Araştırma Makalesi
BibTex RIS Kaynak Göster

İS (SİYAH KARBON) TOPAKLANMALARINDA YAPISAL DURUMLARIN IŞINIM ÖZELLİKLERİNE ETKİLERİ

Yıl 2017, Cilt: 22 Sayı: 1, 125 - 138, 27.04.2017
https://doi.org/10.17482/uumfd.309456

Öz

Yanma ürünü olan is (siyah karbon) parçacıkları topaklanarak atmosfere
yayılırlar. Kanserojene yol açan (PAH) molekül içermeleri nedeniyle
toksikolojik etkilere sahiptirler ve ışınım özelliklerinin artması nedeniyle
global ısınmaya güçlü etkilerinin olduğu bilinmektedir. Bu çalışmada, siyah
karbon topaklanmalarının ışınım özelliklerine topaklanma yapısının ve
büyüklüğünün etkileri, Discrete Dipole Approximation (DDA) yöntemi ile analiz
edilmiştir. N = 200 parçacıktan
oluşan iki ayrı yapıdaki topaklanma örneği 0.532 ve 1.064 μm dalga boylarında
ışınım saçılımı açısından incelenmiştir. Her iki topaklanma yapısı, üç farklı
yapısal durumda yani parçacıklar nokta temaslı, iç içe geçmiş ve topaklanmanın
hacimsel büyütülmüş durumları için topaklanmaların ışınım özellikleri
hesaplanmıştır. Yapılan analizlerden, is topaklanmalarının ışınım
özelliklerinin topaklanma hacim eşdeğer yarıçapları ve incelenen dalga boyundan
oldukça etkilendiği görülmüştür. Parçacık temaslı topaklanma genişlemesi ile
parçacıkları iç içe geçen topaklanmaların ışınım özelliklerinin aynı değerlere
sahip olduğu saptanmıştır.

