulinik asit, 5-HMF ve formik
asit tespit edilmiştir. 125 mM sülfürik asit eklenerek 200 °C sıcaklıkta ve 60
dk boyunca gerçekleştirilen tepkime sonucunda, %73 selüloz bozunmuş ve %38 verimle
levulinik asit elde edilmiştir.

References

  • Akiya, N. and Savage, P. E. (2002) Roles of water for chemical reactions in high-temperature water, Chem. Rev., 102, 2725-2750. doi: 10.1021/cr000668w
  • Asghari, F. S.; Yoshida H. (2010) Conversion of Japanese red pine wood (Pinus densiflora) into valuable chemicals under subcritical water conditions Carbohydr. Res., 345, 124-131. doi:10.1016/j.carres.2009.10.006
  • Bicker, M.; Endres, S.; Ott, L.; Vogel, H. (2005) Catalytical conversion of carbohydrates in subcritical water: A new chemical process for lactic acid production, J. Molecular Catal. A: Chem., 239, 151-157. doi:10.1016/j.molcata.2005.06.017
  • Cardenas-Toro, F. P.; Alcazar-Alay, S.C.; Forster-Carneiro, T.; Angela, M.; Meireles, A. (2014) Obtaining oligo- and monosaccharides from agroindustrial and agricultural residues using hydrothermal treatments, Food Chem., 4, 123-139. doi: 10.5923/j.fph.20140403.08
  • Chan, Y. H.; Yusup S.; Quitain A. T.; Uemura Y.; Sasaki M. (2014) Bio-oil production from oil palm biomass via subcritical and supercritical hydrothermal liquefaction, J. Supercritical Fluids, 95, 407-412. doi: 10.1016/j.supflu.2014.10.014
  • Dinjus E. and Kruse A (2004) Hot compressed water—a suitable and sustainable solvent and reaction medium?, J Phys.Condens. Mat. 16, 1161–1169, doi: 10.1088/0953-8984/16/14/026
  • Ehara, K. and Saka, S. (2005) Decomposition behavior of cellulose in supercritical water, subcritical water, and their combined treatments, J. Wood Sci., 51, 148-153. doi:10.1007/s10086-004-0626-2
  • Girisuta, B.; Janssen, L. P. B. M.; Heeres, H. J. (2006), A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid, Green Chem., 8, 701-709, doi: 10.1039/B518176C
  • Horvat, J.; Klaic, B.; Metelko, B.; Sunjic, V. (1985) Mechanism of levulinic acid formation, Tetrahedron Lett., 26, 17, 2111-2114. doi:10.1016/S0040-4039(00)94793-2
  • Kruse, A.; Henningsen, T.; Sinag, A.; Pfeiffer, J. (2003) Biomass gasification in supercritical water: Influence of the dry matter content and the formation of phenols, Ind. Eng. Chem. Res., 42, 3711-3717. doi: 10.1021/ie0209430
  • Kruse, A. and Gawlik A. (2003) Biomass conversion in water at 330-410 degrees C and 30-50 MPa. Identification of key compounds for indicating different chemical reaction pathways, Ind. & Eng. Chem. Res., 42, 2, 267-279. doi:10.1021/ie0202773
  • Pourali, O.; Asghari, F.S.; Yoshida, H. (2009) Sub-critical water treatment of rice bran to produce valuable materials, Food Chem., 115, 1-7. doi:10.1016/j.foodchem.2008.11.099
  • Promdej, C., and Matsumura Y. (2011), Temperature effect on hydrothermal decomposition of glucose in sub- and supercritical water, Ind. & Eng. Chem. Res. 50, 14, 8492-8497. doi: 10.1021/ie200298c
  • Rackemann, D. W., and Doherty W. O. S. (2011) The conversion of lignocellulosics to levulinic acid, Biofuels Bioproducts & Biorefining-Biofpr 5, 2, 198-214. doi: 10.1002/bbb.267
  • Saito, T.; Sasaki, M; Kawanabe, H.; Yoshino, Y.; Goto, M. (2009) Subcritical water reaction behavior of D-glucose as a model compound for biomass using two different continuous-flow reactor configurations, Chem. Eng. Technol., 32, 527-533. doi: 10.1002/ceat.200800537
  • Sasaki, M.; Yamamoto, K.; Goto, M. (2007) Reaction mechanism and pathway for the hydrothermal electrolysis of organic compounds, J. Mater. Cycles Waste Manage., 9, 40-46. doi: 10.1007/s10163-006-0170-9
  • Savage, P. E. (1999) Organic chemical reactions in supercritical water, Chem. Rev., 99, 603-621. doi: 10.1021/cr9700989
  • Rosatella, A.A.; Simeonov, S.P.; Fradea, R.F.M.; Carlos A. M. A. (2011) 5 – Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications, Green Chem., 13, 754-793. doi:10.1039/C0GC00401D
  • Takeuchi, Y.; Jin F. M.; Tohji K.; Enomoto H. (2008) Acid catalytic hydrothermal conversion of carbohydrate biomass into useful substances, J. Mat. Scien. 43, 7, 2472-2475. doi:10.1007/s10853-007-2021-z
  • Thompson, D. R. and Grethlein, H. E. (1979) Design and evaluation of a plug flow reactor for acid hydrolysis of cellulose, Ind. End. Chem. Prod. Res. Dev., 18, 166-169. doi:10.1021/i360071a003
  • Toor, S. S.; Rosendahl, S.; Rudolf, A. (2011) Hydrothermal liquefaction of biomass: A review of subcritical water technologies, Energy, 36, 2328-2342. doi:10.1016/j.energy.2011.03.013
  • Williams, P. T. and Onwudili, J. (2006) Subcritical and supercritical water gasification of cellulose, starch, glucose, and biomass waste, Energy & Fuels, 20, 1259-1265. doi: 10.1021/ef0503055
  • Yakaboylu, O.; G. Yapar; M. Recalde; J. Harinck; K. G. Smit; E. Martelli; W. de Jong. (2015) Supercritical water gasification of biomass: An integrated kinetic model for the prediction of product compounds, Industrial & Engineering Chemistry Research, 54, 33, 8100-8112. doi: 10.1021/acs.iecr.5b02019
  • Zeng, W.; Cheng, D.; Zhang, H.; Chen, F.; Zhan, X. (2010) Dehydration of glucose to levulinic acid over MFI-type zeolite in subcritical water at moderate conditions, Reac. Kinet. Mech. Cat., 100, 377-384. doi: 10.1007/s11144-010-0187-x
There are 24 citations in total.

