CORROSION BEHAVIOR OF ANNEALED STAINLESS STEEL MESH IN DIFFERENT ELECTROLYTES
Year 2020,
Volume: 25 Issue: 1, 501 - 510, 30.04.2020
Abdulcabbar Yavuz
,
Kaan Kaplan
,
Sitki Aktas
Abstract
The aim of this study was to investigate the
corrosion behaviour of annealed stainless steel mesh. Thermal oxidation
treatments were applied to steel mesh in a muffle furnace at 500 ᵒC, 700 ᵒC and
900 ᵒC. Surface morphology of annealed and non-annealed stainless steel meshes
was compared before and after polarization. Roughness of the steel surface was
increased after heat-treatment. The corrosion properties of non-annealed and
annealed steel were determined using linear sweep voltammetry. The corrosion behaviour
of annealed stainless steel was examined by means of a potentiostat in a 3.5
wt.% NaCl, 1 M H2SO4 and 1 M KOH electrolytes. The corrosion susceptibility of heat treated
stainless steel was more than that of non-heat treated stainless steel in
alkaline electrolyte. While pitting corrosion of non-annealed and annealed
stainless steel was different, corrosion potential and current of steel mesh
without heat treatment was the same as the steel meshes annealed at 500 ᵒC and
700 ᵒC. Corrosion current and corrosion potential of non-annealed steel was the
same as 500 ᵒC annealed steel mesh in acidic medium.
References
- 1. Askari, M. B., Beheshti-Marnani, A., Seifi, M., Rozati, S. M., & Salarizadeh, P. (2019). Fe3O4@ MoS2/RGO as an effective nano-electrocatalyst toward electrochemical hydrogen evolution reaction and methanol oxidation in two settings for fuel cell application. Journal of Colloid and Interface Science, 537, 186–196.
- 2. Biswas, A., Mourya, P., Mondal, D., Pal, S., & Udayabhanu, G. (2018). Grafting effect of gum acacia on mild steel corrosion in acidic medium: Gravimetric and electrochemical study. Journal of Molecular Liquids, 251, 470–479.
- 3. Bregliozzi, G., Di Schino, A., Ahmed, S.-U., Kenny, J. M., & Haefke, H. (2005). Cavitation wear behaviour of austenitic stainless steels with different grain sizes. Wear, 258(1–4), 503–510.
- 4. Devikala, S., Kamaraj, P., Arthanareeswari, M., & Patel, M. B. (2019). Green corrosion inhibition of mild steel by aqueous Allium sativum extract in 3.5% NaCl. Materials Today: Proceedings, 14, 580–589.
- 5. Du, X., Wang, C., Chen, M., Jiao, Y., & Wang, J. (2009). Electrochemical performances of nanoparticle Fe3O4/activated carbon supercapacitor using KOH electrolyte solution. The Journal of Physical Chemistry C, 113(6), 2643–2646.
- 6. Eskandari, M., Najafizadeh, A., Kermanpur, A., & Karimi, M. (2009). Potential application of nanocrystalline 301 austenitic stainless steel in lightweight vehicle structures. Materials & Design, 30(9), 3869–3872.
- 7. Ferreira, M. G. S., Hakiki, N. E., Goodlet, G., Faty, S., Simoes, A. M. P., & Belo, M. D. C. (2001). Influence of the temperature of film formation on the electronic structure of oxide films formed on 304 stainless steel. Electrochimica Acta, 46(24–25), 3767–3776.
- 8. Fiore, M., Longoni, G., Santangelo, S., Pantò, F., Stelitano, S., Frontera, P., Antonucci, P., & Ruffo, R. (2018). Electrochemical characterization of highly abundant, low cost iron (III) oxide as anode material for sodium-ion rechargeable batteries. Electrochimica Acta, 269, 367–377.
- 9. Hamadou, L., Kadri, A., & Benbrahim, N. (2010). Impedance investigation of thermally formed oxide films on AISI 304L stainless steel. Corrosion Science, 52(3), 859–864. https://doi.org/10.1016/j.corsci.2009.11.004
- 10. Hassan, N., Ali, S. M., Ebrahim, A., & El-Adwy, H. (2019). Performance evaluation and optimization of Camellia sinensis extract as green corrosion inhibitor for mild steel in acidic medium. Materials Research Express, 6(8), 0865c7.
- 11. Hassanien, A. S., & Akl, A. A. (2018). Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate temperatures. Applied Physics A, 124(11), 752.
- 12. Hermas, A. A., Ogura, K., Takagi, S., & Adachi, T. (1995). Effects of alloying additions on corrosion and passivation behaviors of type 304 stainless steel. Corrosion, 51(1), 3–10.
- 13. Karlsson, B., & Ribbing, C. G. (1982). Optical constants and spectral selectivity of stainless steel and its oxides. Journal of Applied Physics, 53(9), 6340–6346. https://doi.org/10.1063/1.331503
- 14. Köçkar, H., Karaagac, O., & Özel, F. (2019). Effects of biocompatible surfactants on structural and corresponding magnetic properties of iron oxide nanoparticles coated by hydrothermal process. Journal of Magnetism and Magnetic Materials, 474, 332–336.
- 15. Lassoued, A., Lassoued, M. S., Dkhil, B., Ammar, S., & Gadri, A. (2018). Synthesis, structural, morphological, optical and magnetic characterization of iron oxide (α-Fe2O3) nanoparticles by precipitation method: effect of varying the nature of precursor. Physica E: Low-Dimensional Systems and Nanostructures, 97, 328–334.
- 16. Lin, J., Silvertsen, J., & Judy, J. (1985). Properties of RF sputtered iron oxide thin films with CoCr and Nb as dopants. IEEE Transactions on Magnetics, 21(5), 1462–1464.
- 17. Lindner, T., Kutschmann, P., Löbel, M., & Lampke, T. (2018). Hardening of HVOF-sprayed austenitic stainless-steel coatings by gas nitriding. Coatings, 8(10), 348.
- 18. Liu, L., Lang, J., Zhang, P., Hu, B., & Yan, X. (2016). Facile synthesis of Fe2O3 nano-dots@ nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte. ACS Applied Materials & Interfaces, 8(14), 9335–9344.
- 19. Lo, K. H., Shek, C. H., & Lai, J. K. L. (2009). Recent developments in stainless steels. Materials Science and Engineering: R: Reports, 65(4–6), 39–104.
- 20. López-Sánchez, J., Serrano, A., del Campo, A., Abuín, M., Salas-Colera, E., Muñoz-Noval, A., Castro, G. R., de la Figuera, J., Marco, J. F., & Marín, P. (2019). Self-assembly of iron oxide precursor micelles driven by magnetic stirring time in sol–gel coatings. RSC Advances, 9(31), 17571–17580.
- 21. Martinez, L., Leinen, D., Martin, F., Gabas, M., Ramos-Barrado, J. R., Quagliata, E., & Dalchiele, E. A. (2007). Electrochemical growth of diverse iron oxide (Fe3O4, α-FeOOH, and γ-FeOOH) thin films by electrodeposition potential tuning. Journal of the Electrochemical Society, 154(3), D126–D133.
- 22. Muhaffel, F., & Cimenoglu, H. (2019). Development of corrosion and wear resistant micro-arc oxidation coating on a magnesium alloy. Surface and Coatings Technology, 357, 822–832.
- 23. Pardo, A., Merino, M. C., Coy, A. E., Viejo, F., Arrabal, R., & Matykina, E. (2008). Pitting corrosion behaviour of austenitic stainless steels–combining effects of Mn and Mo additions. Corrosion Science, 50(6), 1796–1806.
- 24. Phul, R., Shrivastava, V., Farooq, U., Sardar, M., Kalam, A., Al-Sehemi, A. G., & Ahmad, T. (2019). One pot synthesis and surface modification of mesoporous iron oxide nanoparticles. Nano-Structures & Nano-Objects, 19, 100343.
- 25. Pippenger, B. E., Rottmar, M., Kopf, B. S., Stübinger, S., Dalla Torre, F. H., Berner, S., & Maniura‐Weber, K. (2019). Surface modification of ultrafine‐grained titanium: Influence on mechanical properties, cytocompatibility, and osseointegration potential. Clinical Oral Implants Research, 30(1), 99–110.
- 26. Saad, I. R., Abdel-Gaber, A. M., Younes, G. O., & Nsouli, B. (2018). Corrosion Inhibition of Mild Steel in Acidic Solutions Using 1, 2, 4-Triazolo [1, 5-a] pyrimidine. Russian Journal of Applied Chemistry, 91(2), 245–252.
- 27. Tartaj, P., Morales, M. P., Gonzalez‐Carreño, T., Veintemillas‐Verdaguer, S., & Serna, C. J. (2011). The iron oxides strike back: from biomedical applications to energy storage devices and photoelectrochemical water splitting. Advanced Materials, 23(44), 5243–5249.
- 28. Vesel, A., Mozetic, M., Drenik, A., Hauptman, N., & Balat-Pichelin, M. (2008). High temperature oxidation of stainless steel AISI316L in air plasma. Applied Surface Science, 255(5 PART 1), 1759–1765. https://doi.org/10.1016/j.apsusc.2008.06.017
- 29. Yang, J., Lu, Y., Guo, Z., Gu, J., & Gu, C. (2018). Corrosion behaviour of a quenched and partitioned medium carbon steel in 3.5 wt.% NaCl solution. Corrosion Science, 130, 64–75.
- 30. Yu, L., Han, R., Sang, X., Liu, J., Thomas, M. P., Hudak, B. M., Patel, A., Page, K., & Guiton, B. S. (2018). Shell-induced Ostwald ripening: simultaneous structure, composition, and morphology transformations during the creation of hollow iron oxide nanocapsules. ACS Nano, 12(9), 9051–9059.
- 31. Zhang, G., Wu, L., Tang, A., Ma, Y., Song, G.-L., Zheng, D., Jiang, B., Atrens, A., & Pan, F. (2018). Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31. Corrosion Science, 139, 370–382.
- 32. Zhou, G., & Yang, J. C. (2004). Temperature effects on the growth of oxide islands on Cu (1 1 0). Applied Surface Science, 222(1–4), 357–364.
Paslanmaz Çelik Ağının Farklı Elektrolitler İçerisindeki Elektrokimyasal Davranışları
Year 2020,
Volume: 25 Issue: 1, 501 - 510, 30.04.2020
Abdulcabbar Yavuz
,
Kaan Kaplan
,
Sitki Aktas
Abstract
Bu çalışmanın amacı, tavlanmış paslanmaz çelik ağın
korozyon davranışını incelemektir. Çelik ağa 500 ᵒC, 700 ᵒC ve 900 ᵒC'de bir
kül fırını içerisinde termal oksidasyon işlemleri uygulanmıştır. Tavlanmış ve
tavlanmamış paslanmaz çelik ağların yüzey morfolojisi Elektrokimyasal
polarizasyondan önce ve sonra karşılaştırılmıştır. Isıl işlemden sonra çelik
yüzeyin pürüzlülüğü artmıştır. Tavlanmamış ve tavlanmış çeliğin korozyon
özellikleri doğrusal tarama voltametrisi kullanılarak belirlenmiştir. Tavlı
paslanmaz çeliğin korozyon davranışı, ağırlıkça % 3.5'lik NaCl, 1 M H2SO4
ve 1 M KOH elektrolitlerinde bir potansiyostat ile incelenmiştir. Isıl işlem
görmüş paslanmaz çeliğin korozyon duyarlılığı, alkalin elektrolitte ısıl işlem
görmemiş paslanmaz çeliğinkinden daha fazlaydı. Tavlanmamış ve tavlanmış
paslanmaz çeliğin çukur korozyonu farklıyken, ısıl işlem uygulanmayan çelik
ağın korozyon akımı ve korozyon potansiyeli 500 ᵒC ve 700 ᵒC'de tavlanan çelik
ağlarla aynıydı. Tavlanmamış çeliğin korozyon akımı ve korozyon potansiyeli
asidik ortamda 500 ᵒC tavlanmış çelik ağınkiyle aynıydı.
References
- 1. Askari, M. B., Beheshti-Marnani, A., Seifi, M., Rozati, S. M., & Salarizadeh, P. (2019). Fe3O4@ MoS2/RGO as an effective nano-electrocatalyst toward electrochemical hydrogen evolution reaction and methanol oxidation in two settings for fuel cell application. Journal of Colloid and Interface Science, 537, 186–196.
- 2. Biswas, A., Mourya, P., Mondal, D., Pal, S., & Udayabhanu, G. (2018). Grafting effect of gum acacia on mild steel corrosion in acidic medium: Gravimetric and electrochemical study. Journal of Molecular Liquids, 251, 470–479.
- 3. Bregliozzi, G., Di Schino, A., Ahmed, S.-U., Kenny, J. M., & Haefke, H. (2005). Cavitation wear behaviour of austenitic stainless steels with different grain sizes. Wear, 258(1–4), 503–510.
- 4. Devikala, S., Kamaraj, P., Arthanareeswari, M., & Patel, M. B. (2019). Green corrosion inhibition of mild steel by aqueous Allium sativum extract in 3.5% NaCl. Materials Today: Proceedings, 14, 580–589.
- 5. Du, X., Wang, C., Chen, M., Jiao, Y., & Wang, J. (2009). Electrochemical performances of nanoparticle Fe3O4/activated carbon supercapacitor using KOH electrolyte solution. The Journal of Physical Chemistry C, 113(6), 2643–2646.
- 6. Eskandari, M., Najafizadeh, A., Kermanpur, A., & Karimi, M. (2009). Potential application of nanocrystalline 301 austenitic stainless steel in lightweight vehicle structures. Materials & Design, 30(9), 3869–3872.
- 7. Ferreira, M. G. S., Hakiki, N. E., Goodlet, G., Faty, S., Simoes, A. M. P., & Belo, M. D. C. (2001). Influence of the temperature of film formation on the electronic structure of oxide films formed on 304 stainless steel. Electrochimica Acta, 46(24–25), 3767–3776.
- 8. Fiore, M., Longoni, G., Santangelo, S., Pantò, F., Stelitano, S., Frontera, P., Antonucci, P., & Ruffo, R. (2018). Electrochemical characterization of highly abundant, low cost iron (III) oxide as anode material for sodium-ion rechargeable batteries. Electrochimica Acta, 269, 367–377.
- 9. Hamadou, L., Kadri, A., & Benbrahim, N. (2010). Impedance investigation of thermally formed oxide films on AISI 304L stainless steel. Corrosion Science, 52(3), 859–864. https://doi.org/10.1016/j.corsci.2009.11.004
- 10. Hassan, N., Ali, S. M., Ebrahim, A., & El-Adwy, H. (2019). Performance evaluation and optimization of Camellia sinensis extract as green corrosion inhibitor for mild steel in acidic medium. Materials Research Express, 6(8), 0865c7.
- 11. Hassanien, A. S., & Akl, A. A. (2018). Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate temperatures. Applied Physics A, 124(11), 752.
- 12. Hermas, A. A., Ogura, K., Takagi, S., & Adachi, T. (1995). Effects of alloying additions on corrosion and passivation behaviors of type 304 stainless steel. Corrosion, 51(1), 3–10.
- 13. Karlsson, B., & Ribbing, C. G. (1982). Optical constants and spectral selectivity of stainless steel and its oxides. Journal of Applied Physics, 53(9), 6340–6346. https://doi.org/10.1063/1.331503
- 14. Köçkar, H., Karaagac, O., & Özel, F. (2019). Effects of biocompatible surfactants on structural and corresponding magnetic properties of iron oxide nanoparticles coated by hydrothermal process. Journal of Magnetism and Magnetic Materials, 474, 332–336.
- 15. Lassoued, A., Lassoued, M. S., Dkhil, B., Ammar, S., & Gadri, A. (2018). Synthesis, structural, morphological, optical and magnetic characterization of iron oxide (α-Fe2O3) nanoparticles by precipitation method: effect of varying the nature of precursor. Physica E: Low-Dimensional Systems and Nanostructures, 97, 328–334.
- 16. Lin, J., Silvertsen, J., & Judy, J. (1985). Properties of RF sputtered iron oxide thin films with CoCr and Nb as dopants. IEEE Transactions on Magnetics, 21(5), 1462–1464.
- 17. Lindner, T., Kutschmann, P., Löbel, M., & Lampke, T. (2018). Hardening of HVOF-sprayed austenitic stainless-steel coatings by gas nitriding. Coatings, 8(10), 348.
- 18. Liu, L., Lang, J., Zhang, P., Hu, B., & Yan, X. (2016). Facile synthesis of Fe2O3 nano-dots@ nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte. ACS Applied Materials & Interfaces, 8(14), 9335–9344.
- 19. Lo, K. H., Shek, C. H., & Lai, J. K. L. (2009). Recent developments in stainless steels. Materials Science and Engineering: R: Reports, 65(4–6), 39–104.
- 20. López-Sánchez, J., Serrano, A., del Campo, A., Abuín, M., Salas-Colera, E., Muñoz-Noval, A., Castro, G. R., de la Figuera, J., Marco, J. F., & Marín, P. (2019). Self-assembly of iron oxide precursor micelles driven by magnetic stirring time in sol–gel coatings. RSC Advances, 9(31), 17571–17580.
- 21. Martinez, L., Leinen, D., Martin, F., Gabas, M., Ramos-Barrado, J. R., Quagliata, E., & Dalchiele, E. A. (2007). Electrochemical growth of diverse iron oxide (Fe3O4, α-FeOOH, and γ-FeOOH) thin films by electrodeposition potential tuning. Journal of the Electrochemical Society, 154(3), D126–D133.
- 22. Muhaffel, F., & Cimenoglu, H. (2019). Development of corrosion and wear resistant micro-arc oxidation coating on a magnesium alloy. Surface and Coatings Technology, 357, 822–832.
- 23. Pardo, A., Merino, M. C., Coy, A. E., Viejo, F., Arrabal, R., & Matykina, E. (2008). Pitting corrosion behaviour of austenitic stainless steels–combining effects of Mn and Mo additions. Corrosion Science, 50(6), 1796–1806.
- 24. Phul, R., Shrivastava, V., Farooq, U., Sardar, M., Kalam, A., Al-Sehemi, A. G., & Ahmad, T. (2019). One pot synthesis and surface modification of mesoporous iron oxide nanoparticles. Nano-Structures & Nano-Objects, 19, 100343.
- 25. Pippenger, B. E., Rottmar, M., Kopf, B. S., Stübinger, S., Dalla Torre, F. H., Berner, S., & Maniura‐Weber, K. (2019). Surface modification of ultrafine‐grained titanium: Influence on mechanical properties, cytocompatibility, and osseointegration potential. Clinical Oral Implants Research, 30(1), 99–110.
- 26. Saad, I. R., Abdel-Gaber, A. M., Younes, G. O., & Nsouli, B. (2018). Corrosion Inhibition of Mild Steel in Acidic Solutions Using 1, 2, 4-Triazolo [1, 5-a] pyrimidine. Russian Journal of Applied Chemistry, 91(2), 245–252.
- 27. Tartaj, P., Morales, M. P., Gonzalez‐Carreño, T., Veintemillas‐Verdaguer, S., & Serna, C. J. (2011). The iron oxides strike back: from biomedical applications to energy storage devices and photoelectrochemical water splitting. Advanced Materials, 23(44), 5243–5249.
- 28. Vesel, A., Mozetic, M., Drenik, A., Hauptman, N., & Balat-Pichelin, M. (2008). High temperature oxidation of stainless steel AISI316L in air plasma. Applied Surface Science, 255(5 PART 1), 1759–1765. https://doi.org/10.1016/j.apsusc.2008.06.017
- 29. Yang, J., Lu, Y., Guo, Z., Gu, J., & Gu, C. (2018). Corrosion behaviour of a quenched and partitioned medium carbon steel in 3.5 wt.% NaCl solution. Corrosion Science, 130, 64–75.
- 30. Yu, L., Han, R., Sang, X., Liu, J., Thomas, M. P., Hudak, B. M., Patel, A., Page, K., & Guiton, B. S. (2018). Shell-induced Ostwald ripening: simultaneous structure, composition, and morphology transformations during the creation of hollow iron oxide nanocapsules. ACS Nano, 12(9), 9051–9059.
- 31. Zhang, G., Wu, L., Tang, A., Ma, Y., Song, G.-L., Zheng, D., Jiang, B., Atrens, A., & Pan, F. (2018). Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31. Corrosion Science, 139, 370–382.
- 32. Zhou, G., & Yang, J. C. (2004). Temperature effects on the growth of oxide islands on Cu (1 1 0). Applied Surface Science, 222(1–4), 357–364.