Research Article
BibTex RIS Cite

CBS TABANLI 3B KAYA DÜŞMESİ ANALİZİ VE VERİ HAZIRLAMA SÜREÇLERİ: KAVAK KÖYÜ(SİVAS-TÜRKİYE) ÖRNEĞİ

Year 2020, Volume: 25 Issue: 3, 1205 - 1222, 31.12.2020
https://doi.org/10.17482/uumfd.769109

Abstract

Türkiye, bulunduğu coğrafi ve jeolojik konumundan dolayı doğal afetlerden önemli ölçüde etkilenmektedir. Deprem, heyelan ve taşkından sonra en çok etkilenilen afet türü kaya düşmeleridir. Bu afet türünden korunmak için çeşitli önlem yöntemleri kullanılabilir. Bu yöntemlerin seçiminde ve projelendirilmesinde kaya düşmesi analizlerinin yapılması gerekmektedir. Rockyfor3D (RF3D) kaya düşmesi analizlerinde kullanılan başarılı bir yazılımdır. Ancak, veri hazırlama süreçleri çok karmaşıktır. CBS (Coğrafi Bilgi Sistemi) bilgisi gerektirir ve uzun zaman alır. Bu çalışmada, RF3D yazılımı için veri hazırlama süreçlerini otomatik olarak yapan bir araç oluşturulmuş ve kaya düşmesi analizleri yapılmıştır. Bu araç Python programlama dili ile oluşturulup ArcGIS yazılımına entegre edilmiştir. Bu çalışmanın uygulaması, Sivas il merkezinin batısında yer alan Kavak köyünde yapılmıştır. Düşmesi muhtemel kaya bloklarının kinetik enerji değerleri, zıplama yükseklikleri ve ulaşma mesafeleri gibi özellikleri başarıyla hesaplanmıştır. Bu sonuçlar kaya düşmesi önlem projelerinde, yer seçimi çalışmalarında, tehlike ve risk değerlendirme çalışmalarında kullanılabilir ve böylece karar vericiler tarafından daha doğru kararlar verilebilir.

Thanks

Bu çalışmaya sağladığı katkılarından dolayı Sivas İl Afet ve Acil Durum Müdürlüğü’ne teşekkürlerimi sunarım.