Details

Subjects Engineering
Journal Section Research Articles
Authors

Aslı Yüksel

Publication Date December 16, 2016
Submission Date May 28, 2016
Acceptance Date December 15, 2016
Published in Issue Year 2016 Volume: 21 Issue: 2

Cite

APA Yüksel, A. (2016). LEVULİNİK ASİT ÜRETİMİ İÇİN SELÜLOZUN SICAK-BASINÇLI SUDA HİDROTERMAL MUAMELESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 21(2), 415-434. https://doi.org/10.17482/uumfd.278150
AMA Yüksel A. LEVULİNİK ASİT ÜRETİMİ İÇİN SELÜLOZUN SICAK-BASINÇLI SUDA HİDROTERMAL MUAMELESİ. UUJFE. November 2016;21(2):415-434. doi:10.17482/uumfd.278150
Chicago Yüksel, Aslı. “LEVULİNİK ASİT ÜRETİMİ İÇİN SELÜLOZUN SICAK-BASINÇLI SUDA HİDROTERMAL MUAMELESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 21, no. 2 (November 2016): 415-34. https://doi.org/10.17482/uumfd.278150.
EndNote Yüksel A (November 1, 2016) LEVULİNİK ASİT ÜRETİMİ İÇİN SELÜLOZUN SICAK-BASINÇLI SUDA HİDROTERMAL MUAMELESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 21 2 415–434.
IEEE A. Yüksel, “LEVULİNİK ASİT ÜRETİMİ İÇİN SELÜLOZUN SICAK-BASINÇLI SUDA HİDROTERMAL MUAMELESİ”, UUJFE, vol. 21, no. 2, pp. 415–434, 2016, doi: 10.17482/uumfd.278150.
ISNAD Yüksel, Aslı. “LEVULİNİK ASİT ÜRETİMİ İÇİN SELÜLOZUN SICAK-BASINÇLI SUDA HİDROTERMAL MUAMELESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 21/2 (November 2016), 415-434. https://doi.org/10.17482/uumfd.278150.
JAMA Yüksel A. LEVULİNİK ASİT ÜRETİMİ İÇİN SELÜLOZUN SICAK-BASINÇLI SUDA HİDROTERMAL MUAMELESİ. UUJFE. 2016;21:415–434.
MLA Yüksel, Aslı. “LEVULİNİK ASİT ÜRETİMİ İÇİN SELÜLOZUN SICAK-BASINÇLI SUDA HİDROTERMAL MUAMELESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 21, no. 2, 2016, pp. 415-34, doi:10.17482/uumfd.278150.
Vancouver Yüksel A. LEVULİNİK ASİT ÜRETİMİ İÇİN SELÜLOZUN SICAK-BASINÇLI SUDA HİDROTERMAL MUAMELESİ. UUJFE. 2016;21(2):415-34.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.