Research Article
BibTex RIS Cite

YARASA ALGORİTMASI VE KLONAL SEÇİM ALGORİTMASININ OPTİMİZASYON PROBLEMLERİ İLE PERFORMANS ANALİZİ

Year 2017, Volume: 22 Issue: 2, 85 - 92, 29.08.2017
https://doi.org/10.17482/uumfd.336407

Abstract



 Evrimsel algoritmalar, özellikle
optimizasyon alanında çalışan bir çok farklı araştırmacı tarafından tercih
edilmektedir. Evrimsel algoritmaların verilen problemleri optimize etmenin yanı
sıra, bu problemleri az sayıda iterasyon kullanarak çözmeleri bu algoritmalar
için önemli bir ayırt edici özelliktir. Bu çalışmada, optimizasyon alanında
verimliliği kanıtlanmış iki evrimsel algoritma; yarasa algoritması ve klonal seçim
algoritması test fonksiyonları kullanılarak kıyaslanmıştır. Kıyaslama yapılan
test fonksiyonlarından elde edilen sonuçlara göre, yarasa algoritması klonal
seçim algoritmasına göre daha iyi bir performans göstermiştir. Ayrıca, yarasa
algoritması optimizasyonun ilk safhalarında dahi yüksek çözüm kalitesine
ulaşmıştır. Bu analiz, gelecek çalışmalar için evrimsel algoritmaların
performans kıyaslamaları açısından 
rehber olarak kullanılabilir niteliktedir.

References

  • Adarsh, B. R., Raghunathan, T., Jayabarathi, T., and Yang, X. S. (2016) Economic dispatch using chaotic bat algorithm, Energy, 96, 666-675. doi: 10.1016/j.energy.2015.12.096.
  • Bin Basir, M.A. and Binti Ahmad, F. (2014) Comparison of Swarm Algorithms for Feature Selections/Reductions, International Journal of Scientific and Engineering Research, 5, 479-486. doi: 10.1109/ISPACS.2007.4445974.
  • Dandy, G.C., Simpson, A.R., and Murphy L.J. (1996) An improved genetic algorithm for pipe network optimization, Water Resources Research, 32, 449-458. doi: 10.1029/95WR02917.
  • De Castro and Von Zuben, F. J. (2000) An evolutionary immune network for data clustering, In Neural Network, Proceedings Sixth Brazilian Symposium on, 84-89. doi: 10.1109/SBRN.2000.889718.
  • Gong M, Jiao L, Zhang L and Ma W. (2007) Improved real-valued clonal selection algorithm based on a novel mutation method, International Symposium on Intelligent Signal Processing and Communication Systems, ISPACS 2007, 662-665. doi: 10.1109/ISPACS.2007.4445974.
  • Goyal, S., and Patterh, M. S. (2016) Modified Bat Algorithm for Localization of Wireless Sensor Network, Wireless Personal Communications, 86(2), 657-670. doi: 10.1007/s11277-015-2950-9.
  • Generalized penalized function. (2015,June) .Retrieved from http://al-roomi.org/benchmarks/unconstrained/n-dimensions/172-generalized-penalized-function-no-1
  • Test functions and datasets. (2015, January). Retrieved from http://www.sfu.ca/~ssurjano/optimization.html.
  • Sindhuja, L. S., and Padmavathi, G. (2016) Replica Node Detection Using Enhanced Single Hop Detection with Clonal Selection Algorithm in Mobile Wireless Sensor Networks, Journal of Computer Networks and Communications. doi: 10.1155/2016/1620343.
  • Ulutas, B.H. and Kulturel-Konak, S. (2011) A review of clonal selection algorithm and its applications, Artificial Intelligence Review, 36(2), 117-138.doi:10.1007/s10462-011-9206-1.
  • Vatansever, F. and Şen, D. (2013) Design of PID Controller Simulator based on Genetic Algorithm, Uludağ University Journal of The Faculty of Engineering, 18(2), 7-18. doi: 10.17482/uujfe.33406.
  • Wolpert, D.H. and Macready, WG. (1997) No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation,1, 67-82. doi: 10.1109/4235.585893.
  • Yang X.S. (2010) A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for optimization, Springer Berlin Heidelberg, NICSO 2010, 65-74. doi: 10.1007/978-3-642-12538-6-6.

Performance Study of Bat Algorithm and Clonal Selection Algorithm for Optimization Tasks

Year 2017, Volume: 22 Issue: 2, 85 - 92, 29.08.2017
https://doi.org/10.17482/uumfd.336407

Abstract



Evolutionary algorithms are preferred by many
researchers in different areas for optimization tasks. It is quite important to
find optimum points of problems with less number of iterations. In this paper, performance
analysis of two powerful optimization algorithms; bat algorithm and clonal
selection algorithm are studied using well-known benchmark functions. The
experimental results show that bat algorithm outperforms clonal selection
algorithm on most of the selected problems. It is also seen that bat algorithm
can produce high quality results even at the first stages of iterations. This
paper can be used as guidance of performance comparisons for future studies.

References

  • Adarsh, B. R., Raghunathan, T., Jayabarathi, T., and Yang, X. S. (2016) Economic dispatch using chaotic bat algorithm, Energy, 96, 666-675. doi: 10.1016/j.energy.2015.12.096.
  • Bin Basir, M.A. and Binti Ahmad, F. (2014) Comparison of Swarm Algorithms for Feature Selections/Reductions, International Journal of Scientific and Engineering Research, 5, 479-486. doi: 10.1109/ISPACS.2007.4445974.
  • Dandy, G.C., Simpson, A.R., and Murphy L.J. (1996) An improved genetic algorithm for pipe network optimization, Water Resources Research, 32, 449-458. doi: 10.1029/95WR02917.
  • De Castro and Von Zuben, F. J. (2000) An evolutionary immune network for data clustering, In Neural Network, Proceedings Sixth Brazilian Symposium on, 84-89. doi: 10.1109/SBRN.2000.889718.
  • Gong M, Jiao L, Zhang L and Ma W. (2007) Improved real-valued clonal selection algorithm based on a novel mutation method, International Symposium on Intelligent Signal Processing and Communication Systems, ISPACS 2007, 662-665. doi: 10.1109/ISPACS.2007.4445974.
  • Goyal, S., and Patterh, M. S. (2016) Modified Bat Algorithm for Localization of Wireless Sensor Network, Wireless Personal Communications, 86(2), 657-670. doi: 10.1007/s11277-015-2950-9.
  • Generalized penalized function. (2015,June) .Retrieved from http://al-roomi.org/benchmarks/unconstrained/n-dimensions/172-generalized-penalized-function-no-1
  • Test functions and datasets. (2015, January). Retrieved from http://www.sfu.ca/~ssurjano/optimization.html.
  • Sindhuja, L. S., and Padmavathi, G. (2016) Replica Node Detection Using Enhanced Single Hop Detection with Clonal Selection Algorithm in Mobile Wireless Sensor Networks, Journal of Computer Networks and Communications. doi: 10.1155/2016/1620343.
  • Ulutas, B.H. and Kulturel-Konak, S. (2011) A review of clonal selection algorithm and its applications, Artificial Intelligence Review, 36(2), 117-138.doi:10.1007/s10462-011-9206-1.
  • Vatansever, F. and Şen, D. (2013) Design of PID Controller Simulator based on Genetic Algorithm, Uludağ University Journal of The Faculty of Engineering, 18(2), 7-18. doi: 10.17482/uujfe.33406.
  • Wolpert, D.H. and Macready, WG. (1997) No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation,1, 67-82. doi: 10.1109/4235.585893.
  • Yang X.S. (2010) A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for optimization, Springer Berlin Heidelberg, NICSO 2010, 65-74. doi: 10.1007/978-3-642-12538-6-6.
There are 13 citations in total.

Details

Subjects Engineering
Journal Section Research Articles
Authors

Ezgi Deniz Ülker

Publication Date August 29, 2017
Submission Date April 5, 2016
Acceptance Date June 12, 2017
Published in Issue Year 2017 Volume: 22 Issue: 2

Cite

APA Deniz Ülker, E. (2017). YARASA ALGORİTMASI VE KLONAL SEÇİM ALGORİTMASININ OPTİMİZASYON PROBLEMLERİ İLE PERFORMANS ANALİZİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 22(2), 85-92. https://doi.org/10.17482/uumfd.336407
AMA Deniz Ülker E. YARASA ALGORİTMASI VE KLONAL SEÇİM ALGORİTMASININ OPTİMİZASYON PROBLEMLERİ İLE PERFORMANS ANALİZİ. UUJFE. August 2017;22(2):85-92. doi:10.17482/uumfd.336407
Chicago Deniz Ülker, Ezgi. “YARASA ALGORİTMASI VE KLONAL SEÇİM ALGORİTMASININ OPTİMİZASYON PROBLEMLERİ İLE PERFORMANS ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22, no. 2 (August 2017): 85-92. https://doi.org/10.17482/uumfd.336407.
EndNote Deniz Ülker E (August 1, 2017) YARASA ALGORİTMASI VE KLONAL SEÇİM ALGORİTMASININ OPTİMİZASYON PROBLEMLERİ İLE PERFORMANS ANALİZİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22 2 85–92.
IEEE E. Deniz Ülker, “YARASA ALGORİTMASI VE KLONAL SEÇİM ALGORİTMASININ OPTİMİZASYON PROBLEMLERİ İLE PERFORMANS ANALİZİ”, UUJFE, vol. 22, no. 2, pp. 85–92, 2017, doi: 10.17482/uumfd.336407.
ISNAD Deniz Ülker, Ezgi. “YARASA ALGORİTMASI VE KLONAL SEÇİM ALGORİTMASININ OPTİMİZASYON PROBLEMLERİ İLE PERFORMANS ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22/2 (August 2017), 85-92. https://doi.org/10.17482/uumfd.336407.
JAMA Deniz Ülker E. YARASA ALGORİTMASI VE KLONAL SEÇİM ALGORİTMASININ OPTİMİZASYON PROBLEMLERİ İLE PERFORMANS ANALİZİ. UUJFE. 2017;22:85–92.
MLA Deniz Ülker, Ezgi. “YARASA ALGORİTMASI VE KLONAL SEÇİM ALGORİTMASININ OPTİMİZASYON PROBLEMLERİ İLE PERFORMANS ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 22, no. 2, 2017, pp. 85-92, doi:10.17482/uumfd.336407.
Vancouver Deniz Ülker E. YARASA ALGORİTMASI VE KLONAL SEÇİM ALGORİTMASININ OPTİMİZASYON PROBLEMLERİ İLE PERFORMANS ANALİZİ. UUJFE. 2017;22(2):85-92.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.