Kaynakça

  • Adachi, K., Chung, S. H., Buseck, P. R. (2010), Shapes of Soot Aerosols Particles and Implications for Their Effects on Climate. J. Geophys. Res., 115, D15206. http://dx.doi:10.1029/2009JD012868
  • Al Zaitone, B., Schmid, H-J., Peukert, W. (2009), Simulation of structure and mobility of aggregates formed by simultaneous coagulation, sintering and surface growth, Aerosol Sci, 40, 950-964. http://dx.doi:10.1016/j.jaerosci.2009.08.007
  • Ayrancı, I., Vaillon, R., Selçuk, N. (2007), Performance of discrete dipole approximation for prediction of amplitude and phase of electromagnetic scattering by particles, J. Quant Spectrosc Radiat Transf, 103, 83–101. http://doi.org/10.1016/j.jqsrt.2006.06.006
  • Bescond, A., Yon, J., Girasole, T., Jouen, C., Rozé, C., Coppalle, A. (2013), Numerical investigation of the possibility to determine the primary particle size of fractal aggregates by measuring light depolarization, J Quant Spectrosc Radiat Transfer, 126, 130–139. http://dx.doi.org/10.1016/j.jqsrt.2012.10.011
  • Brasil, A.M., Farias, T.L., Carvalho, M.G. (1999), A recipe for image characterization of fractal-like aggregates, J. Aerosol Sci., Vol. 30 No. 10, 1379-1389. http://dx.doi.org/10.1016/S0021-8502(99)00026-9
  • Dalzell, W.H., Sarofim, A.F., Optical constants of previous termsootnext term and their application to heat-flux calculations, J. Heat Transfer, (1969), 91, 100-4.
  • Di Stasio, S. (2002), Experiments on depolarized optical scattering to sense in situ the onset of early agglomeration between nano-size particles, J Quant Spectrosc Radiat Transfer, 126, 423–432. http://dx.doi.org/10.1016/S0022-4073(01)00224-2
  • Dobbins, R.A. ve Megaridis, C. M. (1991), Absorption and scattering of light by polydisperse aggregates, Applied Optics, Vol. 30 (33), 4747-4754. https://doi.org/10.1364/AO.30.004747
  • Draine, B.T. ve Goodman, J. (1993), Beyond Clausius –Mossotti-Wave Propagation on a Polarizable Point Lattice and the Discrete Dipole Approximation, Astrophys., J., 405, 685-697. http:// http://adsabs.harvard.edu/full/1993apj...405..685d
  • Draine, B.T., Flatau, P.J. (1994), Discrete-dipole approximation for scattering calculations, J. Opt. Soc. Am., 11, 1491-1499. https://doi.org/10.1364/JOSAA.11.001491
  • Draine, B.T., Flatau, P.J. (2014), User Guide to the Discrete Dipole Approximation Code DDSCAT 7.3. http://arXiv:1305.6497
  • Eggersdorfer, M.L., Pratsinis, S.E. (2013), Restructuring of Aggregates and Their Primary Particle Size Distribution During Sintering, AIChE Journal, Vol.59, No. 4, 1118-1126. http://dx.doi:10.1002/aic
  • Francis, M., Renard, J.-B., Hadamcik, E., Coute, B., Gaubicher, B., Jeanot, M. (2011), New-studies on scattering properties of different kinds of soot and carbon-black, J Quant Spectrosc Radiat Transfer, 112, 1766–1775. http://dx.doi:10.1016/j.jqsrt.2011.01.009
  • Kahnert, M. (2010), On the Discrepancy between Modeled and Measured Mass Absorption Cross Sections of Light Absorbing Carbon Aerosols, Aerosol Sci Technol, 44, 453-460. http://dx.doi.org/10.1080/02786821003733834
  • Kandilian, R., Heng, R. L., ve Pilon, L. (2015). Absorption and Scattering by Fractal Aggregates and by their Equivalent Coated Spheres. J. Quant. Spectrosc. Radiat. Transfer, 151, 310–326. http://dx.doi.org/10.1016/j.jqsrt.2014.10.018
  • Li, S., Cheng, X., Mei, P., Lu, S., Yang, H., Zhang, H. (2014), Multiple scattering of light transmission in a smoke layer, Optik, 125, 2185–2190. http://dx.doi.org/10.1016/j.ijleo.2013.10.040
  • Litton, C. D. ve Perera, I. E. (2014), Modeling the optical properties of combustion-generated fractal aggregates, Fuel, 130, 215–220. http://dx.doi.org/10.1016/j.fuel.2014.04.043
  • Liu, F. ve Smallwood, G. J. (2010), Effect of aggregation on the absorption cross-section of the fractal soot aggregates and its impact on LII modelling, J Quant Spectrosc Radiat Transfer, 111, 302–308. http://dx.doi:10.1016/j.jqsrt.2009.06.017
  • Liu, F. ve Snelling, D. R. (2008), Evaluation of the Accuracy the RDG Approximation for the Absorption and Scattering Properties of Fractal Aggregates of Flame-Generated Soot, 40th Thermophysics Conference, 23-26 June, Seattle, Washington, USA. http://dx.doi.org/10.2514/6.2008-4362
  • Liu, L. ve Mishchenko, M. I. (2005) Effects of aggregation on scattering and radiative properties of soot aerosols, Journal of Geophysical Research, Vol. 110, 262–273. http://dx.doi:10.1029/2004JD005649
  • Liu, L. ve Mishchenko, M. I. (2007) Scattering and radiative properties of complex soot and soot-containing aggregate particles, J Quant Spectrosc Radiat Transfer, 106, 262–273. http://dx.doi:10.1016/j.jqsrt.2007.01.020
  • Liu, L., ve Mishchenko, M. I., Arnott W. P. (2008), A study of radiative properties of fractal soot aggregates using the superposition T-Matrix method, J Quant Spectrosc Radiat Transfer, 109, 2656–2663. http://dx.doi:10.1016/j.jqsrt.2008.05.001
  • Lu, N. ve Sorensen, C.M. (1994), Depolarized light scattering from fractal soot aggregates, Phys Rev E, 50 (4), 3109-3115. https://doi.org/10.1103/PhysRevE.50.3109
  • Oh, C. ve Sorensen, C.M. (1997), The effect of overlap between monomers on the determination of the fractal cluster morphology, J Colloid Interface Sci., 193 (1), 17-25. http://dx.doi.org/10.1006/jcis.1997.5046
  • Olofsson, N.-E. (2014), Laser-Induced Incandescense and Complementary Diagnostics for Flame soot characterization, Doctoral Dissertation, Lund University, İsveç. https://lup.lub.lu.se/search/publication/4864518
  • Prasanna, S., Rivière, Ph., Soufiani A. (2014), Effect of fractal parameters on absorption properties of soot in the infrared region, J Quant Spectrosc Radiat Transfer, 148, 141–155. http://dx.doi.org/10.1016/j.jqsrt.2014.07.004
  • Scarnato, B.V., Vahidinia, S., Richard D.T., Kirchstetter T.W. (2013), Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model, Atmos. Chem. Phys., 13, 5089-5101. http://dx.doi:10.5194/acp-13-5089-2013
  • Schmid, H.-J., Tejwani, S., Artelt, C., Peukert, W. (2004), Monte Carlo simulation of aggregate morphology for simultaneous coagulation and sintering, Journal of Nanoparticle Research, 6: 613-626. http://dx.doi:10.1007/s11051-004-2161-x
  • Shen, Y., Draine, B.T. ve Johnson, E. T. (2008), Modeling Porous Grains with Ballistic Aggregates. I. Geometry and Optical Properties, Astrophys., J., 689, 260-275. http://dx.doi:10.1086/592765
  • Soewono, A. ve Rogak, S. N. (2013), Morphology and Optical Properties of Numerically Simulated Soot Aggregates, Aerosol Sci Technol, 47, 267–274, http://dx.doi.org/10.1080/02786826.2012.749972
  • Van-Hulle, P., Weill, M.-E., Talbaut, M., Coppalle, A. (2002), Comparison of Numerical Studies Characterizing Optical Properties of Soot Aggregates for Improved EXSCA Measurements, Part. Part. Syst. Charact., 19, 47-57. http://dx.doi:10.1002/1521-4117(200204)19:1<47::AID-PPSC47>3.0.CO;2-W
  • Yon, J., Bescond, A., Liu, F. (2015), On the radiative properties of soot aggregates part 1: Necking and overlapping, J Quant Spectrosc Radiat Transfer, 162, 197–206. http://dx.doi.org/10.1016/j.jqsrt.2015.03.027
  • Yon, J., Liu, F., Bescond, A., Caumont-Prim, C., Rozé, C., Ouf, F.-X., Coppalle, A. (2014), Effects of multiple scattering on radiative properties of soot fractal aggregates, J Quant Spectrosc Radiat Transfer, 133, 374–381. http://dx.doi.org/10.1016/j.jqsrt.2013.08.022
  • Doner, N., ve Liu, F. (2017), Impact of morphology on the radiative properties of fractal soot aggregates, J Quant Spectrosc Radiat Transfer, 187, 10–19. http://dx.doi.org/10.1016/j.jqsrt.2016.09.005

