Research Article
BibTex RIS Cite

REN NEHRİ’NDEKİ DÜŞÜK DEBİLERİN ÖNCEDEN KESTİRİMİ İÇİN MODEL GELİŞTİRİLMESİ

Year 2017, Volume: 22 Issue: 2, 139 - 148, 19.09.2017
https://doi.org/10.17482/uumfd.338785

Abstract

Bu çalışmada hedeflenen Ren
nehrinin düşük debilerini kara kutu modeli yardımıyla iki hafta önceden tahmin
etmektir. Modele eklenecek tanımlayıcı değişkenler korelasyon analizi ile
seçildi. Model girdileri seçildikten sonra model geçmiş gözlemlerle kalibre edildi.
Ardından bir iklim modeli tarafından tahmin edilmiş yağış verisi hidrolojik
modelimize girdi olarak eklendi. Kar yağışının etkin olduğu üst havzalarda düşük
debiler ile havza karakteristik verileri (yağış, buharlaşma ve göl seviyesi
gibi) arasında yüksek korelasyon değerleri bulunurken yağmurun hakim olduğu
aşağı havzalarda korelasyon katsayıları 0.57 ile 0.68 arasında değişmektedir.
Benzetim başarımları Doğu Alp havzası için 0.96 NS (1.0 en yüksek değerdir),
Batı Alp havzası için 0.83 ve Moselle için 0.77 dir. Lobith çıkış noktası için
kalibrasyon ve doğrulama dönemlerindeki tahmin başarımları 0.75 NS civarında
olup sonraki çalısmalar için cesaret vericidir.

References

  • Benítez, J.M., Castro, J.L., Requena, I., 1997. Are artificial neural networks black boxes? IEEE Trans. Neural Networks 8, 1156–1164. doi:10.1109/72.623216
  • Bouwma, P., 2011. Low flow forecasts for the Rhine at Lobith 14 days ahead A correlation analysis and an artificial neural network study. University of Twente, Enschede (MSc thesis: http://essay.utwente.nl/61075/).
  • Danandeh Mehr, A., Demirel, M.C., 2016. On the Calibration of Multigene Genetic Programming to Simulate Low Flows in the Moselle River. Uludag University Journal of The Faculty of Engineering 21, 365–365. doi:10.17482/uumfd.278107
  • Danandeh Mehr, A., Kahya, E., 2017. A Pareto-optimal moving average multigene genetic programming model for daily streamflow prediction. J. Hydrol. 549, 603–615. doi:10.1016/j.jhydrol.2017.04.045
  • Dawson, C.W., Wilby, R.L., 2001. Hydrological modelling using artificial neural networks. Prog. Phys. Geogr. 25, 80–108. doi:10.1177/030913330102500104
  • De Bruijn, K.M., Passchier, R., De Bruin, K., Passchier, R., 2006. Predicting low-flows in the Rhine River. WL | Delft Hydraulics, Delft, The Netherlands.
  • Demirel, M.C., Booij, M.J., Hoekstra, A.Y., 2013. Identification of appropriate lags and temporal resolutions for low flow indicators in the River Rhine to forecast low flows with different lead times. Hydrol. Process. 27, 2742–2758. doi:10.1002/hyp.9402
  • Evans, J., Schreider, S., 2002. Hydrological impacts of climate change on inflows to Perth, Australia. Clim. Change 55, 361–393. doi:10.1023/A:1020588416541
  • Grabs, W., Daamen, K., de Montmollin, F., 1997. Impact of Climate Change on Hydrological Regimes and Water Resources Management in the Rhine Basin (CHR-report I-16). CHR/KHR, Lelystad.
  • Heezik, A. V., 2008. Strijd om de rivieren: 200 jaar rivierenbeleid in Nederland of de opkomst en ondergang van het streven naar de normale rivier.
  • Huisman, P., De Jong, J., Wieriks, K., 2000. Transboundary cooperation in shared river basins: experiences from the Rhine, Meuse and North Sea. Water Policy 2, 83–97. doi:10.1016/S1366-7017(99)00023-9
  • Moyle, P.B., Leidy, R.A., 1992. Loss of biodiversity in aquatic ecosystems: evidence from fish faunas, Conservation Biology. doi:10.1007/978-1-4684-6426-9_6
  • Rutten, M.M., van de Giesen, N., Baptist, M., Icke, J., Uijttewaal, W., 2008. Seasonal forecast of cooling water problems in the River Rhine. Hydrol. Process. 22, 1037–1045. doi:10.1002/hyp.6988
  • Southall, H.L., Simmers, J.A., O’Donnell, T.H., 1995. Direction finding in phased arrays with a neural network beamformer. IEEE Trans. Antennas Propag. 43, 1369–1374. doi:10.1109/8.475924
  • Tielrooij, F., 2000. Waterbeleid voor de 21e eeuw: geef water de ruimte en de aandacht die het verdient.

Medium-Range Low Flow Forecasts in The Lobith, River Rhine

Year 2017, Volume: 22 Issue: 2, 139 - 148, 19.09.2017
https://doi.org/10.17482/uumfd.338785

Abstract

The aim of this study
is to predict low flows 14 days in advance using a data-driven model. First, we
apply correlation analysis to select appropriate temporal scales of
pre-selected inputs that are precipitation, potential evapotranspiration,
discharge, groundwater, snow height and lake levels. The forecasted rainfall has
also been used as model input to forecast low flows in the River Rhine at
Lobith. The correlation analysis analysis between low flows and basin
indicators show stronger correlations for the Alpine sub-basins than the
rainfed sub-basins. The Middle and Lower Rhine are downstream channel areas and
they do not contribute to the discharge. Therefore, they are excluded from the
entire analysis. The low flow predictions for the Alpine sub-basins and the
Mosel are reasonable during the validation period, whereas the ANN for Lobith
shows low performance for a different test period. The results for the training
and the validation period are more encouraging than the test period for Lobith,
i.e. Nash-Sutcliffe (NS) efficiency of 0.75 and 0.73 respectively.

References

  • Benítez, J.M., Castro, J.L., Requena, I., 1997. Are artificial neural networks black boxes? IEEE Trans. Neural Networks 8, 1156–1164. doi:10.1109/72.623216
  • Bouwma, P., 2011. Low flow forecasts for the Rhine at Lobith 14 days ahead A correlation analysis and an artificial neural network study. University of Twente, Enschede (MSc thesis: http://essay.utwente.nl/61075/).
  • Danandeh Mehr, A., Demirel, M.C., 2016. On the Calibration of Multigene Genetic Programming to Simulate Low Flows in the Moselle River. Uludag University Journal of The Faculty of Engineering 21, 365–365. doi:10.17482/uumfd.278107
  • Danandeh Mehr, A., Kahya, E., 2017. A Pareto-optimal moving average multigene genetic programming model for daily streamflow prediction. J. Hydrol. 549, 603–615. doi:10.1016/j.jhydrol.2017.04.045
  • Dawson, C.W., Wilby, R.L., 2001. Hydrological modelling using artificial neural networks. Prog. Phys. Geogr. 25, 80–108. doi:10.1177/030913330102500104
  • De Bruijn, K.M., Passchier, R., De Bruin, K., Passchier, R., 2006. Predicting low-flows in the Rhine River. WL | Delft Hydraulics, Delft, The Netherlands.
  • Demirel, M.C., Booij, M.J., Hoekstra, A.Y., 2013. Identification of appropriate lags and temporal resolutions for low flow indicators in the River Rhine to forecast low flows with different lead times. Hydrol. Process. 27, 2742–2758. doi:10.1002/hyp.9402
  • Evans, J., Schreider, S., 2002. Hydrological impacts of climate change on inflows to Perth, Australia. Clim. Change 55, 361–393. doi:10.1023/A:1020588416541
  • Grabs, W., Daamen, K., de Montmollin, F., 1997. Impact of Climate Change on Hydrological Regimes and Water Resources Management in the Rhine Basin (CHR-report I-16). CHR/KHR, Lelystad.
  • Heezik, A. V., 2008. Strijd om de rivieren: 200 jaar rivierenbeleid in Nederland of de opkomst en ondergang van het streven naar de normale rivier.
  • Huisman, P., De Jong, J., Wieriks, K., 2000. Transboundary cooperation in shared river basins: experiences from the Rhine, Meuse and North Sea. Water Policy 2, 83–97. doi:10.1016/S1366-7017(99)00023-9
  • Moyle, P.B., Leidy, R.A., 1992. Loss of biodiversity in aquatic ecosystems: evidence from fish faunas, Conservation Biology. doi:10.1007/978-1-4684-6426-9_6
  • Rutten, M.M., van de Giesen, N., Baptist, M., Icke, J., Uijttewaal, W., 2008. Seasonal forecast of cooling water problems in the River Rhine. Hydrol. Process. 22, 1037–1045. doi:10.1002/hyp.6988
  • Southall, H.L., Simmers, J.A., O’Donnell, T.H., 1995. Direction finding in phased arrays with a neural network beamformer. IEEE Trans. Antennas Propag. 43, 1369–1374. doi:10.1109/8.475924
  • Tielrooij, F., 2000. Waterbeleid voor de 21e eeuw: geef water de ruimte en de aandacht die het verdient.
There are 15 citations in total.

Details

Subjects Engineering
Journal Section Research Articles
Authors

Pieter Bouwma This is me

Mehmet Cüneyd Demirel

Publication Date September 19, 2017
Submission Date September 28, 2016
Acceptance Date July 30, 2017
Published in Issue Year 2017 Volume: 22 Issue: 2

Cite

APA Bouwma, P., & Demirel, M. C. (2017). REN NEHRİ’NDEKİ DÜŞÜK DEBİLERİN ÖNCEDEN KESTİRİMİ İÇİN MODEL GELİŞTİRİLMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 22(2), 139-148. https://doi.org/10.17482/uumfd.338785
AMA Bouwma P, Demirel MC. REN NEHRİ’NDEKİ DÜŞÜK DEBİLERİN ÖNCEDEN KESTİRİMİ İÇİN MODEL GELİŞTİRİLMESİ. UUJFE. August 2017;22(2):139-148. doi:10.17482/uumfd.338785
Chicago Bouwma, Pieter, and Mehmet Cüneyd Demirel. “REN NEHRİ’NDEKİ DÜŞÜK DEBİLERİN ÖNCEDEN KESTİRİMİ İÇİN MODEL GELİŞTİRİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22, no. 2 (August 2017): 139-48. https://doi.org/10.17482/uumfd.338785.
EndNote Bouwma P, Demirel MC (August 1, 2017) REN NEHRİ’NDEKİ DÜŞÜK DEBİLERİN ÖNCEDEN KESTİRİMİ İÇİN MODEL GELİŞTİRİLMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22 2 139–148.
IEEE P. Bouwma and M. C. Demirel, “REN NEHRİ’NDEKİ DÜŞÜK DEBİLERİN ÖNCEDEN KESTİRİMİ İÇİN MODEL GELİŞTİRİLMESİ”, UUJFE, vol. 22, no. 2, pp. 139–148, 2017, doi: 10.17482/uumfd.338785.
ISNAD Bouwma, Pieter - Demirel, Mehmet Cüneyd. “REN NEHRİ’NDEKİ DÜŞÜK DEBİLERİN ÖNCEDEN KESTİRİMİ İÇİN MODEL GELİŞTİRİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22/2 (August 2017), 139-148. https://doi.org/10.17482/uumfd.338785.
JAMA Bouwma P, Demirel MC. REN NEHRİ’NDEKİ DÜŞÜK DEBİLERİN ÖNCEDEN KESTİRİMİ İÇİN MODEL GELİŞTİRİLMESİ. UUJFE. 2017;22:139–148.
MLA Bouwma, Pieter and Mehmet Cüneyd Demirel. “REN NEHRİ’NDEKİ DÜŞÜK DEBİLERİN ÖNCEDEN KESTİRİMİ İÇİN MODEL GELİŞTİRİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 22, no. 2, 2017, pp. 139-48, doi:10.17482/uumfd.338785.
Vancouver Bouwma P, Demirel MC. REN NEHRİ’NDEKİ DÜŞÜK DEBİLERİN ÖNCEDEN KESTİRİMİ İÇİN MODEL GELİŞTİRİLMESİ. UUJFE. 2017;22(2):139-48.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.