Research Article
BibTex RIS Cite

Malzeme Özelliklerinin Titreşim Testi Verilerine Dayalı Model Kalibrasyon Yöntemiyle Belirlenmesi

Year 2020, Volume: 25 Issue: 1, 573 - 590, 30.04.2020
https://doi.org/10.17482/uumfd.643339

Abstract

Günümüzde yapılarda çok farklı türde yapı malzemeleri kullanılabilmektedir. Malzemelerin mekanik özellikleri değişkenlik göstermektedir. Bu nedenle malzeme özelliklerinin doğru olarak belirlenmesi oldukça önemlidir. Malzeme özelliklerinin tanımlanmasında kullanılan başlıca parametre elastisite modülüdür. Bu çalışmada, yapı elemanlarının elastisite modülü çevresel titreşim testi verilerinden elde edilen dinamik karakteristikler kullanılarak model kalibrasyon yöntemiyle belirlenmiştir. Önerilen yöntemin uygulaması bir çelik yapı elemanı üzerinde sunulmuştur. İlk olarak seçilen çelik yapı elemanı üzerinde çevresel titreşim testi yapılarak deneysel olarak doğal frekanslar elde edilmiştir. Deneysel ölçümler için ivmeölçerlerden ve sinyal toplama ünitesi olarak kullanılan elektronik devreden oluşan bir ölçüm sistemi tasarlanmıştır. Bu ölçüm sistemiyle alınan veriler bilgisayar ortamına aktarılmış ve Matlab programında analiz edilmiştir. SAP2000 paket programı kullanılarak sonlu eleman yöntemiyle de teorik doğal frekanslar bulunmuştur. Deneysel ve teorik sonuçlar arasındaki fark, Matlab programında oluşturulan yazılım aracılığıyla SAP2000 programında oluşturulan sonlu eleman modelinde elastisite modülü değiştirilerek yapılan tekrarlı analizler sonucunda en aza indirilmiştir. Bu işlemler sonucunda çelik elemanın kalibre edilmiş sonlu eleman modeli ve elastisite modülü elde edilmiştir.

References

  • 1. Brownjohn, J. M. and Xia, P. Q. (2000) Dynamic Assessment of Curved Cable-Stayed Bridge by Model Updating, Journal of Structural Engineering, 126, 2, 252-260. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:2(252)
  • 2. Gibson, R. F. (2000) Modal Vibration Response Measurements for Characterization of Composite Materials and Structures, Composites science and technology, 60, 15, 2769-2780. https://doi.org/10.1016/S0266-3538(00)00092-0
  • 3. Kaewunruen, S. and Remennikov, A. (2005) Application of Experimental Modal Testing for Estimating Dynamic Properties of Structural Components, Australian Structural Engineering Conference, Newcastle, Australia. https://ro.uow.edu.au/engpapers/283/
  • 4. Shi, Y., Sol, H. and Hua, H. (2006) Material Parameter Identification of Sandwich Beams by an Inverse Method, Journal of Sound and Vibration, 290(3-5), 1234-1255. https://doi.org/10.1016/j.jsv.2005.05.026
  • 5. Bayraktar, A., Altunışık, A. C., Türker, T. and Sevim, B. (2007) Effect of Finite Element Model Improvement to the Earthquake Behavior of Historical Bridges, Sixth National Earthquake Engineering Conference, October, Istanbul, Proceedings Book: 29-39
  • 6. Abeele, V. D. F., Oliveira J. J. R. and Huertos F. J. (2010) Identification of the Complex Moduli of Orthotropic Materials Using Modal Analysis, Excerpt from the Proceedings of the COMSOL Conference, Paris
  • 7. Türker, T. (2011). Structural Damage Detection and Evaluation by Using Ambient Vibration Data, PhD. Thesis, Karadeniz Technical University, Institute of Science and Technology, Trabzon, Turkey
  • 8. Dos Santos, J. P. L., Amaral, P. M., Diogo, A. C. and Rosa, L. G. (2013) Comparison of Young’s Moduli of Engineered Stones Using Different Test Methods, In Key Engineering Materials, 548, 220-230, Trans Tech Publications. https://doi.org/10.4028/www.scientific.net/KEM.548.220
  • 9. Türker, T., Bayraktar, A., Kocaman, İ. and Çoruhlu, B. (2015) Experimental and Analytical Investigation of the Dynamic Behavior of the Scale Masonry Belt Bridge Model, 5. Strengthening of Historical Artifacts and Safely Transferring to the Future Symposium, Erzurum, Proceedings: 113-126
  • 10. Kömür, M. A. and Deneme, İ. O. (2015) Operational Modal Analysis of Symmetric and Non-Symmetrical Steel Structures, Ömer Halisdemir University Journal of Engineering Sciences, 5, 1, 64-72
  • 11. Prashant, S. W., Chougule, V. N. and Mitra, A. C. (2015) Investigation on Modal Parameters of Rectangular Cantilever Beam Using Experimental Modal Analysis, Materials Today: Proceedings, 2 (4-5), 2121-2130. https://doi.org/10.1016/j.matpr.2015.07.214
  • 12. Mansour, G., Tsongas, K. and Tzetzis, D. (2016) Modal Testing of Nanocomposite Materials Through an Optimization Algorithm, Measurement, 91, 31-38. https://doi.org/10.1016/j.measurement.2016.05.032
  • 13. Türker T. and Bayraktar A. (2017) Vibration Based Modal Testing of a Scaled Reinforced Concrete Building for Construction Stages, Bulletin of Earthquake Engineering, no.5, pp.1-18. https://doi.org/10.1007/s10518-015-9852-9
  • 14. Slim, M., Alhussein, A., Billard, A., Sanchette, F. and François, M. (2017) On the Determination of Young’s Modulus of Thin Films with Impulse Excitation Technique, Journal of Materials Research, 32, 3, 497-511. https://doi.org/10.1557/jmr.2016.442
  • 15. Matlab, (1999). Mathworks Inc, MATLAB User Guide, Natick, MA
  • 16. Proteus, (2017). Beechcroft House 21 Hardy Grange Grassington North Yorkshire BD23 5AJ, https://www.labcenter.com/contact
  • 17. Yanik, Y., (2018). Determination By Modal Calibration Method Based Upon Vibration Test Data of Material Properties, Master Thesis, Karadeniz Technical University, Institute of Science and Technology, Trabzon
  • 18. OMA, (2006). Operational Modal Analysis, Release 4.0. Structural Vibration Solution A/S, Denmark.
  • 19. SAP2000, (2008). Integrated Finite Element Analysis and Design of Structures, Computers and Structures Inc, Berkeley, California, USA

Identification Material Properties By Modal Calibration Method Based On Ambient Vibration Tests

Year 2020, Volume: 25 Issue: 1, 573 - 590, 30.04.2020
https://doi.org/10.17482/uumfd.643339

Abstract

Nowadays, different structural members can be used in structures. The mechanical properties of the materials are variable. For this reason, it is very important to identify the material properties correctly. The main parameter used to define the material properties is the elasticity modulus. In this study, the elasticity modulus of structural members was determined by Model Calibration Method using dynamic characteristics obtained from Ambient Vibration Test data. The application of the proposed method was presented on a steel structure member. First of all, experimental natural frequencies were obtained by conducting Environmental Vibration Test on the selected model. A measurement system consisting of accelerometers for experimental measurements and an electronic circuit used as signal collection unit are designed. The data obtained from this measurement system were transferred to the computer environment and analyzed in the Matlab program. Using the SAP2000 package program, the theoretical natural frequencies were found by Finite Element Method. The difference between the experimental and theoretical results was reduced to the lowest as a result of repeated analysis by modifying the elasticity modulus in the Finite Element model created in SAP2000 program via software generated in Matlab. The calibrated finite element model and the elasticity modulus of the steel structural member are determined by the process.

References

  • 1. Brownjohn, J. M. and Xia, P. Q. (2000) Dynamic Assessment of Curved Cable-Stayed Bridge by Model Updating, Journal of Structural Engineering, 126, 2, 252-260. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:2(252)
  • 2. Gibson, R. F. (2000) Modal Vibration Response Measurements for Characterization of Composite Materials and Structures, Composites science and technology, 60, 15, 2769-2780. https://doi.org/10.1016/S0266-3538(00)00092-0
  • 3. Kaewunruen, S. and Remennikov, A. (2005) Application of Experimental Modal Testing for Estimating Dynamic Properties of Structural Components, Australian Structural Engineering Conference, Newcastle, Australia. https://ro.uow.edu.au/engpapers/283/
  • 4. Shi, Y., Sol, H. and Hua, H. (2006) Material Parameter Identification of Sandwich Beams by an Inverse Method, Journal of Sound and Vibration, 290(3-5), 1234-1255. https://doi.org/10.1016/j.jsv.2005.05.026
  • 5. Bayraktar, A., Altunışık, A. C., Türker, T. and Sevim, B. (2007) Effect of Finite Element Model Improvement to the Earthquake Behavior of Historical Bridges, Sixth National Earthquake Engineering Conference, October, Istanbul, Proceedings Book: 29-39
  • 6. Abeele, V. D. F., Oliveira J. J. R. and Huertos F. J. (2010) Identification of the Complex Moduli of Orthotropic Materials Using Modal Analysis, Excerpt from the Proceedings of the COMSOL Conference, Paris
  • 7. Türker, T. (2011). Structural Damage Detection and Evaluation by Using Ambient Vibration Data, PhD. Thesis, Karadeniz Technical University, Institute of Science and Technology, Trabzon, Turkey
  • 8. Dos Santos, J. P. L., Amaral, P. M., Diogo, A. C. and Rosa, L. G. (2013) Comparison of Young’s Moduli of Engineered Stones Using Different Test Methods, In Key Engineering Materials, 548, 220-230, Trans Tech Publications. https://doi.org/10.4028/www.scientific.net/KEM.548.220
  • 9. Türker, T., Bayraktar, A., Kocaman, İ. and Çoruhlu, B. (2015) Experimental and Analytical Investigation of the Dynamic Behavior of the Scale Masonry Belt Bridge Model, 5. Strengthening of Historical Artifacts and Safely Transferring to the Future Symposium, Erzurum, Proceedings: 113-126
  • 10. Kömür, M. A. and Deneme, İ. O. (2015) Operational Modal Analysis of Symmetric and Non-Symmetrical Steel Structures, Ömer Halisdemir University Journal of Engineering Sciences, 5, 1, 64-72
  • 11. Prashant, S. W., Chougule, V. N. and Mitra, A. C. (2015) Investigation on Modal Parameters of Rectangular Cantilever Beam Using Experimental Modal Analysis, Materials Today: Proceedings, 2 (4-5), 2121-2130. https://doi.org/10.1016/j.matpr.2015.07.214
  • 12. Mansour, G., Tsongas, K. and Tzetzis, D. (2016) Modal Testing of Nanocomposite Materials Through an Optimization Algorithm, Measurement, 91, 31-38. https://doi.org/10.1016/j.measurement.2016.05.032
  • 13. Türker T. and Bayraktar A. (2017) Vibration Based Modal Testing of a Scaled Reinforced Concrete Building for Construction Stages, Bulletin of Earthquake Engineering, no.5, pp.1-18. https://doi.org/10.1007/s10518-015-9852-9
  • 14. Slim, M., Alhussein, A., Billard, A., Sanchette, F. and François, M. (2017) On the Determination of Young’s Modulus of Thin Films with Impulse Excitation Technique, Journal of Materials Research, 32, 3, 497-511. https://doi.org/10.1557/jmr.2016.442
  • 15. Matlab, (1999). Mathworks Inc, MATLAB User Guide, Natick, MA
  • 16. Proteus, (2017). Beechcroft House 21 Hardy Grange Grassington North Yorkshire BD23 5AJ, https://www.labcenter.com/contact
  • 17. Yanik, Y., (2018). Determination By Modal Calibration Method Based Upon Vibration Test Data of Material Properties, Master Thesis, Karadeniz Technical University, Institute of Science and Technology, Trabzon
  • 18. OMA, (2006). Operational Modal Analysis, Release 4.0. Structural Vibration Solution A/S, Denmark.
  • 19. SAP2000, (2008). Integrated Finite Element Analysis and Design of Structures, Computers and Structures Inc, Berkeley, California, USA
There are 19 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Articles
Authors

Yusuf Yanık 0000-0002-5487-5254

Temel Türker 0000-0001-5632-693X

Ömer Yıldırım This is me

Tayfun Dede 0000-0001-9672-2232

Publication Date April 30, 2020
Submission Date November 5, 2019
Acceptance Date February 25, 2020
Published in Issue Year 2020 Volume: 25 Issue: 1

Cite

APA Yanık, Y., Türker, T., Yıldırım, Ö., Dede, T. (2020). Identification Material Properties By Modal Calibration Method Based On Ambient Vibration Tests. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(1), 573-590. https://doi.org/10.17482/uumfd.643339
AMA Yanık Y, Türker T, Yıldırım Ö, Dede T. Identification Material Properties By Modal Calibration Method Based On Ambient Vibration Tests. UUJFE. April 2020;25(1):573-590. doi:10.17482/uumfd.643339
Chicago Yanık, Yusuf, Temel Türker, Ömer Yıldırım, and Tayfun Dede. “Identification Material Properties By Modal Calibration Method Based On Ambient Vibration Tests”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25, no. 1 (April 2020): 573-90. https://doi.org/10.17482/uumfd.643339.
EndNote Yanık Y, Türker T, Yıldırım Ö, Dede T (April 1, 2020) Identification Material Properties By Modal Calibration Method Based On Ambient Vibration Tests. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25 1 573–590.
IEEE Y. Yanık, T. Türker, Ö. Yıldırım, and T. Dede, “Identification Material Properties By Modal Calibration Method Based On Ambient Vibration Tests”, UUJFE, vol. 25, no. 1, pp. 573–590, 2020, doi: 10.17482/uumfd.643339.
ISNAD Yanık, Yusuf et al. “Identification Material Properties By Modal Calibration Method Based On Ambient Vibration Tests”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25/1 (April 2020), 573-590. https://doi.org/10.17482/uumfd.643339.
JAMA Yanık Y, Türker T, Yıldırım Ö, Dede T. Identification Material Properties By Modal Calibration Method Based On Ambient Vibration Tests. UUJFE. 2020;25:573–590.
MLA Yanık, Yusuf et al. “Identification Material Properties By Modal Calibration Method Based On Ambient Vibration Tests”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 25, no. 1, 2020, pp. 573-90, doi:10.17482/uumfd.643339.
Vancouver Yanık Y, Türker T, Yıldırım Ö, Dede T. Identification Material Properties By Modal Calibration Method Based On Ambient Vibration Tests. UUJFE. 2020;25(1):573-90.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.