References

  • 1. Akbaş, B., Akdeniz, N., Aksay, A., Altun, İ., Balcı, V., Bilginer, E., Bilgiç, T., Duru, M., Ercan, T., Gedik, Günay, Y., Güven, İ.H., Hakyemez, H.Y., Konak, N., Papak, İ., Pehlivan Ş., Sevin, M., Şenel, M., Tarhan, N., Turhan, N., Türkecan, A., Ulu, Ü., Uğuz, M.F., Yurtsever, A. ve diğerleri. (1991) Türkiye jeoloji haritası, Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara, Türkiye.
  • 2. Baltzer, A. (1875) Über einen neuen felssturz am roßberg, nebst einigen allgemeinen bemerkungen über derartige erscheinungen in den Alpen, Neues Jahrbuch f. Min. Geol. u. Pal. p. 15-26.
  • 3. Barnichon, J.D. (2005) http://www.rocpro3d.com/rocpro3d_en.php (Erişim Tarihi: 19.12.2018).
  • 4. Binal, A. ve Ercanoglu, M. (2010) Assessment of rockfall potential in the Kula (Manisa, Turkey) Geopark Region, Environmental Earth Sciences, v.61, pp.1361-1373. https://doi.org/10.1007/s12665-010-0454-1
  • 5. Bozzolo, D. ve Pamini, R. (1986) Simulation of rock falls down a valley side, Acta Mechanica 63, p. 113-130. https://doi.org/10.1007/BF01182543
  • 6. Chen, YC., Li, JK. ve Ran, LG. (2013) A review of rockfall control measures along highway, In Applied Mechanics and Materials (Vol. 353, pp. 2385-2391). https://doi.org/10.4028/www.scientific.net/amm.353-356.2385
  • 7. Christen, M., Kowalski, J., & Bartelt, P. (2010). RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain, Cold Regions Science and Technology, 63(1-2), 1-14. https://doi.org/10.1016/j.coldregions.2010.04.005
  • 8. Crosta, GB. ve Agliardi, F. (2003) A methodology for physically based rockfall hazard assessment, Natural Hazards and Earth System Sciences 3(5):407–422. https://doi.org/10.5194/nhess-3-407-2003
  • 9. Cruden D.M. ve Varnes, D.J. (1996) Landslide types and processes. Landslides investigation and mitigation, Special Report 247, In: Turner, A.K. and Schuster, R.L. (eds.), 36–75 pp.
  • 10. Dorren, LKA., Maier, B., Putters, US. and Seijmonsbergen, AC. (2004) Combining field and modelling techniques to assess rockfall dynamics on a protection forest hillslope in the European Alps, Geomorphology 57:151–167. https://doi.org/10.1016/S0169-555X(03)00100-4
  • 11. Dorren, L. K. A., Berger, F., and Putters, U. S. (2006) Real-size experiments and 3-D simulation of rockfall on forested and non-forested slopes, Natural Hazards and Earth System Sciences, 6, 145–153. https://doi.org/10.5194/nhess-6-145-2006
  • 12. Dorren, L.K.A. (2016) Rockyfor3D (v5.2) revealed – transparent description of the complete 3D rockfall model. ecorisQ paper (www.ecorisq.org): 33 p.
  • 13. Erismann, T.H. ve Abele, G. (2001) Dynamics of rockslides and rockfalls, Springer-Verlag, Berlin Heidelberg, 316p.
  • 14. Francioni, M., Antonaci, F., Sciarra, N., Robiati, C., Coggan, J., Stead, D., & Calamita, F. (2020) Application of Unmanned Aerial Vehicle Data and Discrete Fracture Network Models for Improved Rockfall Simulations, Remote Sensing, 12(12), 2053. https://doi.org/10.3390/rs12122053
  • 15. Frattini, P., Crosta, G., Carrara, A. and Agliardi, F. (2008) Assessment of rockfall susceptibility by integrating statistical and physicallybased approaches Geomorphology 94(3–4):419–437. https://doi.org/10.1016/j.geomorph.2006.10.037
  • 16. Gökçe, O., Özden, Ş., Demir, A. (2008) Türkiye’de afetlerin mekansal ve istatistiksel dağılımı afet bilgileri envanteri, Afet İşleri Genel Müdürlüğü, Afet Etüt ve Hasar Tespit Daire Başkanlığı, Ankara, 126s.
  • 17. Guzzetti, F., Crosta, G., Detti, R. and Agliardi, F. (2002) Stone: a computer program for the three-dimensional simulation of rockfalls, Computers and Geosciences, 28:1079–1093. https://doi.org/10.1016/S0098-3004(02)00025-0
  • 18. Hutchinson, J.N. (1988) Morphological and geotechnical parameters of landslide in relation to geology and hydrogeology, in: 5th international symposium on landslides, Lausanne, edited by: Bonnard, C., A.A. Balkema, 3–35. https://doi.org/10.1016/0148-9062(89)90310-0
  • 19. Jones, C. L., Higgins, J. D., & Andrew, R. D. (2000) Colorado Rockfall Simulation Program Version 4.0 User's Manual: Colorado Department of Transportation. Denver, Colorado, United States of America, 3-47.
  • 20. Kaya, Y. and Topal, T. (2015) Evaluation of rock slope stability for a touristic coastal area near Kusadasi, Aydin (Turkey), Environmental Earth Sciences, 74, 4187–4199. https://doi.org/10.1007/s12665-015-4473-9
  • 21. Keskin, I. (2013) Evaluation of rock falls in an urban area: The case of Boğaziçi (Erzincan/Turkey), Environmental Earth Sciences, v.70, pp.1619-1628. https://doi.org/10.1007/s12665-013-2247-9.
  • 22. Landolt, E. (1886) Die bäche, schneelawinen und steinschläge und die mittel zur verminderung der schädigungen durch dieselben. Zürich, Orell Füssli & Co. https://doi.org/10.3931/e-rara-21003
  • 23. Lehmann, O. (1933) Morphologische theorie der verwitterung von steinschlagwänden. Vierteljahrschrift Nat, forsch Ges, Zürich 87, p. 83–126.
  • 24. Moos, C., Toe, D., Bourrier, F., Knüsel, S., Stoffel, M., & Dorren, L. (2019). Assessing the effect of invasive tree species on rockfall risk–The case of Ailanthus altissima, Ecological Engineering, 131, 63-72. https://doi.org/10.1016/j.ecoleng.2019.03.001
  • 25. Nasery, M., Çelı̇k, M. (2020) Kaya Islahı Çalışmalarında Birleşik Çözümlerin İncelenmesi: Trabzon Kaymaklı Örneği, Uludağ University Journal of The Faculty of Engineering , 25 (1) , 539-554 . https://doi.org/10.17482/uumfd.680226
  • 26. Netti, T., Castelli, M., De Biagi, V. (2016) Effect of the Number of Simulations on the Accuracy of a Rockfall Analysis, Procedia Engineering.158, 464–469. https://doi.org/10.1016/j.proeng.2016.08.473
  • 27. Palma, B., Parise, M., Reichenbach, P., Guzzetti, F. (2012) Rockfall hazard assessment along a road in the Sorrento Peninsula Campania southern Italy, Natural Hazards, v.61, pp.187-201. https://doi.org/10.1007/s11069-011-9899-0
  • 28. Polat, A., Keskin, I., Denizli, I. (2016) Preventing and analysis of falling rocks: a case of sarica village (Gürün, Turkey), Journal of the Geological Society of India, 88, 763–772. https://doi.org/10.1007/s12594-016-0544-0
  • 29. Polat A. ve Keskin, I. (2017) Kaya düşmesi çalışmalarında insansiz hava aracı kullanımı ve cbs tabanlı 3D analiz. 70, Türkiye Jeoloji Kurultayı, 2017, Ankara.
  • 30. Ritchie, A.M. (1963) Evaluation of rockfall and its control. Highw. Res. Board - NRC, Washington DC, Highway Research Record 17, p. 13–28.
  • 31. Rocscience, (1996) https://www.rocscience.com/software/rocfall. (Erişim Tarihi: 19.12.2018).
  • 32. Saroglou, C., Asteriou, P., Zekkos, D., Tsiambaos, G., Clark, M. and Manousakis, J. (2018) UAV-based mapping, back analysis and trajectory modeling of a coseismic rockfall in Lefkada island, Greece. Natural Hazards and Earth System Sciences, 18, 321–333. https://doi.org/10.5194/nhess-18-321, 2018.
  • 33. Scioldo, G. (1991) Isomap and rotomap- 3D surface modelling and rockfall analysis. Geo and Soft, Torino.
  • 34. Şener, E. (2019) İnsansız hava araçları kullanılarak olası kaya düşmelerinin coğrafi bilgi sistemleri tabanlı 3D modellenmesi: kasımlar köyü (Isparta-Türkiye) Örneği, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23 (2) , 419-426. https://doi.org/ 10.19113/sdufenbed.501482.
  • 35. Topal, T., Akın M. and Ozden, A.U. (2007) Assessment of rockfall hazard around Afyon Castle, Environmental Geology, v.53, pp.191-200. https://doi.org/10.1007/s00254-006-0633-2
  • 36. Tunusluoğlu, Mc. and Zorlu, K. (2009) Rockfall hazard assessment in a cultural and natural heritage (Ortahisar Castle, Cappadocia, Turkey), Environmental Geology 56(5):963–972. https://doi.org/10.1007/s00254-008-1198-z
  • 37. Ulusay, R., Gokceoglu, C., Topal, T., Sonmez, H., Tuncay, E., Erguler, Z.A. and Kasmer, O. (2006) Assessment of environmental and engineering geological problems for the possible re-use of an abandoned rock-hewn settlement in Urgup (Cappadocia), Turkey, Environmental Geology, v.50, pp.473-494. https://doi.org/10.1007/s00254-006-0222-4
  • 38. Varnes, D.J. (1978) Slope movements: types and processes, In: Schuster, R.L., Krizek, R.J.(Eds.), Landslide Analysis and Control, Transportation Research Board, Special Report No. 176, Washington, DC, pp. 11–33.
  • 39. Volkwein, A., Schellenberg, K., Labiouse, V., Gliardi, F., Berger, F., Bourrier, F., Dorren, LKA., Gerber, W. and Jaboyedoff, M. (2011) Rockfall characterisation and structural protection—a review. Natural Hazards and Earth System Sciences, 11:2617–2651. https://doi.org/10.5194/nhess-11-2617-2011
  • 40. Youssef, A. M., & Maerz, N. H. (2009). Slope stability hazard assessment and mitigation methodology along eastern desert Aswan-Cairo highway, Egypt. Earth Sciences, 20(2). https://doi.org/ 10.4197/EAR.20-2.8
  • 41. Youssef, A.M., Pradhan, B., Kathery, M.A., Bathrellos, G.D. and Skilodimou, H.D. (2014) Assessment of rockfall hazardat Al-Noor Mountain, Makkah city (Saudi Arabia) using spatio-temporal remote sensing data and field investigation, Journal of African Earth Sciences, pp.101, pp.309-321. https://doi.org/10.1016/j.jafrearsci.2014.09.021
  • 42. Youssef, A. M., Pradhan, B., Al-Kathery, M. M., Bathrellos, G. D., Skilodimou, H. D., (2015) Assessment of rockfall hazard at Al-Noor Mountain, Makkah city (Saudi Arabia) using spatio-temporal remote sensing data and field investigation, Journal of African Earth Sciences, 101: 309–321. https://doi.org/10.1016/j.jafrearsci.2014.09.021
  • 43. Žabota, B., Mikoš, M., and Kobal, M. (2019) Rockfall modelling in forested areas: the role of digital terrain model spatial resolution, Natural Hazards and Earth System Sciences, Discuss. https://doi.org/10.5194/nhess-2019-372, in review, 2019.

GIS Based 3D Rockfall Analysis and Data Preparation Processes: Case of Kavak Village (Sivas-Turkey)

Year 2020, Volume: 25 Issue: 3, 1205 - 1222, 31.12.2020
https://doi.org/10.17482/uumfd.769109

Abstract

Turkey is significantly affected by natural disasters due to its geographical and geological location. After the earthquake, landslide and flooding, the most adverse type of disaster is rockfall. A number of methods can be used to prevent this type of disaster. Rockfall analyzes should be carried out to select and project such mitigation methods. Rockyfor3D (RF3D) is a successful software used in rockfall analysis. However, data preparation processes are complicated. It requires GIS (Geographic Information System) knowledge and preparation processes take a long time. In this study, a tool was created to prepare data for Rockyfor3D (RF3D) software and rockfall analyses were executed. This tool was designed with Python scripting and integrated into ArcGIS. The proposed methodology was applied for the Kavak region in the west of Sivas city. Kinetic energy and bounce height values as well as runout distances of blocks that have tendency to fall were successfully calculated. The data preparation process required by the software was performed automatically and quickly using the tool prepared in this study. These results can be used in rockfall mitigation projects, site selection studies, hazard and risk assessment studies, and so, more accurate decisions can be made by decision-makers.

References

  • 1. Akbaş, B., Akdeniz, N., Aksay, A., Altun, İ., Balcı, V., Bilginer, E., Bilgiç, T., Duru, M., Ercan, T., Gedik, Günay, Y., Güven, İ.H., Hakyemez, H.Y., Konak, N., Papak, İ., Pehlivan Ş., Sevin, M., Şenel, M., Tarhan, N., Turhan, N., Türkecan, A., Ulu, Ü., Uğuz, M.F., Yurtsever, A. ve diğerleri. (1991) Türkiye jeoloji haritası, Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara, Türkiye.
  • 2. Baltzer, A. (1875) Über einen neuen felssturz am roßberg, nebst einigen allgemeinen bemerkungen über derartige erscheinungen in den Alpen, Neues Jahrbuch f. Min. Geol. u. Pal. p. 15-26.
  • 3. Barnichon, J.D. (2005) http://www.rocpro3d.com/rocpro3d_en.php (Erişim Tarihi: 19.12.2018).
  • 4. Binal, A. ve Ercanoglu, M. (2010) Assessment of rockfall potential in the Kula (Manisa, Turkey) Geopark Region, Environmental Earth Sciences, v.61, pp.1361-1373. https://doi.org/10.1007/s12665-010-0454-1
  • 5. Bozzolo, D. ve Pamini, R. (1986) Simulation of rock falls down a valley side, Acta Mechanica 63, p. 113-130. https://doi.org/10.1007/BF01182543
  • 6. Chen, YC., Li, JK. ve Ran, LG. (2013) A review of rockfall control measures along highway, In Applied Mechanics and Materials (Vol. 353, pp. 2385-2391). https://doi.org/10.4028/www.scientific.net/amm.353-356.2385
  • 7. Christen, M., Kowalski, J., & Bartelt, P. (2010). RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain, Cold Regions Science and Technology, 63(1-2), 1-14. https://doi.org/10.1016/j.coldregions.2010.04.005
  • 8. Crosta, GB. ve Agliardi, F. (2003) A methodology for physically based rockfall hazard assessment, Natural Hazards and Earth System Sciences 3(5):407–422. https://doi.org/10.5194/nhess-3-407-2003
  • 9. Cruden D.M. ve Varnes, D.J. (1996) Landslide types and processes. Landslides investigation and mitigation, Special Report 247, In: Turner, A.K. and Schuster, R.L. (eds.), 36–75 pp.
  • 10. Dorren, LKA., Maier, B., Putters, US. and Seijmonsbergen, AC. (2004) Combining field and modelling techniques to assess rockfall dynamics on a protection forest hillslope in the European Alps, Geomorphology 57:151–167. https://doi.org/10.1016/S0169-555X(03)00100-4
  • 11. Dorren, L. K. A., Berger, F., and Putters, U. S. (2006) Real-size experiments and 3-D simulation of rockfall on forested and non-forested slopes, Natural Hazards and Earth System Sciences, 6, 145–153. https://doi.org/10.5194/nhess-6-145-2006
  • 12. Dorren, L.K.A. (2016) Rockyfor3D (v5.2) revealed – transparent description of the complete 3D rockfall model. ecorisQ paper (www.ecorisq.org): 33 p.
  • 13. Erismann, T.H. ve Abele, G. (2001) Dynamics of rockslides and rockfalls, Springer-Verlag, Berlin Heidelberg, 316p.
  • 14. Francioni, M., Antonaci, F., Sciarra, N., Robiati, C., Coggan, J., Stead, D., & Calamita, F. (2020) Application of Unmanned Aerial Vehicle Data and Discrete Fracture Network Models for Improved Rockfall Simulations, Remote Sensing, 12(12), 2053. https://doi.org/10.3390/rs12122053
  • 15. Frattini, P., Crosta, G., Carrara, A. and Agliardi, F. (2008) Assessment of rockfall susceptibility by integrating statistical and physicallybased approaches Geomorphology 94(3–4):419–437. https://doi.org/10.1016/j.geomorph.2006.10.037
  • 16. Gökçe, O., Özden, Ş., Demir, A. (2008) Türkiye’de afetlerin mekansal ve istatistiksel dağılımı afet bilgileri envanteri, Afet İşleri Genel Müdürlüğü, Afet Etüt ve Hasar Tespit Daire Başkanlığı, Ankara, 126s.
  • 17. Guzzetti, F., Crosta, G., Detti, R. and Agliardi, F. (2002) Stone: a computer program for the three-dimensional simulation of rockfalls, Computers and Geosciences, 28:1079–1093. https://doi.org/10.1016/S0098-3004(02)00025-0
  • 18. Hutchinson, J.N. (1988) Morphological and geotechnical parameters of landslide in relation to geology and hydrogeology, in: 5th international symposium on landslides, Lausanne, edited by: Bonnard, C., A.A. Balkema, 3–35. https://doi.org/10.1016/0148-9062(89)90310-0
  • 19. Jones, C. L., Higgins, J. D., & Andrew, R. D. (2000) Colorado Rockfall Simulation Program Version 4.0 User's Manual: Colorado Department of Transportation. Denver, Colorado, United States of America, 3-47.
  • 20. Kaya, Y. and Topal, T. (2015) Evaluation of rock slope stability for a touristic coastal area near Kusadasi, Aydin (Turkey), Environmental Earth Sciences, 74, 4187–4199. https://doi.org/10.1007/s12665-015-4473-9
  • 21. Keskin, I. (2013) Evaluation of rock falls in an urban area: The case of Boğaziçi (Erzincan/Turkey), Environmental Earth Sciences, v.70, pp.1619-1628. https://doi.org/10.1007/s12665-013-2247-9.
  • 22. Landolt, E. (1886) Die bäche, schneelawinen und steinschläge und die mittel zur verminderung der schädigungen durch dieselben. Zürich, Orell Füssli & Co. https://doi.org/10.3931/e-rara-21003
  • 23. Lehmann, O. (1933) Morphologische theorie der verwitterung von steinschlagwänden. Vierteljahrschrift Nat, forsch Ges, Zürich 87, p. 83–126.
  • 24. Moos, C., Toe, D., Bourrier, F., Knüsel, S., Stoffel, M., & Dorren, L. (2019). Assessing the effect of invasive tree species on rockfall risk–The case of Ailanthus altissima, Ecological Engineering, 131, 63-72. https://doi.org/10.1016/j.ecoleng.2019.03.001
  • 25. Nasery, M., Çelı̇k, M. (2020) Kaya Islahı Çalışmalarında Birleşik Çözümlerin İncelenmesi: Trabzon Kaymaklı Örneği, Uludağ University Journal of The Faculty of Engineering , 25 (1) , 539-554 . https://doi.org/10.17482/uumfd.680226
  • 26. Netti, T., Castelli, M., De Biagi, V. (2016) Effect of the Number of Simulations on the Accuracy of a Rockfall Analysis, Procedia Engineering.158, 464–469. https://doi.org/10.1016/j.proeng.2016.08.473
  • 27. Palma, B., Parise, M., Reichenbach, P., Guzzetti, F. (2012) Rockfall hazard assessment along a road in the Sorrento Peninsula Campania southern Italy, Natural Hazards, v.61, pp.187-201. https://doi.org/10.1007/s11069-011-9899-0
  • 28. Polat, A., Keskin, I., Denizli, I. (2016) Preventing and analysis of falling rocks: a case of sarica village (Gürün, Turkey), Journal of the Geological Society of India, 88, 763–772. https://doi.org/10.1007/s12594-016-0544-0
  • 29. Polat A. ve Keskin, I. (2017) Kaya düşmesi çalışmalarında insansiz hava aracı kullanımı ve cbs tabanlı 3D analiz. 70, Türkiye Jeoloji Kurultayı, 2017, Ankara.
  • 30. Ritchie, A.M. (1963) Evaluation of rockfall and its control. Highw. Res. Board - NRC, Washington DC, Highway Research Record 17, p. 13–28.
  • 31. Rocscience, (1996) https://www.rocscience.com/software/rocfall. (Erişim Tarihi: 19.12.2018).
  • 32. Saroglou, C., Asteriou, P., Zekkos, D., Tsiambaos, G., Clark, M. and Manousakis, J. (2018) UAV-based mapping, back analysis and trajectory modeling of a coseismic rockfall in Lefkada island, Greece. Natural Hazards and Earth System Sciences, 18, 321–333. https://doi.org/10.5194/nhess-18-321, 2018.
  • 33. Scioldo, G. (1991) Isomap and rotomap- 3D surface modelling and rockfall analysis. Geo and Soft, Torino.
  • 34. Şener, E. (2019) İnsansız hava araçları kullanılarak olası kaya düşmelerinin coğrafi bilgi sistemleri tabanlı 3D modellenmesi: kasımlar köyü (Isparta-Türkiye) Örneği, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23 (2) , 419-426. https://doi.org/ 10.19113/sdufenbed.501482.
  • 35. Topal, T., Akın M. and Ozden, A.U. (2007) Assessment of rockfall hazard around Afyon Castle, Environmental Geology, v.53, pp.191-200. https://doi.org/10.1007/s00254-006-0633-2
  • 36. Tunusluoğlu, Mc. and Zorlu, K. (2009) Rockfall hazard assessment in a cultural and natural heritage (Ortahisar Castle, Cappadocia, Turkey), Environmental Geology 56(5):963–972. https://doi.org/10.1007/s00254-008-1198-z
  • 37. Ulusay, R., Gokceoglu, C., Topal, T., Sonmez, H., Tuncay, E., Erguler, Z.A. and Kasmer, O. (2006) Assessment of environmental and engineering geological problems for the possible re-use of an abandoned rock-hewn settlement in Urgup (Cappadocia), Turkey, Environmental Geology, v.50, pp.473-494. https://doi.org/10.1007/s00254-006-0222-4
  • 38. Varnes, D.J. (1978) Slope movements: types and processes, In: Schuster, R.L., Krizek, R.J.(Eds.), Landslide Analysis and Control, Transportation Research Board, Special Report No. 176, Washington, DC, pp. 11–33.
  • 39. Volkwein, A., Schellenberg, K., Labiouse, V., Gliardi, F., Berger, F., Bourrier, F., Dorren, LKA., Gerber, W. and Jaboyedoff, M. (2011) Rockfall characterisation and structural protection—a review. Natural Hazards and Earth System Sciences, 11:2617–2651. https://doi.org/10.5194/nhess-11-2617-2011
  • 40. Youssef, A. M., & Maerz, N. H. (2009). Slope stability hazard assessment and mitigation methodology along eastern desert Aswan-Cairo highway, Egypt. Earth Sciences, 20(2). https://doi.org/ 10.4197/EAR.20-2.8
  • 41. Youssef, A.M., Pradhan, B., Kathery, M.A., Bathrellos, G.D. and Skilodimou, H.D. (2014) Assessment of rockfall hazardat Al-Noor Mountain, Makkah city (Saudi Arabia) using spatio-temporal remote sensing data and field investigation, Journal of African Earth Sciences, pp.101, pp.309-321. https://doi.org/10.1016/j.jafrearsci.2014.09.021
  • 42. Youssef, A. M., Pradhan, B., Al-Kathery, M. M., Bathrellos, G. D., Skilodimou, H. D., (2015) Assessment of rockfall hazard at Al-Noor Mountain, Makkah city (Saudi Arabia) using spatio-temporal remote sensing data and field investigation, Journal of African Earth Sciences, 101: 309–321. https://doi.org/10.1016/j.jafrearsci.2014.09.021
  • 43. Žabota, B., Mikoš, M., and Kobal, M. (2019) Rockfall modelling in forested areas: the role of digital terrain model spatial resolution, Natural Hazards and Earth System Sciences, Discuss. https://doi.org/10.5194/nhess-2019-372, in review, 2019.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Photogrammetry and Remote Sensing
Journal Section Research Articles
Authors

Ali Polat 0000-0002-9147-3633

Publication Date December 31, 2020
Submission Date July 14, 2020
Acceptance Date September 16, 2020
Published in Issue Year 2020 Volume: 25 Issue: 3

Cite

APA Polat, A. (2020). CBS TABANLI 3B KAYA DÜŞMESİ ANALİZİ VE VERİ HAZIRLAMA SÜREÇLERİ: KAVAK KÖYÜ(SİVAS-TÜRKİYE) ÖRNEĞİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(3), 1205-1222. https://doi.org/10.17482/uumfd.769109
AMA Polat A. CBS TABANLI 3B KAYA DÜŞMESİ ANALİZİ VE VERİ HAZIRLAMA SÜREÇLERİ: KAVAK KÖYÜ(SİVAS-TÜRKİYE) ÖRNEĞİ. UUJFE. December 2020;25(3):1205-1222. doi:10.17482/uumfd.769109
Chicago Polat, Ali. “CBS TABANLI 3B KAYA DÜŞMESİ ANALİZİ VE VERİ HAZIRLAMA SÜREÇLERİ: KAVAK KÖYÜ(SİVAS-TÜRKİYE) ÖRNEĞİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25, no. 3 (December 2020): 1205-22. https://doi.org/10.17482/uumfd.769109.
EndNote Polat A (December 1, 2020) CBS TABANLI 3B KAYA DÜŞMESİ ANALİZİ VE VERİ HAZIRLAMA SÜREÇLERİ: KAVAK KÖYÜ(SİVAS-TÜRKİYE) ÖRNEĞİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25 3 1205–1222.
IEEE A. Polat, “CBS TABANLI 3B KAYA DÜŞMESİ ANALİZİ VE VERİ HAZIRLAMA SÜREÇLERİ: KAVAK KÖYÜ(SİVAS-TÜRKİYE) ÖRNEĞİ”, UUJFE, vol. 25, no. 3, pp. 1205–1222, 2020, doi: 10.17482/uumfd.769109.
ISNAD Polat, Ali. “CBS TABANLI 3B KAYA DÜŞMESİ ANALİZİ VE VERİ HAZIRLAMA SÜREÇLERİ: KAVAK KÖYÜ(SİVAS-TÜRKİYE) ÖRNEĞİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25/3 (December 2020), 1205-1222. https://doi.org/10.17482/uumfd.769109.
JAMA Polat A. CBS TABANLI 3B KAYA DÜŞMESİ ANALİZİ VE VERİ HAZIRLAMA SÜREÇLERİ: KAVAK KÖYÜ(SİVAS-TÜRKİYE) ÖRNEĞİ. UUJFE. 2020;25:1205–1222.
MLA Polat, Ali. “CBS TABANLI 3B KAYA DÜŞMESİ ANALİZİ VE VERİ HAZIRLAMA SÜREÇLERİ: KAVAK KÖYÜ(SİVAS-TÜRKİYE) ÖRNEĞİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 25, no. 3, 2020, pp. 1205-22, doi:10.17482/uumfd.769109.
Vancouver Polat A. CBS TABANLI 3B KAYA DÜŞMESİ ANALİZİ VE VERİ HAZIRLAMA SÜREÇLERİ: KAVAK KÖYÜ(SİVAS-TÜRKİYE) ÖRNEĞİ. UUJFE. 2020;25(3):1205-22.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.