Sayısal resimler üzerinde yapılan çeşitli
oynamaları tespit edebilmek, gelişen yazılımların karmaşıklığından ötürü
oldukça zorlaşmaktadır. Bu karmaşıklığa çözüm olarak klasik müdahale tespiti
yöntemlerine ek olarak son yıllarda evrişimsel sinir ağı tabanlı yöntemler
geliştirilmiştir. Böylelikle çok karmaşık müdahaleleri bile tespit edebilen
ağlar eğitilebilmiştir. Bu makalede, küçük boyutlarda pencere kullanarak
bölgesel müdahale tespiti yapabilen klasik yöntemlerden olan, kameranın
kendisine ait olan sensörlerinden elde edilen parmakizini kullanan sensör
tabanlı PRNU(Photo Response Non Uniformity) yöntemi ile yeni bir yaklaşım olan evrişimsel
sinir ağı(CNN) tabanlı kamera model sınıflandırıcısı yöntemi
karşılaştırılmıştır. Böylelikle hangi yöntemin daha başarılı olduğu detaylıca
ortaya koyulmuştur. Toplamda 26 adet kamera modeli ve bu kamera modellerinden
seçilen 96 x 96’lık piksel blokları ile eğitilen CNN modeli, hem 96 hem de
128’lik pencere boyutu kullanılarak çalışan PRNU yöntemi ile kıyaslanmıştır. Bu
kıyaslama sonucunda bölgesel müdahale tespiti probleminde CNN tabanlı kamera
model sınıflandırıcısının PRNU yöntemine göre daha başarılı olduğu
gösterilmiştir.
Lokal müdahale tespiti evrişimsel sinir ağı PRNU oynanmış bölge tespiti kamera model sınıflandırıcısı derin öğrenme
Detecting various forgeries on digital images is
becoming more difficult due to the complexity of developing software. As a
solution to this complexity, in addition to conventional detection methods,
convolutional neural network (CNN) based methods have been developed in recent
years. Thus, networks capable of detecting even very complex interventions
could be trained. In this paper, a new approach to the convolutional neural
network (CNN) based camera model classifier method is compared with the
sensor-based PRNU (Photo Response Non Uniformity) method, which is one of the
classical methods that can detect local detection using small-scale windows.
Thus, which method is more successful is revealed in detail. A total of 26
camera models and the CNN model, which was trained with 96 x 96 pixel blocks
selected from these camera models, was compared with the PRNU method using both
the 96 and 128 window size. As a result of this comparison, CNN based camera
model classifier has been shown to be more successful than PRNU method in the
local tamper detection problem.
Local tamper detection convolutional neural network PRNU image forgery camera model classifier deep learning
Primary Language | Turkish |
---|---|
Subjects | Engineering |
Journal Section | Research Articles |
Authors | |
Publication Date | August 30, 2019 |
Submission Date | January 22, 2019 |
Acceptance Date | May 30, 2019 |
Published in Issue | Year 2019 Volume: 24 Issue: 2 |
Announcements:
30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.