Research Article
BibTex RIS Cite

SAYISAL İMGELER İÇİN PRNU VE CNN TABANLI BÖLGESEL MÜDAHALE TESPİTİ

Year 2019, Volume: 24 Issue: 2, 311 - 324, 30.08.2019
https://doi.org/10.17482/uumfd.516224

Abstract

Sayısal resimler üzerinde yapılan çeşitli
oynamaları tespit edebilmek, gelişen yazılımların karmaşıklığından ötürü
oldukça zorlaşmaktadır. Bu karmaşıklığa çözüm olarak klasik müdahale tespiti
yöntemlerine ek olarak son yıllarda evrişimsel sinir ağı tabanlı yöntemler
geliştirilmiştir. Böylelikle çok karmaşık müdahaleleri bile tespit edebilen
ağlar eğitilebilmiştir. Bu makalede, küçük boyutlarda pencere kullanarak
bölgesel müdahale tespiti yapabilen klasik yöntemlerden olan, kameranın
kendisine ait olan sensörlerinden elde edilen parmakizini kullanan sensör
tabanlı PRNU(Photo Response Non Uniformity) yöntemi ile yeni bir yaklaşım olan evrişimsel
sinir ağı(CNN) tabanlı kamera model sınıflandırıcısı yöntemi
karşılaştırılmıştır. Böylelikle hangi yöntemin daha başarılı olduğu detaylıca
ortaya koyulmuştur. Toplamda 26 adet kamera modeli ve bu kamera modellerinden
seçilen 96 x 96’lık piksel blokları ile eğitilen CNN modeli, hem 96 hem de
128’lik pencere boyutu kullanılarak çalışan PRNU yöntemi ile kıyaslanmıştır. Bu
kıyaslama sonucunda bölgesel müdahale tespiti probleminde CNN tabanlı kamera
model sınıflandırıcısının PRNU yöntemine göre daha başarılı olduğu
gösterilmiştir. 

References

  • 1. Bayar, B., & Stamm, M. C. (2016, June). A deep learning approach to universal image manipulation detection using a new convolutional layer. In Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security (pp. 5-10). ACM. DOI:10.1145/2909827.2930786
  • 2. Bondi, L., Güera, D., Baroffio, L., Bestagini, P., Delp, E. J., & Tubaro, S. (2017). A preliminary study on convolutional neural networks for camera model identification. Electronic Imaging, 2017(7), 67-76. DOI: https://doi.org/10.2352/ISSN.2470-1173.2017.7.MWSF-327
  • 3. Bondi, L., Lameri, S., Güera, D., Bestagini, P., Delp, E. J., & Tubaro, S. (2017, July). Tampering detection and localization through clustering of camera-based CNN features. In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (pp. 1855-1864). IEEE. DOI: 10.1109/CVPRW.2017.232
  • 4. Bondi, L., Baroffio, L., Güera, D., Bestagini, P., Delp, E. J., & Tubaro, S. (2017). First steps toward camera model identification with convolutional neural networks. IEEE Signal Processing Letters, 24(3), 259-263. DOI: 10.1109/LSP.2016.2641006
  • 5. Dirik, A. E., & Memon, N. (2009, November). Image tamper detection based on demosaicing artifacts. In Image Processing (ICIP), 2009 16th IEEE International Conference on (pp. 1497-1500). IEEE. DOI: 10.1109/ICIP.2009.5414611
  • 6. Farid, H. (2009). Exposing digital forgeries from JPEG ghosts. IEEE transactions on information forensics and security, 4(1), 154-160. DOI: 10.1109/TIFS.2008.2012215
  • 7. Ferrara, P., Bianchi, T., De Rosa, A., & Piva, A. (2012). Image forgery localization via fine-grained analysis of CFA artifacts. IEEE Transactions on Information Forensics and Security, 7(5), 1566-1577. DOI: 10.1109/TIFS.2012.2202227
  • 8. Gloe, T., & Böhme, R. (2010, March). The'Dresden Image Database'for benchmarking digital image forensics. In Proceedings of the 2010 ACM Symposium on Applied Computing (pp. 1584-1590). ACM. Doi:10.1145/1774088.1774427
  • 9. Goljan, M., Fridrich, J., & Filler, T. (2009, February). Large scale test of sensor fingerprint camera identification. In Media Forensics and Security (Vol. 7254, p. 72540I). International Society for Optics and Photonics. Doi: 10.1117/12.805701
  • 10. Krawetz, N., & Solutions, H. F. (2007). A Picture’s Worth... Hacker Factor Solutions, 6.
  • 11. Lin, Z., He, J., Tang, X., & Tang, C. K. (2009). Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis. Pattern Recognition, 42(11), 2492-2501. Doi:https://doi.org/10.1016/j.patcog.2009.03.019
  • 12. Lukas, J., Fridrich, J., & Goljan, M. (2006). Digital camera identification from sensor pattern noise. IEEE Transactions on Information Forensics and Security, 1(2), 205-214. DOI: 10.1109/TIFS.2006.873602
  • 13. Tuama, A., Comby, F., & Chaumont, M. (2016, December). Camera model identification with the use of deep convolutional neural networks. In Information Forensics and Security (WIFS), 2016 IEEE International Workshop on (pp. 1-6). IEEE. DOI: 10.1109/WIFS.2016.7823908
  • 14. Vedaldi, A., & Lenc, K. (2015, October). Matconvnet: Convolutional neural networks for matlab. In Proceedings of the 23rd ACM international conference on Multimedia (pp. 689-692). ACM. Doi:10.1145/2733373.2807412
  • 15. Liu, Y., Guan, Q., Zhao, X., & Cao, Y. (2018, June). Image forgery localization based on multi-scale convolutional neural networks. In Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security (pp. 85-90). ACM. Doi:10.1145/3206004.3206010
  • 16. Ye, S., Sun, Q., & Chang, E. C. (2007, July). Detecting digital image forgeries by measuring inconsistencies of blocking artifact. In Multimedia and Expo, 2007 IEEE International Conference on (pp. 12-15). IEEE. DOI: 10.1109/ICME.2007.4284574

