Research Article
BibTex RIS Cite

Crush Performance Comparison of FEE340 and DP600 Materials as Front Collision Rail in Automobiles

Year 2019, Volume: 24 Issue: 1, 415 - 428, 30.04.2019
https://doi.org/10.17482/uumfd.492461

Abstract

    In this study,
a frontal collision scenario (rigid wall test) is simulated in a computer
environment using a half vehicle model for two different sheets of steel that
are frequently used in automotive industry. The effects of materials, namely
FEE340 steels in HSLA (High-Strength Low Allow) family and DP600 steels in DP
(Dual Phase) family compared as front collision rails on crash performance of a
vehicle. Front bumper cross member, crash box and collision rail in the model
were designed using Siemens NX software. The pre-processing stage of collision
elements before the dynamic analysis was carried out using Altair Hypermesh
software. Abaqus software was used to create the dynamic analysis scenario of
the model and to solve the analysis. The amount of energy absorption by each
element, the total displacement, the level of the load transferred to the
passenger compartment and the crush force efficiency (CFE) results were
obtained from the simulations. According to the simulations results, although
the CFE coefficients of FEE340 and DP600 materials are close, when the FEE340
material was used, the force transferred to the passenger compartment was 32%
less, and the total displacement was 11% higher.

References

  • 1. Bois Paul Du, Chou Clifford C., Fileta Bahig B. & King Albert I. (2004). Vehicle Crashworthiness and Occupant Protection. American Iron and Steel Institute 2000 Town Center Southfield,Michigan 48075.
  • 2. Chiandussi, G., Avalle, M. (2002) Maximization of the crushing performance of a tubular device by shape optimisation, Computers and Structures, 80, 2425-2432.
  • 3. Deb, A., Gunti, R. S., Chou, C., & Dutta, U. (2015). Use of truncated finite element modeling for efficient design optimization of an automotive front end structure (No. 2015-01-0496). SAE Technical Paper.
  • 4. Edwards, M. J., Davies, H., Thompson, A., & Hobbs, A. (2003). Development of test procedures and performance criteria to improve compatibility in car frontal collisions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 217(4), 233-245.
  • 5. Ensarioglu C., Gulcimen Cakan B., Reis M., Koluk H., Celik H., Uguz A., Cakir M. C. (2018). Reinforcement of a Thermoplastic Crash-Box with Aluminum Foam and Tie Beams. Academic Conference on Engineering, IT and Artificial Intelligence (AC-EITAI 2018), Prag.
  • 6. Eren, I., Gür, Y., & Aksoy, Z. (2009). Finite element analysis of collapse of front side rails with new types of crush initiators. International journal of automotive technology, 10(4), 451-457.
  • 7. Fekete, J. R., Stibich, A. M., & Shi, M. F. (2001). A comparison of the response of HSLA and dual phase sheet steel in dynamic crush (No. 2001-01-3101). SAE Technical Paper.
  • 8. George Mason University, (2016). 2010 Toyota Yaris Finite Element Model Validation Detail Mesh, Center for Collosion Safety and Analysis. (Doi: 10.13021/G8CC7G)
  • 9. Ghannam, M. Y., Niesluchowski, M., & Culkeen, P. M. (2002). Analysis of a Frontal Rail Structure in a Frontal Collision (No. 2002-01-0688). SAE Technical Paper.
  • 10. Gulcimen Cakan B., Reis M., Ensarioglu C., Koluk H., Yeni H., Uguz A., Cakir M. C. (2018). Termoplastik çarpışma kutularında alüminyum köpük takviyesinin çarpışma karakteristiğine etkisi. 18th International Conference on Machine Design and Production, 3-6 July, Eskişehir.
  • 11. Liu, X. T., Liu, C. H., Shi, S. L., Zhao, L. H., & Huang, H. (2010, February). The analysis of front rail crash on mini-bus chassis. In Computer and Automation Engineering (ICCAE), 2010 The 2nd International Conference on (Vol. 2, pp. 14-16). IEEE.
  • 12. Öztürk, İ., & Necmettin, Kaya (2008). Otomobil ön tampon çarpışma analizi ve optimizasyonu. Uludağ University Journal of The Faculty of Engineering, 13(1).
  • 13. Ramazani, A., Mukherjee, K., Abdurakhmanov, A., Prahl, U., Schleser, M., Reisgen, U., & Bleck, W. (2014). Micro–macro-characterisation and modelling of mechanical properties of gas metal arc welded (GMAW) DP600 steel. Materials Science and Engineering: A, 589, 1-14.
  • 14. Rao Lakshmana C., Narayanamurthy V., & Simha K. R. Y. (2016). Applied Impact Mechanics . Ane Books Pvt. Ltd. (ISBN : 978-11-1924-180-5).
  • 15. Tahan, F. J., Park, C. K., Morgan, R. M., Cui, C., Brar, B., Shanks, K., & Kan, C. D. (2013). The Effect of Reduced Mass on Frontal Crashworthiness. Proceedings of the IRCOBI Conference, 2013.

