Araştırma Makalesi
BibTex RIS Kaynak Göster

GÜÇ BİLEŞENLERİNİN DALGACIK DÖNÜŞÜMÜ TABANLI HESAPLANMASI

Yıl 2020, Cilt: 25 Sayı: 2, 679 - 692, 31.08.2020
https://doi.org/10.17482/uumfd.717451

Öz

Sistemler için birçok güç tanımlamaları yapılmıştır. Farklı güç tanımlamaları ve bileşenlerinin doğru bir şekilde hesaplanması ve ölçülmesi son derece önemlidir. Bu amaçla çok sayıda yöntemler ve teknikler geliştirilmiştir. Gerçekleştirilen çalışmada; literatürde tanımlanan gelen-yansıyan-iletilen güç bileşenlerinin geleneksel Fourier dönüşümüne alternatif olarak dalgacık paket dönüşümü kullanılarak hesaplanması önerilmiştir. İlgili güç analizlerini yapmak için etkileşimli grafiksel arayüz programı tasarlanmış; önerilen hesaplama tekniğinin etkinliği ve doğruluğu, gerçekleştirilen benzetimlerle/uygulamalarla gösterilmiştir.

Kaynakça

  • 1. Arseneau, R., Baghzouz, Y. , Belanger, J., Bowes, K., Braun, A., Chiaravallo, A., Cox, M., Crampton, S., Emanuel, A., Filipski, P., Gunther, E., Girgis, A., Hartmann, D., He, S. D., Hensley, G., Iwanusiw, D., Kortebein, W., Mccomb, T., Mceachern, A., Nelson, T., Oldham, N., Piehl, D., Srinivasan, K., Stevens, R., Unruh, T., Williams, D. (1996) Practical definitions for powers in systems with nonsinusoidal waveforms and unbalanced loads: a discussion, IEEE Transastions on Power Delivery, 11 (1), 79-101. doi: https://doi.org/10.1109/61.484004
  • 2. Budeanu, C.I. (1927) Puissances Reactives at Fictives, Institut Romain de l’Énergie, Bucharest, Romania.
  • 3. Czarnecki, L.S. (1985) Considerations on the reactive power in nonsinusoidal situations, IEEE Transactions on Instrumentation and Measurement, 34 (3), 399-404. doi: https://doi.org/10.1109/TIM.1985.4315358
  • 4. Çankaya, İ., Vatansever, F. (2002) Fourier ve dalgacık dönüşümünün karşılaştırılması, SDÜ Fen Bilimleri Enstitüsü Dergisi, 6 (3), 14-24.
  • 5. Debnath, L. (2002) Wavelet Transforms & Their Applications, Birkhäuser, Boston.
  • 6. Donoho, D.L. (1999) Software package ‘WaveLab v.802’ of MATLAB program.
  • 7. Emanuel, A.E. (1990) Power in non-sinusoidal situations a review of definitions and physical meaning, IEEE Transactions on Power Delivery, 5 (3), 1377-1389. doi: https://doi.org/10.1109/61.57980
  • 8. Filipski, P.S., Baghzouz, Y., Cox, M.D. (1994) Discussion of power definitions contained in the IEEE dictionary, IEEE Transactions on Power Delivery, 9 (3), 1237-1244. doi: https://doi.org/10.1109/61.311149
  • 9. Fryze, S. (1931) Active, reactive and apparent power in non-sinusoidal systems, Przegled Elektrotek, 7, 193-203.
  • 10. Goswami, J.C., Chan, A.K. (1999) Fundamentals of Wavelets, John Wiley&Sons, USA.
  • 11. Hamid, E.Y., Mardiana, R., Kawasaki, Z.I. (2002) Method for RMS and power measurements based on the wavelet packet transform, IEE Proceedings - Science, Measurement and Technology, 149 (2), 60-66. doi: https://doi.org/10.1049/ip-smt:20020156
  • 12. IEEE (1988) IEEE Standart Dictionary of Electrical and Electronics Terms ANSI/EKE std 100-1988, IEEE, New York.
  • 13. Kusters, N.L., Moore, W.J.M. (1980) On the definition of reactive power under nonsinusoidal conditions, IEEE Transaction on Power Apparatus and Systems, PAS-99 (5), 1845-1854. doi: https://doi.org/10.1109/TPAS.1980.319833
  • 14. Lu, S.L., Lin, C.E., Huang, C.L. (2000) Suggested power definition and measurement due to harmonic load, Electric Power Systems Research, 53 (2), 73-81. doi: https://doi.org/10.1016/S0378-7796(98)00171-0
  • 15. Mathworks (2019), MATLAB, www.mathworks.com
  • 16. Sankaran, C. (2002) Power Quality, CRC Press.
  • 17. Sharon, D. (1973) Reactive power definition and power factor improvement in non-linear systems, Proceedings of the Institution of Electrical Engineers, 120 (6), 704-706. doi: https://doi.org/10.1049/piee.1973.0155
  • 18. Shepherd, W., Zakikhani, P. (1972) Suggested definition of reactive power for nonsinusoidal systems, Proceedings of the Institution of Electrical Engineers, 119 (9),1361-1362. doi: https://doi.org/10.1049/piee.1972.0268
  • 19. Slonim, M.A., Van der Wyk, J.D. (1988) Power components in a system with sinusoidal and non-sinusoidal voltages and/or currents, IEE Proceedings B - Electric Power Applications, 135 (2), 76-84. doi: https://doi.org/10.1049/ip-b.1988.0010
  • 20. Vatansever, F., Ozdemir, A. (2008) A new approach for measuring RMS value and phase angle of fundamental harmonic based on wavelet packet transform, Electric Power Systems Research, 78(1), 74-79. doi: https://doi.org/10.1016/j.epsr.2006.12.009
  • 21. Vatansever, F., Ozdemir, A. (2009) Power parameters calculations based on wavelet packet transform, International Journal of Electrical Power and Energy Systems, 31, 596-603. doi: https://doi.org/10.1016/j.ijepes.2009.04.001
  • 22. Vatansever, F., Uyaroğlu, Y., Özdemir, A. (2009) Dalgacık paket tabanlı harmonik analizi, 5th International Advanced Technologies Symposium (IATS'09), Karabuk/Turkey, 13-15 May. 432-437.
  • 23. Vatansever, F., Ozdemir, A. (2010) An alternative approach for calculating/measuring fundamental powers based on wavelet packet transform and its frequency sensitivity analysis, Electrical Engineering, 91, 417-424. doi: https://doi.org/10.1007/s00202-010-0150-x
  • 24. Wickerhauser, M.V. (1994) Adapted Wavelet Analysis from Theory to Software, AK Peters, Wellesley.
  • 25. Yoon, W.K., Devaney, M.J. (1998) Power measurement using the wavelet transform, IEEE Transactions on Instrumentation and Measurement, 47 (5), 1205-1210. doi: https://doi.org/10.1109/19.746584
  • 26. Yoon, W.K., Devaney, M.J. (2000) Reactive power measurement using the wavelet transform, IEEE Transactions on Instrumentation and Measurement, 49 (2), 246-252. doi: https://doi.org/10.1109/19.843057

The Power Components Calculation based on Wavelet Transform

Yıl 2020, Cilt: 25 Sayı: 2, 679 - 692, 31.08.2020
https://doi.org/10.17482/uumfd.717451

Öz

Many power definitions have been made for the systems. It is extremely important that different power definitions and their components are accurately calculated and measured. Various methods and techniques have been developed for this purpose. In realized study, it was proposed that calculation of incident-reflected-transmitted power components which are defined in literature can be carried out with wavelet packet transform as an alternative to the traditional Fourier transform. An interactive graphical user interface program was designed to perform related power analysis and the effectiveness and accuracy of the proposed calculation technique was demonstrated by the performed simulations/applications. 

Kaynakça

  • 1. Arseneau, R., Baghzouz, Y. , Belanger, J., Bowes, K., Braun, A., Chiaravallo, A., Cox, M., Crampton, S., Emanuel, A., Filipski, P., Gunther, E., Girgis, A., Hartmann, D., He, S. D., Hensley, G., Iwanusiw, D., Kortebein, W., Mccomb, T., Mceachern, A., Nelson, T., Oldham, N., Piehl, D., Srinivasan, K., Stevens, R., Unruh, T., Williams, D. (1996) Practical definitions for powers in systems with nonsinusoidal waveforms and unbalanced loads: a discussion, IEEE Transastions on Power Delivery, 11 (1), 79-101. doi: https://doi.org/10.1109/61.484004
  • 2. Budeanu, C.I. (1927) Puissances Reactives at Fictives, Institut Romain de l’Énergie, Bucharest, Romania.
  • 3. Czarnecki, L.S. (1985) Considerations on the reactive power in nonsinusoidal situations, IEEE Transactions on Instrumentation and Measurement, 34 (3), 399-404. doi: https://doi.org/10.1109/TIM.1985.4315358
  • 4. Çankaya, İ., Vatansever, F. (2002) Fourier ve dalgacık dönüşümünün karşılaştırılması, SDÜ Fen Bilimleri Enstitüsü Dergisi, 6 (3), 14-24.
  • 5. Debnath, L. (2002) Wavelet Transforms & Their Applications, Birkhäuser, Boston.
  • 6. Donoho, D.L. (1999) Software package ‘WaveLab v.802’ of MATLAB program.
  • 7. Emanuel, A.E. (1990) Power in non-sinusoidal situations a review of definitions and physical meaning, IEEE Transactions on Power Delivery, 5 (3), 1377-1389. doi: https://doi.org/10.1109/61.57980
  • 8. Filipski, P.S., Baghzouz, Y., Cox, M.D. (1994) Discussion of power definitions contained in the IEEE dictionary, IEEE Transactions on Power Delivery, 9 (3), 1237-1244. doi: https://doi.org/10.1109/61.311149
  • 9. Fryze, S. (1931) Active, reactive and apparent power in non-sinusoidal systems, Przegled Elektrotek, 7, 193-203.
  • 10. Goswami, J.C., Chan, A.K. (1999) Fundamentals of Wavelets, John Wiley&Sons, USA.
  • 11. Hamid, E.Y., Mardiana, R., Kawasaki, Z.I. (2002) Method for RMS and power measurements based on the wavelet packet transform, IEE Proceedings - Science, Measurement and Technology, 149 (2), 60-66. doi: https://doi.org/10.1049/ip-smt:20020156
  • 12. IEEE (1988) IEEE Standart Dictionary of Electrical and Electronics Terms ANSI/EKE std 100-1988, IEEE, New York.
  • 13. Kusters, N.L., Moore, W.J.M. (1980) On the definition of reactive power under nonsinusoidal conditions, IEEE Transaction on Power Apparatus and Systems, PAS-99 (5), 1845-1854. doi: https://doi.org/10.1109/TPAS.1980.319833
  • 14. Lu, S.L., Lin, C.E., Huang, C.L. (2000) Suggested power definition and measurement due to harmonic load, Electric Power Systems Research, 53 (2), 73-81. doi: https://doi.org/10.1016/S0378-7796(98)00171-0
  • 15. Mathworks (2019), MATLAB, www.mathworks.com
  • 16. Sankaran, C. (2002) Power Quality, CRC Press.
  • 17. Sharon, D. (1973) Reactive power definition and power factor improvement in non-linear systems, Proceedings of the Institution of Electrical Engineers, 120 (6), 704-706. doi: https://doi.org/10.1049/piee.1973.0155
  • 18. Shepherd, W., Zakikhani, P. (1972) Suggested definition of reactive power for nonsinusoidal systems, Proceedings of the Institution of Electrical Engineers, 119 (9),1361-1362. doi: https://doi.org/10.1049/piee.1972.0268
  • 19. Slonim, M.A., Van der Wyk, J.D. (1988) Power components in a system with sinusoidal and non-sinusoidal voltages and/or currents, IEE Proceedings B - Electric Power Applications, 135 (2), 76-84. doi: https://doi.org/10.1049/ip-b.1988.0010
  • 20. Vatansever, F., Ozdemir, A. (2008) A new approach for measuring RMS value and phase angle of fundamental harmonic based on wavelet packet transform, Electric Power Systems Research, 78(1), 74-79. doi: https://doi.org/10.1016/j.epsr.2006.12.009
  • 21. Vatansever, F., Ozdemir, A. (2009) Power parameters calculations based on wavelet packet transform, International Journal of Electrical Power and Energy Systems, 31, 596-603. doi: https://doi.org/10.1016/j.ijepes.2009.04.001
  • 22. Vatansever, F., Uyaroğlu, Y., Özdemir, A. (2009) Dalgacık paket tabanlı harmonik analizi, 5th International Advanced Technologies Symposium (IATS'09), Karabuk/Turkey, 13-15 May. 432-437.
  • 23. Vatansever, F., Ozdemir, A. (2010) An alternative approach for calculating/measuring fundamental powers based on wavelet packet transform and its frequency sensitivity analysis, Electrical Engineering, 91, 417-424. doi: https://doi.org/10.1007/s00202-010-0150-x
  • 24. Wickerhauser, M.V. (1994) Adapted Wavelet Analysis from Theory to Software, AK Peters, Wellesley.
  • 25. Yoon, W.K., Devaney, M.J. (1998) Power measurement using the wavelet transform, IEEE Transactions on Instrumentation and Measurement, 47 (5), 1205-1210. doi: https://doi.org/10.1109/19.746584
  • 26. Yoon, W.K., Devaney, M.J. (2000) Reactive power measurement using the wavelet transform, IEEE Transactions on Instrumentation and Measurement, 49 (2), 246-252. doi: https://doi.org/10.1109/19.843057
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Fahri Vatansever 0000-0002-3885-8622

Yayımlanma Tarihi 31 Ağustos 2020
Gönderilme Tarihi 9 Nisan 2020
Kabul Tarihi 1 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 25 Sayı: 2

Kaynak Göster

APA Vatansever, F. (2020). GÜÇ BİLEŞENLERİNİN DALGACIK DÖNÜŞÜMÜ TABANLI HESAPLANMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(2), 679-692. https://doi.org/10.17482/uumfd.717451
AMA Vatansever F. GÜÇ BİLEŞENLERİNİN DALGACIK DÖNÜŞÜMÜ TABANLI HESAPLANMASI. UUJFE. Ağustos 2020;25(2):679-692. doi:10.17482/uumfd.717451
Chicago Vatansever, Fahri. “GÜÇ BİLEŞENLERİNİN DALGACIK DÖNÜŞÜMÜ TABANLI HESAPLANMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25, sy. 2 (Ağustos 2020): 679-92. https://doi.org/10.17482/uumfd.717451.
EndNote Vatansever F (01 Ağustos 2020) GÜÇ BİLEŞENLERİNİN DALGACIK DÖNÜŞÜMÜ TABANLI HESAPLANMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25 2 679–692.
IEEE F. Vatansever, “GÜÇ BİLEŞENLERİNİN DALGACIK DÖNÜŞÜMÜ TABANLI HESAPLANMASI”, UUJFE, c. 25, sy. 2, ss. 679–692, 2020, doi: 10.17482/uumfd.717451.
ISNAD Vatansever, Fahri. “GÜÇ BİLEŞENLERİNİN DALGACIK DÖNÜŞÜMÜ TABANLI HESAPLANMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25/2 (Ağustos 2020), 679-692. https://doi.org/10.17482/uumfd.717451.
JAMA Vatansever F. GÜÇ BİLEŞENLERİNİN DALGACIK DÖNÜŞÜMÜ TABANLI HESAPLANMASI. UUJFE. 2020;25:679–692.
MLA Vatansever, Fahri. “GÜÇ BİLEŞENLERİNİN DALGACIK DÖNÜŞÜMÜ TABANLI HESAPLANMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 25, sy. 2, 2020, ss. 679-92, doi:10.17482/uumfd.717451.
Vancouver Vatansever F. GÜÇ BİLEŞENLERİNİN DALGACIK DÖNÜŞÜMÜ TABANLI HESAPLANMASI. UUJFE. 2020;25(2):679-92.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr