Research Article
BibTex RIS Cite

UÇAK KANATLARINDA EN İDEAL HÜCUM AÇISINI BULMAK İÇİN 4 RAKAMLI NACA 00XX KANAT PROFİLLERİNİN NÜMERİK ANALİZİ

Year 2017, Volume: 22 Issue: 1, 169 - 178, 27.04.2017
https://doi.org/10.17482/uumfd.309470

Abstract

Bu çalışmada SST türbülans modeli kullanılarak 4
rakamlı NACA kanat profillerinden 0008, 0009, 0010, 0012, 0015, 0018, 0021,
0024 nümerik olarak analiz edilmiştir. NACA 0012 kanat profili deneysel
verilere sahip olduğu için önce bu kanat kesiti simüle edilip deneysel
verilerle kaldırma kuvvet ve basınç katsayısı bakımından kıyaslanmıştır. Bu
çalışmada yapılan teorik hesaplamalar ile deneysel verilerin tam olarak uyumlu
olduğu gözlemlenmiştir. Daha sonra aynı yöntem kullanılarak diğer kanat
profilleri simüle edilerek kaldırma kuvveti, sürüklenme kuvveti ve profil
yüzeyindeki basınç katsayıları ve kaldırma kuvvet katsayısının sürüklenme
kuvvet katsayısına oranı hesaplanarak farklı hücum açıları için kıyaslamalar
yapılmıştır. Yapılan hesaplamalara göre NACA 0008-0012 profilleri benzer
aerodinamik özellik göstermektedir. Kanat profillerinin kalınlığı arttıkça lift
katsayısının azaldığı gözlemlenmiştir. Ayrıca her profil için 10 derecelik
hücum açısında basınç katsayıları hesaplanmış ve profil kalınlığı arttıkça
profilin üst kısmındaki basınç katsayısı daha yavaş azalırken alt kısımda daha
hızlı bir şekilde artmıştır.

References

  • Eastman NJ, Kennth EW, and Robert MP. (1935). The characteristics of 78 related Airfoil Sections from test in the variable-density wind tunnel. NACA Report no: 460.
  • Xu Z, Wei L, Hailong L. (2015) Numerical simulation of the effect of relative thickness on aerodynamic performance improvement of asymmetrical blunt trailing-edge modification. Renewable Energy, 80: 489-497. doi:10.1016/j.renene.2015.02.038.
  • Thumtha C., Tawit C. (2009) Optimal angle of attack for untwisted blade wind turbine. Renewable Energy,34: 1279–1284. doi:10.1016/j.renene.2008.09.017.
  • Aniket C. Aranake A, Vinod KL, Karthik D. (2015) Computational analysis of shrouded wind turbine configurations using a 3-dimensional RANS solver. Renewable Energy, 75: 818-832. doi:10.1016/j.renene.2014.10.049.
  • Zanotti A , Nilifard R, GibertinG, Guardone A, Quaranta G. (2014) Assessment of 2D/3D numerical modeling for deep dynamic stall experiments. Journal of Fluids and Structures;51: 97–115. doi:10.1016/j.jfluidstructs.2014.08.004.
  • Guoqing Z, Qijun Z. (2014) Parametric analyses for synthetic jet control on separation and stall over rotor airfoil. Chinese Journal of Aeronautics, 27(5): 1051–1061. doi:10.1016/j.cja.2014.03.023.
  • Rostamzadeh N, Hansen, KL, Kelso RM, Dally BB, (2014) The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil's performance with undulating leading edge modification. Physics of Fluids 26(10):p1. doi:10.1063/1.4896748.
  • Mashud K, Bijoy P, Rahman N. (2014) Numerical simulation of free surface water wave for the flow around NACA 0015 hydrofoil using the volume of fluid (VOF) method. Ocean Engineering, 78: 89–94. doi:10.1016/j.oceaneng.2013.12.013.
  • Ladson CL. (1988) Effects of Independent Variation of Mach and Reynolds Numbers on the Low-Speed Aerodynamic Characteristics of the NACA 0012 Airfoil Section. NASA TM 4074.
  • Gregory N, and Reilly CLO. (1970) Low-Speed Aerodynamic Characteristics of NACA 0012 Aerofoil Section, including the Effects of Upper-Surface Roughness Simulating Hoar Frost. A.R.C., R. & M. No. 3726.
  • Menter FR. (1994) Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal, 32(8) 1598-1605.
  • http://www.comsol.com (2016) COMSOL CFD module user guide.

Numerical Simulation of 4-Digit Inclined NACA 00xx Airfoils To Find Optimum Angle of Attack for Airplane Wing

Year 2017, Volume: 22 Issue: 1, 169 - 178, 27.04.2017
https://doi.org/10.17482/uumfd.309470

Abstract

In this paper, numerical
analysis was conducted by using the SST turbulence model for inclined NACA
0008, 0009, 0010, 0012, 0015, 0018, 0021, 0024 airfoils.  Aerodynamic numerical
analysis of NACA 0012 airfoil was compared with the previously made experimental
results in terms of pressure and lift coefficient. The theoretical data were
found to be fully compatible with experimental results. Then, by simulating
other airfoils using the same methods lift, drag, lift to drag ratio and the
pressure coefficient were calculated and compared with the angle of attack 0-14
degrees. According to the calculations, lift coefficient of NACA 0008-0012
airfoil shows similar behaviors. With the increasing of the airfoil thickness increment
in the lift coefficient decreases for NACA 0015-0024 airfoils.  Pressure
coefficients were also calculated for NACA profiles with angle of attack 10°. Pressure
coefficients over the airfoil decrease from leading edge toward the trailing edge
but in the lower part it increases. With the increasing of the airfoil thickness
pressure coefficient decreases more slowly at the upper part but increases more
rapidly at the lower.

References

  • Eastman NJ, Kennth EW, and Robert MP. (1935). The characteristics of 78 related Airfoil Sections from test in the variable-density wind tunnel. NACA Report no: 460.
  • Xu Z, Wei L, Hailong L. (2015) Numerical simulation of the effect of relative thickness on aerodynamic performance improvement of asymmetrical blunt trailing-edge modification. Renewable Energy, 80: 489-497. doi:10.1016/j.renene.2015.02.038.
  • Thumtha C., Tawit C. (2009) Optimal angle of attack for untwisted blade wind turbine. Renewable Energy,34: 1279–1284. doi:10.1016/j.renene.2008.09.017.
  • Aniket C. Aranake A, Vinod KL, Karthik D. (2015) Computational analysis of shrouded wind turbine configurations using a 3-dimensional RANS solver. Renewable Energy, 75: 818-832. doi:10.1016/j.renene.2014.10.049.
  • Zanotti A , Nilifard R, GibertinG, Guardone A, Quaranta G. (2014) Assessment of 2D/3D numerical modeling for deep dynamic stall experiments. Journal of Fluids and Structures;51: 97–115. doi:10.1016/j.jfluidstructs.2014.08.004.
  • Guoqing Z, Qijun Z. (2014) Parametric analyses for synthetic jet control on separation and stall over rotor airfoil. Chinese Journal of Aeronautics, 27(5): 1051–1061. doi:10.1016/j.cja.2014.03.023.
  • Rostamzadeh N, Hansen, KL, Kelso RM, Dally BB, (2014) The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil's performance with undulating leading edge modification. Physics of Fluids 26(10):p1. doi:10.1063/1.4896748.
  • Mashud K, Bijoy P, Rahman N. (2014) Numerical simulation of free surface water wave for the flow around NACA 0015 hydrofoil using the volume of fluid (VOF) method. Ocean Engineering, 78: 89–94. doi:10.1016/j.oceaneng.2013.12.013.
  • Ladson CL. (1988) Effects of Independent Variation of Mach and Reynolds Numbers on the Low-Speed Aerodynamic Characteristics of the NACA 0012 Airfoil Section. NASA TM 4074.
  • Gregory N, and Reilly CLO. (1970) Low-Speed Aerodynamic Characteristics of NACA 0012 Aerofoil Section, including the Effects of Upper-Surface Roughness Simulating Hoar Frost. A.R.C., R. & M. No. 3726.
  • Menter FR. (1994) Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal, 32(8) 1598-1605.
  • http://www.comsol.com (2016) COMSOL CFD module user guide.
There are 12 citations in total.

Details

Subjects Engineering
Journal Section Research Articles
Authors

Haci Soğukpınar

Publication Date April 27, 2017
Submission Date February 26, 2016
Acceptance Date February 28, 2017
Published in Issue Year 2017 Volume: 22 Issue: 1

Cite

APA Soğukpınar, H. (2017). UÇAK KANATLARINDA EN İDEAL HÜCUM AÇISINI BULMAK İÇİN 4 RAKAMLI NACA 00XX KANAT PROFİLLERİNİN NÜMERİK ANALİZİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 22(1), 169-178. https://doi.org/10.17482/uumfd.309470
AMA Soğukpınar H. UÇAK KANATLARINDA EN İDEAL HÜCUM AÇISINI BULMAK İÇİN 4 RAKAMLI NACA 00XX KANAT PROFİLLERİNİN NÜMERİK ANALİZİ. UUJFE. April 2017;22(1):169-178. doi:10.17482/uumfd.309470
Chicago Soğukpınar, Haci. “UÇAK KANATLARINDA EN İDEAL HÜCUM AÇISINI BULMAK İÇİN 4 RAKAMLI NACA 00XX KANAT PROFİLLERİNİN NÜMERİK ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22, no. 1 (April 2017): 169-78. https://doi.org/10.17482/uumfd.309470.
EndNote Soğukpınar H (April 1, 2017) UÇAK KANATLARINDA EN İDEAL HÜCUM AÇISINI BULMAK İÇİN 4 RAKAMLI NACA 00XX KANAT PROFİLLERİNİN NÜMERİK ANALİZİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22 1 169–178.
IEEE H. Soğukpınar, “UÇAK KANATLARINDA EN İDEAL HÜCUM AÇISINI BULMAK İÇİN 4 RAKAMLI NACA 00XX KANAT PROFİLLERİNİN NÜMERİK ANALİZİ”, UUJFE, vol. 22, no. 1, pp. 169–178, 2017, doi: 10.17482/uumfd.309470.
ISNAD Soğukpınar, Haci. “UÇAK KANATLARINDA EN İDEAL HÜCUM AÇISINI BULMAK İÇİN 4 RAKAMLI NACA 00XX KANAT PROFİLLERİNİN NÜMERİK ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22/1 (April 2017), 169-178. https://doi.org/10.17482/uumfd.309470.
JAMA Soğukpınar H. UÇAK KANATLARINDA EN İDEAL HÜCUM AÇISINI BULMAK İÇİN 4 RAKAMLI NACA 00XX KANAT PROFİLLERİNİN NÜMERİK ANALİZİ. UUJFE. 2017;22:169–178.
MLA Soğukpınar, Haci. “UÇAK KANATLARINDA EN İDEAL HÜCUM AÇISINI BULMAK İÇİN 4 RAKAMLI NACA 00XX KANAT PROFİLLERİNİN NÜMERİK ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 22, no. 1, 2017, pp. 169-78, doi:10.17482/uumfd.309470.
Vancouver Soğukpınar H. UÇAK KANATLARINDA EN İDEAL HÜCUM AÇISINI BULMAK İÇİN 4 RAKAMLI NACA 00XX KANAT PROFİLLERİNİN NÜMERİK ANALİZİ. UUJFE. 2017;22(1):169-78.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.