Effects of Morphology on the Radiative Properties of Fractal Soot Aggregates

Yıl 2017, Cilt: 22 Sayı: 1, 125 - 138, 27.04.2017
https://doi.org/10.17482/uumfd.309456

Öz

The soot (black carbon) particles which are
produced by combustion emits into atmosphere in forms of aggregates. The
aggregates contain of PAH molecules that are causing carcinogens have
toxicological effects. It is well known that soot aggregates which are enlarged
of radiative properties effect on global warming. In this study, the impact of
morphology on the radiative properties of fractal soot aggregates was
investigated using the discrete dipole approximation (DDA). The radiative
properties of aggregates of N = 200
primary particles were numerically evaluated at 0.532 and 1.064 μm wavelength.
The radiative properties of three different cases, formed by point-touching,
overlapping and aggregate expansion for soot aggregates were calculated. The effects
of radiative properties of soot aggregates vary strongly with the volume
equivalent radius aeff and
wavelength. It was found that the expansion of aggregates has the same effect
on radiative properties as overlapping.

Kaynakça

  • Adachi, K., Chung, S. H., Buseck, P. R. (2010), Shapes of Soot Aerosols Particles and Implications for Their Effects on Climate. J. Geophys. Res., 115, D15206. http://dx.doi:10.1029/2009JD012868
  • Al Zaitone, B., Schmid, H-J., Peukert, W. (2009), Simulation of structure and mobility of aggregates formed by simultaneous coagulation, sintering and surface growth, Aerosol Sci, 40, 950-964. http://dx.doi:10.1016/j.jaerosci.2009.08.007
  • Ayrancı, I., Vaillon, R., Selçuk, N. (2007), Performance of discrete dipole approximation for prediction of amplitude and phase of electromagnetic scattering by particles, J. Quant Spectrosc Radiat Transf, 103, 83–101. http://doi.org/10.1016/j.jqsrt.2006.06.006
  • Bescond, A., Yon, J., Girasole, T., Jouen, C., Rozé, C., Coppalle, A. (2013), Numerical investigation of the possibility to determine the primary particle size of fractal aggregates by measuring light depolarization, J Quant Spectrosc Radiat Transfer, 126, 130–139. http://dx.doi.org/10.1016/j.jqsrt.2012.10.011
  • Brasil, A.M., Farias, T.L., Carvalho, M.G. (1999), A recipe for image characterization of fractal-like aggregates, J. Aerosol Sci., Vol. 30 No. 10, 1379-1389. http://dx.doi.org/10.1016/S0021-8502(99)00026-9
  • Dalzell, W.H., Sarofim, A.F., Optical constants of previous termsootnext term and their application to heat-flux calculations, J. Heat Transfer, (1969), 91, 100-4.
  • Di Stasio, S. (2002), Experiments on depolarized optical scattering to sense in situ the onset of early agglomeration between nano-size particles, J Quant Spectrosc Radiat Transfer, 126, 423–432. http://dx.doi.org/10.1016/S0022-4073(01)00224-2
  • Dobbins, R.A. ve Megaridis, C. M. (1991), Absorption and scattering of light by polydisperse aggregates, Applied Optics, Vol. 30 (33), 4747-4754. https://doi.org/10.1364/AO.30.004747
  • Draine, B.T. ve Goodman, J. (1993), Beyond Clausius –Mossotti-Wave Propagation on a Polarizable Point Lattice and the Discrete Dipole Approximation, Astrophys., J., 405, 685-697. http:// http://adsabs.harvard.edu/full/1993apj...405..685d
  • Draine, B.T., Flatau, P.J. (1994), Discrete-dipole approximation for scattering calculations, J. Opt. Soc. Am., 11, 1491-1499. https://doi.org/10.1364/JOSAA.11.001491
  • Draine, B.T., Flatau, P.J. (2014), User Guide to the Discrete Dipole Approximation Code DDSCAT 7.3. http://arXiv:1305.6497
  • Eggersdorfer, M.L., Pratsinis, S.E. (2013), Restructuring of Aggregates and Their Primary Particle Size Distribution During Sintering, AIChE Journal, Vol.59, No. 4, 1118-1126. http://dx.doi:10.1002/aic
  • Francis, M., Renard, J.-B., Hadamcik, E., Coute, B., Gaubicher, B., Jeanot, M. (2011), New-studies on scattering properties of different kinds of soot and carbon-black, J Quant Spectrosc Radiat Transfer, 112, 1766–1775. http://dx.doi:10.1016/j.jqsrt.2011.01.009
  • Kahnert, M. (2010), On the Discrepancy between Modeled and Measured Mass Absorption Cross Sections of Light Absorbing Carbon Aerosols, Aerosol Sci Technol, 44, 453-460. http://dx.doi.org/10.1080/02786821003733834
  • Kandilian, R., Heng, R. L., ve Pilon, L. (2015). Absorption and Scattering by Fractal Aggregates and by their Equivalent Coated Spheres. J. Quant. Spectrosc. Radiat. Transfer, 151, 310–326. http://dx.doi.org/10.1016/j.jqsrt.2014.10.018