OTOMOBİLLERDE ÖN ÇARPIŞMA KOLU MALZEMESİ OLARAK FEE340 VE DP600 MALZEMELERİN ÇARPIŞMA PERFORMANSLARININ KARŞILAŞTIRILMASI

Year 2019, Volume: 24 Issue: 1, 415 - 428, 30.04.2019
https://doi.org/10.17482/uumfd.492461

Abstract

    Bu çalışmada, otomotiv
endüstrisinde çok sık kullanılan iki farklı çelik malzeme için yarım araç modeli
kullanılarak önden çarpışma senaryosu (rijit duvar testi) bilgisayar ortamında
simule edilmiştir. Ön çarpışma kollarında kullanılan HSLA (High-Strength
Low-Alloy) çelik ailesi grubundaki FEE340 ve DP (Dual Phase) çelik ailesi
grubundaki DP600 malzemelerinin aracın çarpışma performansına olan etkileri
karşılaştırılmıştır. Modeldeki ön tampon traversi, çarpışma kutusu ve çarpışma
kolu Siemens NX yazılımı kullanılarak tasarlanmıştır. Tasarlanan çarpışma
elemanlarının ön işleme prosesi, Altair Hypermesh yazılımı kullanılarak
yapılmış ve dinamik analize hazır hale getirilmiştir. Modelin dinamik analiz
senaryosunu oluşturmak ve analizin çözümü için Abaqus yazılımı kullanılmıştır. Simülasyonlardan,
her bir eleman tarafından sönümlenen enerji miktarı, oluşan toplam deplasman,
yolcu kabinine iletilen yük miktarı ve çarpışma kuvveti verimliliği (CFE)
sonuçları elde edilmiştir. Bu veriler baz alınarak malzemelerin aracın çarpışma
performansına etkileri değerlendirilmiş ve sonuç olarak FEE340 ve DP600
malzemelerinin CFE katsayıları yakın çıkmasına karşın FEE340 malzemesinin yolcu
kabinine ilettiği kuvvetin %32 daha az, oluşturduğu deplasmanın %11 daha fazla
olduğu görülmüştür.

References

  • 1. Bois Paul Du, Chou Clifford C., Fileta Bahig B. & King Albert I. (2004). Vehicle Crashworthiness and Occupant Protection. American Iron and Steel Institute 2000 Town Center Southfield,Michigan 48075.
  • 2. Chiandussi, G., Avalle, M. (2002) Maximization of the crushing performance of a tubular device by shape optimisation, Computers and Structures, 80, 2425-2432.
  • 3. Deb, A., Gunti, R. S., Chou, C., & Dutta, U. (2015). Use of truncated finite element modeling for efficient design optimization of an automotive front end structure (No. 2015-01-0496). SAE Technical Paper.
  • 4. Edwards, M. J., Davies, H., Thompson, A., & Hobbs, A. (2003). Development of test procedures and performance criteria to improve compatibility in car frontal collisions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 217(4), 233-245.
  • 5. Ensarioglu C., Gulcimen Cakan B., Reis M., Koluk H., Celik H., Uguz A., Cakir M. C. (2018). Reinforcement of a Thermoplastic Crash-Box with Aluminum Foam and Tie Beams. Academic Conference on Engineering, IT and Artificial Intelligence (AC-EITAI 2018), Prag.
  • 6. Eren, I., Gür, Y., & Aksoy, Z. (2009). Finite element analysis of collapse of front side rails with new types of crush initiators. International journal of automotive technology, 10(4), 451-457.
  • 7. Fekete, J. R., Stibich, A. M., & Shi, M. F. (2001). A comparison of the response of HSLA and dual phase sheet steel in dynamic crush (No. 2001-01-3101). SAE Technical Paper.
  • 8. George Mason University, (2016). 2010 Toyota Yaris Finite Element Model Validation Detail Mesh, Center for Collosion Safety and Analysis. (Doi: 10.13021/G8CC7G)
  • 9. Ghannam, M. Y., Niesluchowski, M., & Culkeen, P. M. (2002). Analysis of a Frontal Rail Structure in a Frontal Collision (No. 2002-01-0688). SAE Technical Paper.
  • 10. Gulcimen Cakan B., Reis M., Ensarioglu C., Koluk H., Yeni H., Uguz A., Cakir M. C. (2018). Termoplastik çarpışma kutularında alüminyum köpük takviyesinin çarpışma karakteristiğine etkisi. 18th International Conference on Machine Design and Production, 3-6 July, Eskişehir.
  • 11. Liu, X. T., Liu, C. H., Shi, S. L., Zhao, L. H., & Huang, H. (2010, February). The analysis of front rail crash on mini-bus chassis. In Computer and Automation Engineering (ICCAE), 2010 The 2nd International Conference on (Vol. 2, pp. 14-16). IEEE.
  • 12. Öztürk, İ., & Necmettin, Kaya (2008). Otomobil ön tampon çarpışma analizi ve optimizasyonu. Uludağ University Journal of The Faculty of Engineering, 13(1).
  • 13. Ramazani, A., Mukherjee, K., Abdurakhmanov, A., Prahl, U., Schleser, M., Reisgen, U., & Bleck, W. (2014). Micro–macro-characterisation and modelling of mechanical properties of gas metal arc welded (GMAW) DP600 steel. Materials Science and Engineering: A, 589, 1-14.
  • 14. Rao Lakshmana C., Narayanamurthy V., & Simha K. R. Y. (2016). Applied Impact Mechanics . Ane Books Pvt. Ltd. (ISBN : 978-11-1924-180-5).
  • 15. Tahan, F. J., Park, C. K., Morgan, R. M., Cui, C., Brar, B., Shanks, K., & Kan, C. D. (2013). The Effect of Reduced Mass on Frontal Crashworthiness. Proceedings of the IRCOBI Conference, 2013.
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Fahri Bilbay

Murat Reis This is me

Betül Gülçimen Çakan

Mustafa Çakır This is me

Publication Date April 30, 2019
Submission Date December 6, 2018
Acceptance Date March 26, 2019
Published in Issue Year 2019 Volume: 24 Issue: 1

Cite

APA Bilbay, F., Reis, M., Gülçimen Çakan, B., Çakır, M. (2019). OTOMOBİLLERDE ÖN ÇARPIŞMA KOLU MALZEMESİ OLARAK FEE340 VE DP600 MALZEMELERİN ÇARPIŞMA PERFORMANSLARININ KARŞILAŞTIRILMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(1), 415-428. https://doi.org/10.17482/uumfd.492461
AMA Bilbay F, Reis M, Gülçimen Çakan B, Çakır M. OTOMOBİLLERDE ÖN ÇARPIŞMA KOLU MALZEMESİ OLARAK FEE340 VE DP600 MALZEMELERİN ÇARPIŞMA PERFORMANSLARININ KARŞILAŞTIRILMASI. UUJFE. April 2019;24(1):415-428. doi:10.17482/uumfd.492461
Chicago Bilbay, Fahri, Murat Reis, Betül Gülçimen Çakan, and Mustafa Çakır. “OTOMOBİLLERDE ÖN ÇARPIŞMA KOLU MALZEMESİ OLARAK FEE340 VE DP600 MALZEMELERİN ÇARPIŞMA PERFORMANSLARININ KARŞILAŞTIRILMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, no. 1 (April 2019): 415-28. https://doi.org/10.17482/uumfd.492461.
EndNote Bilbay F, Reis M, Gülçimen Çakan B, Çakır M (April 1, 2019) OTOMOBİLLERDE ÖN ÇARPIŞMA KOLU MALZEMESİ OLARAK FEE340 VE DP600 MALZEMELERİN ÇARPIŞMA PERFORMANSLARININ KARŞILAŞTIRILMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 1 415–428.
IEEE F. Bilbay, M. Reis, B. Gülçimen Çakan, and M. Çakır, “OTOMOBİLLERDE ÖN ÇARPIŞMA KOLU MALZEMESİ OLARAK FEE340 VE DP600 MALZEMELERİN ÇARPIŞMA PERFORMANSLARININ KARŞILAŞTIRILMASI”, UUJFE, vol. 24, no. 1, pp. 415–428, 2019, doi: 10.17482/uumfd.492461.
ISNAD Bilbay, Fahri et al. “OTOMOBİLLERDE ÖN ÇARPIŞMA KOLU MALZEMESİ OLARAK FEE340 VE DP600 MALZEMELERİN ÇARPIŞMA PERFORMANSLARININ KARŞILAŞTIRILMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/1 (April 2019), 415-428. https://doi.org/10.17482/uumfd.492461.
JAMA Bilbay F, Reis M, Gülçimen Çakan B, Çakır M. OTOMOBİLLERDE ÖN ÇARPIŞMA KOLU MALZEMESİ OLARAK FEE340 VE DP600 MALZEMELERİN ÇARPIŞMA PERFORMANSLARININ KARŞILAŞTIRILMASI. UUJFE. 2019;24:415–428.
MLA Bilbay, Fahri et al. “OTOMOBİLLERDE ÖN ÇARPIŞMA KOLU MALZEMESİ OLARAK FEE340 VE DP600 MALZEMELERİN ÇARPIŞMA PERFORMANSLARININ KARŞILAŞTIRILMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 24, no. 1, 2019, pp. 415-28, doi:10.17482/uumfd.492461.
Vancouver Bilbay F, Reis M, Gülçimen Çakan B, Çakır M. OTOMOBİLLERDE ÖN ÇARPIŞMA KOLU MALZEMESİ OLARAK FEE340 VE DP600 MALZEMELERİN ÇARPIŞMA PERFORMANSLARININ KARŞILAŞTIRILMASI. UUJFE. 2019;24(1):415-28.

Cited By

Crash Analysis and Size Optimization of a Vehicle’s Front Bumper System
International Journal of Automotive Science And Technology
Muhammed Talha AŞKAR
https://doi.org/10.30939/ijastech..930944

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.