Research Article
BibTex RIS Cite

FARKLI BETONARME BAĞ KİRİŞİ MODELLERİNİN TBDY (2018)’E GÖRE YAPI PERFORMANSINA ETKİSİ

Year 2020, Volume: 25 Issue: 3, 1169 - 1188, 31.12.2020
https://doi.org/10.17482/uumfd.777897

Abstract

Boşluklu perdeli sistemlerin kullanıldığı betonarme yapılarda, bağ kirişleri yapı performansının belirlenmesinde ciddi rol oynamaktadır. Bu çalışmanın amacı, boşluklu perdelerin kullanıldığı yapı modellerinde kullanılan farklı betonarme bağ kirişi tiplerini, Türkiye Bina Deprem Yönetmeliği 2018’e (TBDY, 2018) göre yapılan doğrusal olmayan analiz sonuçlarına göre karşılaştırıp, sonuçlarının incelenmesidir. Çalışmada 19 katlı kolon-kiriş çerçeve sisteminin, boşluklu perdelerle bir arada kullanıldığı bina modeli, TBDY (2018)’e göre, İstanbul Atatürk Havaalanı bölgesinin yer ivmesine göre her bir betonarme bağ kirişi modeli için ayrı ayrı analiz edilmiştir. Yapılan analiz sonuçlarında farklı betonarme bağ kirişi tiplerinin yapının performans noktasında ve performans hedeflerinde ciddi etkilerinin olduğu görülmüştür.

References

  • 1. Budiono, B., Dewi, N. T. H. ve Lim, E., 2019, Finite Element Analysis of Reinforced Concrete Coupling Beams, Journal of Engineering and Technological Sciences, 51 (6), 762-771.
  • 2. Chen, Y., Li, J. Z. ve Lu, Z., 2019, Experimental Study and Numerical Simulation on Hybrid Coupled Shear Wall with Replaceable Coupling Beams, Sustainability, 11 (3).
  • 3. Choi, Y., Hajyalikhani, P. ve Chao, S. H., 2018, Seismic Performance of Innovative Reinforced Concrete Coupling Beam-Double-Beam Coupling Beam, Aci Structural Journal, 115 (1), 113-125.
  • 4. Deng, Z. H., Xu, C. C., Hu, Q., Zeng, J. ve Xiang, P., 2018, Investigation on the Structural Behavior of Shear Walls with Steel Truss Coupling Beams under Seismic Loading, Advances in Materials Science and Engineering.
  • 5. Doran, B., 2009, A Magnified Beam Algorithm to Determine the Coupling Ratios of R/C Coupled Shear Wall, Structural Design of Tall and Special Buildings, 18 (8), 921-929.
  • 6. Du, K., Luo, H., Bai, J. L. ve Sun, J. J., 2019, Integrating of Nonlinear Shear Models into Fiber Element for Modeling Seismic Behavior of Reinforced Concrete Coupling Beams, Wall Piers, and Overall Coupled Wall Systems, International Journal of Concrete Structures and Materials, 13 (1).
  • 7. ETABS, 2020, Integrated Building Design Software, Computers and Structures, Inc., Berkeley, CA.
  • 8. Fisher, A. W., Bentz, E. C. ve Collins, M. P., 2017, Response of Heavily Reinforced High-Strength Concrete Coupling Beams, Aci Structural Journal, 114 (6), 1483-1494.
  • 9. Fortney, P. J., Rassati, G. A. ve Shahrooz, B. M., 2008, Investigation on Effect of Transverse Reinforcement on Performance of Diagonally Reinforced Coupling Beams, Aci Structural Journal, 105 (6), 781-789.
  • 10. Han, S. W., Kim, S. B. ve Kim, T., 2019, Effect of transverse reinforcement on the seismic behavior of diagonally reinforced concrete coupling beams, Engineering Structures, 196.
  • 11. ideYAPI, 2020, İdeYapı Ltd Şti, Şişli – İstanbul.
  • 12. İnel, M., Bilgin, H. ve Özmen, H. B., 2007, Orta Yükseklikteki Betonarme Binaların Deprem Performanslarının Afet Yönetmeliğine Göre Tayini, Pamukkale Univ Muh Bilim Derg, 13 (1), 81-89.
  • 13. Jang, S. J., Jeong, G. Y. ve Yun, H. D., 2018, Use of steel fibers as transverse reinforcement in diagonally reinforced coupling beams with normal- and high-strength concrete, Construction and Building Materials, 187, 1020-1030.
  • 14. Kwan, A. K. H. ve Zhao, Z. Z., 2002, Cyclic behaviour of deep reinforced concrete coupling beams, Proceedings of the Institution of Civil Engineers-Structures and Buildings, 152 (3), 283-293.
  • 15. Lequesne, R. D., Parra-Montesinos, G. J. ve Wight, J. K., 2013, Seismic Behavior and Detailing of High-Performance Fiber-Reinforced Concrete Coupling Beams and Coupled Wall Systems, Journal of Structural Engineering, 139 (8), 1362-1370.
  • 16. Li, S. R., Jiang, H. J. ve He, L. S., 2019a, Study of a new type of replaceable coupling beam in reinforced concrete shear wall structures, Structural Design of Tall and Special Buildings, 28 (10).
  • 17. Li, Y. H., Jiang, H. J. ve Yang, T. Y., 2019b, Damage Deformation of Flexure-Yielding Steel-Reinforced Concrete Coupling Beams: Experimental and Numerical Investigation, Advances in Civil Engineering, 2019.
  • 18. Mahmoudi, M., Mortazavi, S. M. R. ve Ajdari, S., 2016, The Effect of Spandrel Beam's Specification on Response Modification Factor of Concrete Coupled Shear Walls, Civil Engineering Infrastructures Journal-Ceij, 49 (1), 33-43.
  • 19. Meftah, S. A., Mohri, F. ve Daya, E. M., 2013, Seismic behavior of RC coupled shear walls with strengthened coupling beams by bonded thin composite plates, Ksce Journal of Civil Engineering, 17 (2), 403-414.
  • 20. Mihaylov, B., 2019, A kinematics-based approach for the shear strength of short fibre-reinforced concrete coupling beams, Engineering Structures, 182, 501-509.
  • 21. Park, W. S. ve Yun, H. D., 2006, Seismic behaviour and design of steel coupling beams in a hybrid coupled shear wall systems, Nuclear Engineering and Design, 236 (23), 2474-2484.
  • 22. Su, R. K. L. ve Zhu, Y., 2005, Experimental and numerical studies of external steel plate strengthened reinforced concrete coupling beams, Engineering Structures, 27 (10), 1537-1550.
  • 23. Vo, T. P. ve Lee, J., 2009, Flexural-torsional coupled vibration and buckling of thin-walled open section composite beams using shear-deformable beam theory, International Journal of Mechanical Sciences, 51 (9-10), 631-641.
  • 24. Vu, N. S., Li, B. ve Beyer, K., 2014, Effective stiffness of reinforced concrete coupling beams, Engineering Structures, 76, 371-382.
  • 25. Wallace, J. W., 2007, Modelling issues for tall reinforced concrete core wall buildings, Structural Design of Tall and Special Buildings, 16 (5), 615-632.
  • 26. Wang, T., Shang, Q. X., Wang, X. T., Li, J. C. ve Kong, Z., 2018, Experimental validation of RC shear wall structures with hybrid coupling beams, Soil Dynamics and Earthquake Engineering, 111, 14-30.
  • 27. Yeter, E., 2013, Dbybhy-07 Ve Asce 41-06’da Tanimlanan Doğrusal Olmayan Performans Değerlendİrme Yöntemlerİnİn Perde-Çerçeve Sİstemlerde Karşilaştirilmasi, İstanbul Teknik Üniversitesi, Yüksek Lisans Tezi.

The Effect of Different Concrete Coupled Beam Models on Structural Performance According to TBEC (2018)

Year 2020, Volume: 25 Issue: 3, 1169 - 1188, 31.12.2020
https://doi.org/10.17482/uumfd.777897

Abstract

Coupling beams have a significant role in determining structure performance in reinforced concrete structures where coupled structural shear wall systems are used. The purpose of this study is to compare the different types of reinforced concrete coupling beams used in coupled structural shear walls models with the results of nonlinear analysis according to Turkish Building Earthquake Code 2018 (TBEC, 2018). According to TBEC (2018), the building model in which the 19 floor buildings in which seismic loads are jointly resisted by frames and coupled structural shear walls was analyzed separately for each reinforced concrete coupling beam model based on the ground acceleration of the Istanbul Atatürk Airport region. The results of the analysis showed that different types of reinforced concrete coupling beams have serious effects on the performance point and performance targets of the structure.

References

  • 1. Budiono, B., Dewi, N. T. H. ve Lim, E., 2019, Finite Element Analysis of Reinforced Concrete Coupling Beams, Journal of Engineering and Technological Sciences, 51 (6), 762-771.
  • 2. Chen, Y., Li, J. Z. ve Lu, Z., 2019, Experimental Study and Numerical Simulation on Hybrid Coupled Shear Wall with Replaceable Coupling Beams, Sustainability, 11 (3).
  • 3. Choi, Y., Hajyalikhani, P. ve Chao, S. H., 2018, Seismic Performance of Innovative Reinforced Concrete Coupling Beam-Double-Beam Coupling Beam, Aci Structural Journal, 115 (1), 113-125.
  • 4. Deng, Z. H., Xu, C. C., Hu, Q., Zeng, J. ve Xiang, P., 2018, Investigation on the Structural Behavior of Shear Walls with Steel Truss Coupling Beams under Seismic Loading, Advances in Materials Science and Engineering.
  • 5. Doran, B., 2009, A Magnified Beam Algorithm to Determine the Coupling Ratios of R/C Coupled Shear Wall, Structural Design of Tall and Special Buildings, 18 (8), 921-929.
  • 6. Du, K., Luo, H., Bai, J. L. ve Sun, J. J., 2019, Integrating of Nonlinear Shear Models into Fiber Element for Modeling Seismic Behavior of Reinforced Concrete Coupling Beams, Wall Piers, and Overall Coupled Wall Systems, International Journal of Concrete Structures and Materials, 13 (1).
  • 7. ETABS, 2020, Integrated Building Design Software, Computers and Structures, Inc., Berkeley, CA.
  • 8. Fisher, A. W., Bentz, E. C. ve Collins, M. P., 2017, Response of Heavily Reinforced High-Strength Concrete Coupling Beams, Aci Structural Journal, 114 (6), 1483-1494.
  • 9. Fortney, P. J., Rassati, G. A. ve Shahrooz, B. M., 2008, Investigation on Effect of Transverse Reinforcement on Performance of Diagonally Reinforced Coupling Beams, Aci Structural Journal, 105 (6), 781-789.
  • 10. Han, S. W., Kim, S. B. ve Kim, T., 2019, Effect of transverse reinforcement on the seismic behavior of diagonally reinforced concrete coupling beams, Engineering Structures, 196.
  • 11. ideYAPI, 2020, İdeYapı Ltd Şti, Şişli – İstanbul.
  • 12. İnel, M., Bilgin, H. ve Özmen, H. B., 2007, Orta Yükseklikteki Betonarme Binaların Deprem Performanslarının Afet Yönetmeliğine Göre Tayini, Pamukkale Univ Muh Bilim Derg, 13 (1), 81-89.
  • 13. Jang, S. J., Jeong, G. Y. ve Yun, H. D., 2018, Use of steel fibers as transverse reinforcement in diagonally reinforced coupling beams with normal- and high-strength concrete, Construction and Building Materials, 187, 1020-1030.
  • 14. Kwan, A. K. H. ve Zhao, Z. Z., 2002, Cyclic behaviour of deep reinforced concrete coupling beams, Proceedings of the Institution of Civil Engineers-Structures and Buildings, 152 (3), 283-293.
  • 15. Lequesne, R. D., Parra-Montesinos, G. J. ve Wight, J. K., 2013, Seismic Behavior and Detailing of High-Performance Fiber-Reinforced Concrete Coupling Beams and Coupled Wall Systems, Journal of Structural Engineering, 139 (8), 1362-1370.
  • 16. Li, S. R., Jiang, H. J. ve He, L. S., 2019a, Study of a new type of replaceable coupling beam in reinforced concrete shear wall structures, Structural Design of Tall and Special Buildings, 28 (10).
  • 17. Li, Y. H., Jiang, H. J. ve Yang, T. Y., 2019b, Damage Deformation of Flexure-Yielding Steel-Reinforced Concrete Coupling Beams: Experimental and Numerical Investigation, Advances in Civil Engineering, 2019.
  • 18. Mahmoudi, M., Mortazavi, S. M. R. ve Ajdari, S., 2016, The Effect of Spandrel Beam's Specification on Response Modification Factor of Concrete Coupled Shear Walls, Civil Engineering Infrastructures Journal-Ceij, 49 (1), 33-43.
  • 19. Meftah, S. A., Mohri, F. ve Daya, E. M., 2013, Seismic behavior of RC coupled shear walls with strengthened coupling beams by bonded thin composite plates, Ksce Journal of Civil Engineering, 17 (2), 403-414.
  • 20. Mihaylov, B., 2019, A kinematics-based approach for the shear strength of short fibre-reinforced concrete coupling beams, Engineering Structures, 182, 501-509.
  • 21. Park, W. S. ve Yun, H. D., 2006, Seismic behaviour and design of steel coupling beams in a hybrid coupled shear wall systems, Nuclear Engineering and Design, 236 (23), 2474-2484.
  • 22. Su, R. K. L. ve Zhu, Y., 2005, Experimental and numerical studies of external steel plate strengthened reinforced concrete coupling beams, Engineering Structures, 27 (10), 1537-1550.
  • 23. Vo, T. P. ve Lee, J., 2009, Flexural-torsional coupled vibration and buckling of thin-walled open section composite beams using shear-deformable beam theory, International Journal of Mechanical Sciences, 51 (9-10), 631-641.
  • 24. Vu, N. S., Li, B. ve Beyer, K., 2014, Effective stiffness of reinforced concrete coupling beams, Engineering Structures, 76, 371-382.
  • 25. Wallace, J. W., 2007, Modelling issues for tall reinforced concrete core wall buildings, Structural Design of Tall and Special Buildings, 16 (5), 615-632.
  • 26. Wang, T., Shang, Q. X., Wang, X. T., Li, J. C. ve Kong, Z., 2018, Experimental validation of RC shear wall structures with hybrid coupling beams, Soil Dynamics and Earthquake Engineering, 111, 14-30.
  • 27. Yeter, E., 2013, Dbybhy-07 Ve Asce 41-06’da Tanimlanan Doğrusal Olmayan Performans Değerlendİrme Yöntemlerİnİn Perde-Çerçeve Sİstemlerde Karşilaştirilmasi, İstanbul Teknik Üniversitesi, Yüksek Lisans Tezi.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Research Articles
Authors

Ömer Özer 0000-0002-5126-6832

Bahadır Yüksel 0000-0002-4175-1156

Publication Date December 31, 2020
Submission Date August 7, 2020
Acceptance Date October 30, 2020
Published in Issue Year 2020 Volume: 25 Issue: 3

Cite

APA Özer, Ö., & Yüksel, B. (2020). FARKLI BETONARME BAĞ KİRİŞİ MODELLERİNİN TBDY (2018)’E GÖRE YAPI PERFORMANSINA ETKİSİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(3), 1169-1188. https://doi.org/10.17482/uumfd.777897
AMA Özer Ö, Yüksel B. FARKLI BETONARME BAĞ KİRİŞİ MODELLERİNİN TBDY (2018)’E GÖRE YAPI PERFORMANSINA ETKİSİ. UUJFE. December 2020;25(3):1169-1188. doi:10.17482/uumfd.777897
Chicago Özer, Ömer, and Bahadır Yüksel. “FARKLI BETONARME BAĞ KİRİŞİ MODELLERİNİN TBDY (2018)’E GÖRE YAPI PERFORMANSINA ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25, no. 3 (December 2020): 1169-88. https://doi.org/10.17482/uumfd.777897.
EndNote Özer Ö, Yüksel B (December 1, 2020) FARKLI BETONARME BAĞ KİRİŞİ MODELLERİNİN TBDY (2018)’E GÖRE YAPI PERFORMANSINA ETKİSİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25 3 1169–1188.
IEEE Ö. Özer and B. Yüksel, “FARKLI BETONARME BAĞ KİRİŞİ MODELLERİNİN TBDY (2018)’E GÖRE YAPI PERFORMANSINA ETKİSİ”, UUJFE, vol. 25, no. 3, pp. 1169–1188, 2020, doi: 10.17482/uumfd.777897.
ISNAD Özer, Ömer - Yüksel, Bahadır. “FARKLI BETONARME BAĞ KİRİŞİ MODELLERİNİN TBDY (2018)’E GÖRE YAPI PERFORMANSINA ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25/3 (December 2020), 1169-1188. https://doi.org/10.17482/uumfd.777897.
JAMA Özer Ö, Yüksel B. FARKLI BETONARME BAĞ KİRİŞİ MODELLERİNİN TBDY (2018)’E GÖRE YAPI PERFORMANSINA ETKİSİ. UUJFE. 2020;25:1169–1188.
MLA Özer, Ömer and Bahadır Yüksel. “FARKLI BETONARME BAĞ KİRİŞİ MODELLERİNİN TBDY (2018)’E GÖRE YAPI PERFORMANSINA ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 25, no. 3, 2020, pp. 1169-88, doi:10.17482/uumfd.777897.
Vancouver Özer Ö, Yüksel B. FARKLI BETONARME BAĞ KİRİŞİ MODELLERİNİN TBDY (2018)’E GÖRE YAPI PERFORMANSINA ETKİSİ. UUJFE. 2020;25(3):1169-88.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.