PRNU and CNN Based Local Tamper Detection For Digital Images

Year 2019, Volume: 24 Issue: 2, 311 - 324, 30.08.2019
https://doi.org/10.17482/uumfd.516224

Abstract

Detecting various forgeries on digital images is
becoming more difficult due to the complexity of developing software. As a
solution to this complexity, in addition to conventional detection methods,
convolutional neural network (CNN) based methods have been developed in recent
years. Thus, networks capable of detecting even very complex interventions
could be trained. In this paper, a new approach to the convolutional neural
network (CNN) based camera model classifier method is compared with the
sensor-based PRNU (Photo Response Non Uniformity) method, which is one of the
classical methods that can detect local detection using small-scale windows.
Thus, which method is more successful is revealed in detail. A total of 26
camera models and the CNN model, which was trained with 96 x 96 pixel blocks
selected from these camera models, was compared with the PRNU method using both
the 96 and 128 window size. As a result of this comparison, CNN based camera
model classifier has been shown to be more successful than PRNU method in the
local tamper detection problem.

References

  • 1. Bayar, B., & Stamm, M. C. (2016, June). A deep learning approach to universal image manipulation detection using a new convolutional layer. In Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security (pp. 5-10). ACM. DOI:10.1145/2909827.2930786
  • 2. Bondi, L., Güera, D., Baroffio, L., Bestagini, P., Delp, E. J., & Tubaro, S. (2017). A preliminary study on convolutional neural networks for camera model identification. Electronic Imaging, 2017(7), 67-76. DOI: https://doi.org/10.2352/ISSN.2470-1173.2017.7.MWSF-327
  • 3. Bondi, L., Lameri, S., Güera, D., Bestagini, P., Delp, E. J., & Tubaro, S. (2017, July). Tampering detection and localization through clustering of camera-based CNN features. In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (pp. 1855-1864). IEEE. DOI: 10.1109/CVPRW.2017.232
  • 4. Bondi, L., Baroffio, L., Güera, D., Bestagini, P., Delp, E. J., & Tubaro, S. (2017). First steps toward camera model identification with convolutional neural networks. IEEE Signal Processing Letters, 24(3), 259-263. DOI: 10.1109/LSP.2016.2641006
  • 5. Dirik, A. E., & Memon, N. (2009, November). Image tamper detection based on demosaicing artifacts. In Image Processing (ICIP), 2009 16th IEEE International Conference on (pp. 1497-1500). IEEE. DOI: 10.1109/ICIP.2009.5414611
  • 6. Farid, H. (2009). Exposing digital forgeries from JPEG ghosts. IEEE transactions on information forensics and security, 4(1), 154-160. DOI: 10.1109/TIFS.2008.2012215
  • 7. Ferrara, P., Bianchi, T., De Rosa, A., & Piva, A. (2012). Image forgery localization via fine-grained analysis of CFA artifacts. IEEE Transactions on Information Forensics and Security, 7(5), 1566-1577. DOI: 10.1109/TIFS.2012.2202227
  • 8. Gloe, T., & Böhme, R. (2010, March). The'Dresden Image Database'for benchmarking digital image forensics. In Proceedings of the 2010 ACM Symposium on Applied Computing (pp. 1584-1590). ACM. Doi:10.1145/1774088.1774427
  • 9. Goljan, M., Fridrich, J., & Filler, T. (2009, February). Large scale test of sensor fingerprint camera identification. In Media Forensics and Security (Vol. 7254, p. 72540I). International Society for Optics and Photonics. Doi: 10.1117/12.805701
  • 10. Krawetz, N., & Solutions, H. F. (2007). A Picture’s Worth... Hacker Factor Solutions, 6.
  • 11. Lin, Z., He, J., Tang, X., & Tang, C. K. (2009). Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis. Pattern Recognition, 42(11), 2492-2501. Doi:https://doi.org/10.1016/j.patcog.2009.03.019
  • 12. Lukas, J., Fridrich, J., & Goljan, M. (2006). Digital camera identification from sensor pattern noise. IEEE Transactions on Information Forensics and Security, 1(2), 205-214. DOI: 10.1109/TIFS.2006.873602
  • 13. Tuama, A., Comby, F., & Chaumont, M. (2016, December). Camera model identification with the use of deep convolutional neural networks. In Information Forensics and Security (WIFS), 2016 IEEE International Workshop on (pp. 1-6). IEEE. DOI: 10.1109/WIFS.2016.7823908
  • 14. Vedaldi, A., & Lenc, K. (2015, October). Matconvnet: Convolutional neural networks for matlab. In Proceedings of the 23rd ACM international conference on Multimedia (pp. 689-692). ACM. Doi:10.1145/2733373.2807412
  • 15. Liu, Y., Guan, Q., Zhao, X., & Cao, Y. (2018, June). Image forgery localization based on multi-scale convolutional neural networks. In Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security (pp. 85-90). ACM. Doi:10.1145/3206004.3206010
  • 16. Ye, S., Sun, Q., & Chang, E. C. (2007, July). Detecting digital image forgeries by measuring inconsistencies of blocking artifact. In Multimedia and Expo, 2007 IEEE International Conference on (pp. 12-15). IEEE. DOI: 10.1109/ICME.2007.4284574
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Ahmet Gökhan Poyraz

Publication Date August 30, 2019
Submission Date January 22, 2019
Acceptance Date May 30, 2019
Published in Issue Year 2019 Volume: 24 Issue: 2

Cite

APA Poyraz, A. G. (2019). SAYISAL İMGELER İÇİN PRNU VE CNN TABANLI BÖLGESEL MÜDAHALE TESPİTİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), 311-324. https://doi.org/10.17482/uumfd.516224
AMA Poyraz AG. SAYISAL İMGELER İÇİN PRNU VE CNN TABANLI BÖLGESEL MÜDAHALE TESPİTİ. UUJFE. August 2019;24(2):311-324. doi:10.17482/uumfd.516224
Chicago Poyraz, Ahmet Gökhan. “SAYISAL İMGELER İÇİN PRNU VE CNN TABANLI BÖLGESEL MÜDAHALE TESPİTİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, no. 2 (August 2019): 311-24. https://doi.org/10.17482/uumfd.516224.
EndNote Poyraz AG (August 1, 2019) SAYISAL İMGELER İÇİN PRNU VE CNN TABANLI BÖLGESEL MÜDAHALE TESPİTİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 2 311–324.
IEEE A. G. Poyraz, “SAYISAL İMGELER İÇİN PRNU VE CNN TABANLI BÖLGESEL MÜDAHALE TESPİTİ”, UUJFE, vol. 24, no. 2, pp. 311–324, 2019, doi: 10.17482/uumfd.516224.
ISNAD Poyraz, Ahmet Gökhan. “SAYISAL İMGELER İÇİN PRNU VE CNN TABANLI BÖLGESEL MÜDAHALE TESPİTİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/2 (August 2019), 311-324. https://doi.org/10.17482/uumfd.516224.
JAMA Poyraz AG. SAYISAL İMGELER İÇİN PRNU VE CNN TABANLI BÖLGESEL MÜDAHALE TESPİTİ. UUJFE. 2019;24:311–324.
MLA Poyraz, Ahmet Gökhan. “SAYISAL İMGELER İÇİN PRNU VE CNN TABANLI BÖLGESEL MÜDAHALE TESPİTİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 24, no. 2, 2019, pp. 311-24, doi:10.17482/uumfd.516224.
Vancouver Poyraz AG. SAYISAL İMGELER İÇİN PRNU VE CNN TABANLI BÖLGESEL MÜDAHALE TESPİTİ. UUJFE. 2019;24(2):311-24.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.