  • Li, S., Cheng, X., Mei, P., Lu, S., Yang, H., Zhang, H. (2014), Multiple scattering of light transmission in a smoke layer, Optik, 125, 2185–2190. http://dx.doi.org/10.1016/j.ijleo.2013.10.040
  • Litton, C. D. ve Perera, I. E. (2014), Modeling the optical properties of combustion-generated fractal aggregates, Fuel, 130, 215–220. http://dx.doi.org/10.1016/j.fuel.2014.04.043
  • Liu, F. ve Smallwood, G. J. (2010), Effect of aggregation on the absorption cross-section of the fractal soot aggregates and its impact on LII modelling, J Quant Spectrosc Radiat Transfer, 111, 302–308. http://dx.doi:10.1016/j.jqsrt.2009.06.017
  • Liu, F. ve Snelling, D. R. (2008), Evaluation of the Accuracy the RDG Approximation for the Absorption and Scattering Properties of Fractal Aggregates of Flame-Generated Soot, 40th Thermophysics Conference, 23-26 June, Seattle, Washington, USA. http://dx.doi.org/10.2514/6.2008-4362
  • Liu, L. ve Mishchenko, M. I. (2005) Effects of aggregation on scattering and radiative properties of soot aerosols, Journal of Geophysical Research, Vol. 110, 262–273. http://dx.doi:10.1029/2004JD005649
  • Liu, L. ve Mishchenko, M. I. (2007) Scattering and radiative properties of complex soot and soot-containing aggregate particles, J Quant Spectrosc Radiat Transfer, 106, 262–273. http://dx.doi:10.1016/j.jqsrt.2007.01.020
  • Liu, L., ve Mishchenko, M. I., Arnott W. P. (2008), A study of radiative properties of fractal soot aggregates using the superposition T-Matrix method, J Quant Spectrosc Radiat Transfer, 109, 2656–2663. http://dx.doi:10.1016/j.jqsrt.2008.05.001
  • Lu, N. ve Sorensen, C.M. (1994), Depolarized light scattering from fractal soot aggregates, Phys Rev E, 50 (4), 3109-3115. https://doi.org/10.1103/PhysRevE.50.3109
  • Oh, C. ve Sorensen, C.M. (1997), The effect of overlap between monomers on the determination of the fractal cluster morphology, J Colloid Interface Sci., 193 (1), 17-25. http://dx.doi.org/10.1006/jcis.1997.5046
  • Olofsson, N.-E. (2014), Laser-Induced Incandescense and Complementary Diagnostics for Flame soot characterization, Doctoral Dissertation, Lund University, İsveç. https://lup.lub.lu.se/search/publication/4864518
  • Prasanna, S., Rivière, Ph., Soufiani A. (2014), Effect of fractal parameters on absorption properties of soot in the infrared region, J Quant Spectrosc Radiat Transfer, 148, 141–155. http://dx.doi.org/10.1016/j.jqsrt.2014.07.004
  • Scarnato, B.V., Vahidinia, S., Richard D.T., Kirchstetter T.W. (2013), Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model, Atmos. Chem. Phys., 13, 5089-5101. http://dx.doi:10.5194/acp-13-5089-2013
  • Schmid, H.-J., Tejwani, S., Artelt, C., Peukert, W. (2004), Monte Carlo simulation of aggregate morphology for simultaneous coagulation and sintering, Journal of Nanoparticle Research, 6: 613-626. http://dx.doi:10.1007/s11051-004-2161-x
  • Shen, Y., Draine, B.T. ve Johnson, E. T. (2008), Modeling Porous Grains with Ballistic Aggregates. I. Geometry and Optical Properties, Astrophys., J., 689, 260-275. http://dx.doi:10.1086/592765
  • Soewono, A. ve Rogak, S. N. (2013), Morphology and Optical Properties of Numerically Simulated Soot Aggregates, Aerosol Sci Technol, 47, 267–274, http://dx.doi.org/10.1080/02786826.2012.749972
  • Van-Hulle, P., Weill, M.-E., Talbaut, M., Coppalle, A. (2002), Comparison of Numerical Studies Characterizing Optical Properties of Soot Aggregates for Improved EXSCA Measurements, Part. Part. Syst. Charact., 19, 47-57. http://dx.doi:10.1002/1521-4117(200204)19:1<47::AID-PPSC47>3.0.CO;2-W
  • Yon, J., Bescond, A., Liu, F. (2015), On the radiative properties of soot aggregates part 1: Necking and overlapping, J Quant Spectrosc Radiat Transfer, 162, 197–206. http://dx.doi.org/10.1016/j.jqsrt.2015.03.027
  • Yon, J., Liu, F., Bescond, A., Caumont-Prim, C., Rozé, C., Ouf, F.-X., Coppalle, A. (2014), Effects of multiple scattering on radiative properties of soot fractal aggregates, J Quant Spectrosc Radiat Transfer, 133, 374–381. http://dx.doi.org/10.1016/j.jqsrt.2013.08.022
  • Doner, N., ve Liu, F. (2017), Impact of morphology on the radiative properties of fractal soot aggregates, J Quant Spectrosc Radiat Transfer, 187, 10–19. http://dx.doi.org/10.1016/j.jqsrt.2016.09.005
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Nimeti Döner

Yayımlanma Tarihi 27 Nisan 2017
Gönderilme Tarihi 27 Eylül 2016
Kabul Tarihi 10 Mart 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 22 Sayı: 1

Kaynak Göster

APA Döner, N. (2017). İS (SİYAH KARBON) TOPAKLANMALARINDA YAPISAL DURUMLARIN IŞINIM ÖZELLİKLERİNE ETKİLERİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 22(1), 125-138. https://doi.org/10.17482/uumfd.309456
AMA Döner N. İS (SİYAH KARBON) TOPAKLANMALARINDA YAPISAL DURUMLARIN IŞINIM ÖZELLİKLERİNE ETKİLERİ. UUJFE. Nisan 2017;22(1):125-138. doi:10.17482/uumfd.309456
Chicago Döner, Nimeti. “İS (SİYAH KARBON) TOPAKLANMALARINDA YAPISAL DURUMLARIN IŞINIM ÖZELLİKLERİNE ETKİLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22, sy. 1 (Nisan 2017): 125-38. https://doi.org/10.17482/uumfd.309456.
EndNote Döner N (01 Nisan 2017) İS (SİYAH KARBON) TOPAKLANMALARINDA YAPISAL DURUMLARIN IŞINIM ÖZELLİKLERİNE ETKİLERİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22 1 125–138.
IEEE N. Döner, “İS (SİYAH KARBON) TOPAKLANMALARINDA YAPISAL DURUMLARIN IŞINIM ÖZELLİKLERİNE ETKİLERİ”, UUJFE, c. 22, sy. 1, ss. 125–138, 2017, doi: 10.17482/uumfd.309456.
ISNAD Döner, Nimeti. “İS (SİYAH KARBON) TOPAKLANMALARINDA YAPISAL DURUMLARIN IŞINIM ÖZELLİKLERİNE ETKİLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22/1 (Nisan 2017), 125-138. https://doi.org/10.17482/uumfd.309456.
JAMA Döner N. İS (SİYAH KARBON) TOPAKLANMALARINDA YAPISAL DURUMLARIN IŞINIM ÖZELLİKLERİNE ETKİLERİ. UUJFE. 2017;22:125–138.
MLA Döner, Nimeti. “İS (SİYAH KARBON) TOPAKLANMALARINDA YAPISAL DURUMLARIN IŞINIM ÖZELLİKLERİNE ETKİLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 22, sy. 1, 2017, ss. 125-38, doi:10.17482/uumfd.309456.
Vancouver Döner N. İS (SİYAH KARBON) TOPAKLANMALARINDA YAPISAL DURUMLARIN IŞINIM ÖZELLİKLERİNE ETKİLERİ. UUJFE. 2017;22(1):125-38.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr