Derleme
BibTex RIS Kaynak Göster

ALÜMİNYUM DÖKÜM ALAŞIMLARINA DAİR SON YILLARDAKİ AKADEMİK VE ENDÜSTRİYEL GELİŞMELERE GENEL BAKIŞ VE DEĞERLENDİRME

Yıl 2021, Cilt: 26 Sayı: 3, 1191 - 1210, 31.12.2021
https://doi.org/10.17482/uumfd.882586

Öz

Alüminyum döküm alaşımları; hafifletme, enerji tasarrufu, geri dönüşüm ve çevre duyarlılığı gibi ülkemizin ve Dünya’nın öncelikli çalışma alanlarında yer alan konular göz önüne alındığında, endüstrinin gözde alaşım grubunu temsil etmektedir. Son yıllarda başta otomotiv ana ve yan sanayisi olmak üzere, havacılık, uçak ve uzay endüstrisinde kullanım alanlarının artmasıyla, alüminyum alaşımlarının sahip olduğu mukavemet, sertlik, kırılma tokluğu, yorulma ömrü gibi birtakım özelliklerin geliştirilmesi ihtiyaç haline gelmiştir. Alüminyum döküm endüstrisindeki teknolojik ilerlemeler, dönemin malzemesinin gelişimi ile paralellik gösterdiğinden, ürün ve sektör çeşitliliğinin artışını, alaşımların sahip oldukları özellikler sınırlandırmaktadır. Bu amaca yönelik olarak gerek akademik gerekse endüstriyel ölçekte pek çok çalışma yapılmış ve literatüre kazandırılmıştır. Bu çalışmada, alüminyum döküm alaşımları ile ilgili özellikle son yıllarda yapılan ulusal ve uluslararası araştırma makaleleri derlenmiştir. Makaleler, mikroyapısal ve mekanik özelliklerin iyileştirilmesine yönelik çalışmalar, tane inceltme ve modifikasyon çalışmaları, alüminyum dökümde hesaplamalı malzeme mühendisliği ve bilgisayar destekli simülasyon çalışmaları olmak üzere üç alt başlıkta sunulmuştur. Ayrıca, derleme çalışmasının son bölümünde alüminyum döküm endüstrisine yönelik, son yıllarda yayınlanan arge, inovasyon ve rekabetçilik konulu raporlara dayanarak, küresel ölçekte alüminyum döküm endüstrisinde ülkemizin statik ve dinamik durumuyla ilgili güncel bilgiler ve istatistik verileri aktarılmıştır.

Kaynakça

  • 1. Askeland, D. R., Fulay, P. P. ve Wright, W. J. (1990) The Science and Engineering of Materials, Second Edition, Chapman & Hall, İstanbul.
  • 2. Apelian, D., Sigworth, G. K. ve Whaler, K. R. (1984) Assessment of grain refinement and modification of Al-Si foundry alloys by thermal analysis, American Foundry Society, 92, 297-307. doi:10.1016/j.jallcom.2009.11.122.
  • 3. Assadiki, A., Esin, V. A., Bruno, M. ve Martinez, R. (2018) Stabilizing effect of alloying elements on metastable phases in cast aluminum alloys by CALPHAD calculations, Computational Materials Science, 145, 1–7. doi.10.1016/j.commatsci.2017.12.056.
  • 4. Brough, D. ve Jouhara, H. (2020) The aluminium industry: A review on state-of-the-art technologies,environmental impacts and possibilities for waste heat recovery, International Journal of Thermofluids, 1(2), 1-39. doi:10.1016/j.ijft.2019.100007.
  • 5. Bolzoni, L., Nowak, M. ve Hari Babu, N. (2015a) Grain refinement of Al–Si alloys by Nb–B inoculation. Part II: Application to commercial alloys, Materials & Design (1980-2015), 66, 376–383. doi:10.1016/j.matdes.2014.08.067.
  • 6. Bolzoni, L. Nowak, M. ve Hari Babu, N. (2015b) Grain refining potency of Nb–B inoculation on Al–12Si–0.6Fe–0.5Mn alloy, Journal of Alloys and Compounds, 623, 79–82. doi:10.1016/j.jallcom.2014.10.069.
  • 7. Bolzoni, L. ve Hari Babu, N. (2019) Towards industrial Al-Nb-B master alloys for grain refining Al-Si alloys, Journal of Materials Research and Technology, 8(6), 5631-5638. doi:10.1016/j.jmrt.2019.09.031.
  • 8. Brůna, M., Bolibruchová, D. ve Pastirčák, R. (2017) Numerical Simulation of Porosity for Al Based Alloys, Procedia Engineering, 177, 488–495. doi:10.1016/j.proeng.2017.02.250.
  • 9. Campbell, J. (1991) Castings, Butterworth-Heinemann, United Kingdom.
  • 10. Campbell, J. (2003). Castings: The New Metallurgy Of Cast Metals, Butterworth Heinemann, United Kingdom.
  • 11. Backerud, L. (1983) How Does a Good Grain Refiner Work, Light Metal Age, 6–12.
  • 12. Cui, X. L., Wu, Y. Y. ve Liu, X. F. (2014) Preparation of a novel Al-3B-5Sr master alloy and its modification and refinement performance on A356 alloy, Journal of Alloys and Compounds, 615, 906-911. doi:10.1016/j.jallcom.2014.06.205.
  • 13. Chen, Z., Kang, H., Fan, G., Li, J., Lu, Y., Jie, J. ve Wang, T. (2016) Grain refinement of hypoeutectic Al-Si alloys with B, Acta Materialia, 120, 168–178. doi:10.1016/j.actamat.2016.08.045.
  • 14. Choi, I. K., Cho, S. H., Kim, S. J., Jo, Y. S. ve Kim, S.H. (2018) Improved Corrosion Resistance of 5XXX Aluminum Alloy by Homogenization Heat Treatment, Coatings, 8(1), 39. doi:10.3390/coatings8010039.
  • 15. Casari, D., Ludwig, T. H., Merlin, M., Arnberg, L. ve Garagnani, G. L. (2014) The effect of Ni and V trace elements on the mechanical properties of A356 aluminium foundry alloy in as-cast and T6 heat treated conditions, Materials Science and Engineering A, 610, 414–426. doi:10.1016/j.msea.2014.05.059.
  • 16. Demirci, M.K. (2011) Dünya Alüminyum Ticaretinde Türkiye’nin Yeri, 5. Alüminyum Sempozyumu, İstanbul.
  • 17. Dwight, J. (2002) Aluminium Design and Construction, Taylor & Francis e-Library, New York, 320.
  • 18. Do Lee, C. (2013) Effect of T6 heat treatment on the defect susceptibility of fatigue properties to microporosity variations in a low-pressure die-cast A356 alloy, Materials Science and Engineering A, 559, 496–505. doi:10.1016/j.msea.2012.08.131.
  • 19. Eroğlu, G., ve Şahiner, M. (2018) Dünya ve Türkiye’de Alüminyum, Maden Tetkik Arama Genel Müdürlüğü, Fizibilite Etütleri Daire Başkanlığı.
  • 20. Fortini, A., Merlin, M., Fabbri, E., Pirletti, S. ve Garagnani, G. L. (2016) On the influence of Mn and Mg additions on tensile properties, microstructure and quality index of the A356 aluminum foundry alloy, Procedia Structural Integrity, 2, 2238-2245. doi:10.1016/j.prostr.2016.06.280.
  • 21. Hwang, J. Y., Doty, H.W. ve Kaufman, M. J. (2008) The effects of Mn additions on the microstructure and mechanical properties of Al-Si-Cu casting alloys, Materials Science and Engineering A, 488, 496-504. doi:10.1016/j.msea.2007.12.026.
  • 22. Haskel, T., Verran, G. Q. ve Barbieri, R. (2018) Rotating and bending fatigue behavior of A356 aluminum alloy: effects of strontium addition and T6 heat treatment, International Journal of Fatigue, 114, 1-10. doi:10.1016/j.ijfatigue.2018.04.012.
  • 23. Jiao, X. Y., Liu, C. F., Guo, Z. P., Tong, G. D., Ma, S. L., Bi, Y. ve Xiong, S. M. (2020) The Characterization of Fe-rich Phases in a High-Pressure Die Cast Hypoeutectic Aluminum-Silicon Alloy, Journal of Materials Science and Technology, 51, 54-62. doi:10.1016/j.jmst.2020.02.040.
  • 24. https://www.turkishmetals.org/download/files/downloads/ihracat/raporlar/2015/Kasim.pdf Erişim Tarihi: 17.02.2021, Konu: Türkiye Alüminyum Sektörü Raporu, 2015, İstanbul Demir ve Demir Dışı Metaller İhracatçılar Birliği.
  • 25. Kayalı E.S. ve Ensari C. (1986) Metallere Plastik Şekil Verme İlke ve Uygulamaları, İstanbul, İ.T.Ü. Metalurji Bölümü, 90.
  • 26. Kamali, H., Emamy, M. ve Razaghian, A. (2014) The influence of Ti on the microstructure and tensile properties of cast Al–4.5Cu–0.3Mg alloy, Materials Science and Engineering A, 590, 161–167. doi: /10.1016/j.msea.2013.10.032.
  • 27. Kabir M. S., Minhaj T. I., Ashrafi E. A. ve Islam M. M. (2014) The influence of ageing time and temperature on the structure and properties of heat treated A201.0 aluminum alloy, International Journal of Recent Technology and Engineering, 3(3), 78-83.
  • 28. Lee, C. (2016) Effect of Ti-B addition on the variation of microporosity and tensile properties of A356 aluminium alloys, Materials Science and Engineering A, 668, 152-159. doi:10.1016/j.msea.2016.05.059.
  • 29. Lumley, R. (2011) Fundamentals of Aluminium Metallurgy: Production, Processing and Applications, Woodhead Publishing Limited.
  • 30. Li, J., Yang, G., Hage, F. S., Chen, Z., Wang, T., Ramasse, Q. M. ve Schumacher, P. (2017) Heterogeneous nucleation of Al on AlB2 in Al-7Si alloy, Materials Characterization, 128, 7–13. doi:10.1016/j.matchar.2017.03.029.
  • 31. Lee, C. D., So, T. I. ve Shin, K. S. (2014) Effect of geometric array of eutectic silicon particles and microscopic voids on the tensile behaviour of a cast aluminium alloy, Materials Science and Engineering A, 599, 28–37. doi:10.1016/j.msea.2014.01.063.
  • 32. Lee, C., Youn, J., Lee, Y. ve Kim, Y. (2016) Defect Susceptibility of Tensile Properties to Microporosity Variation in As-Cast Al–xSi Alloys, International Journal of Metalcasting, 11(1), 84–93. doi:10.1007/s40962-016-0107-6.
  • 33. Liu, T., Kärkkäinen, M., Nastac, L., Arvikar, V., Levin, I., ve Brewer, L. N. (2020) Iron-rich intermetallics in high pressure die cast A383 aluminum alloys, Intermetallics, 126, 106814. doi:10.1016/j.intermet.2020.106814.
  • 34. Li, S., Huang, Z., Chen, W., Liu, Z. ve Qi, W. (2013) Quench sensitivity of 6351 aluminum alloy, Transactions of Nonferrous Metals Society of China, 23(1), 46–52. doi:10.1016/S1003-6326(13)62427-9.
  • 35. Mazahery, A., Habibnejad-korayem, M. ve Takrouri, K. (2019) Performance of europium in microstructural modification of high strength lightweight aluminum components, International Journal of Lightweight Materials and Manufacture, 2(3), 250-254. doi:10.1016/j.ijlmm.2019.01.003.
  • 36. Navaneeth, V. (2009). Developing an effective die cooling technique for casting solidification, Master of Thesis, Auckland University of Technology, New Zealand.
  • 37. Rooy, E. L. (1990) Introduction to Aluminum and Aluminum Alloys, Zorc, T. B., Henry, S. D., ASM Handbook Volume 2 Properties and Selection: Nonferrous Alloys and Special Purpose Materials, ASM International, Ohio, 1328.
  • 38. Sjölander, E. ve Seifeddine, S. (2010) The heat treatment of Al–Si–Cu–Mg casting alloys, The Journal of Materials Processing Technology, 210(10), 1249–1259. doi:10.1016/j.jmatprotec.2010.03.020.
  • 39. Shaha, S. K., Czerwinski, F., Kasprzak, W., Friedman, J. ve Chen, D. L. (2015) Microstructure and mechanical properties of Al-Si cast alloy with additions of Zr-Ti-V, Materials & Design, 83, 801-812. doi:10.1016/j.matdes.2015.05.057.
  • 40. Sadeghi, I., Wells, M. A. ve Esmaeili, S. (2017) Modeling homogenization behavior of Al-Si-Cu-Mg aluminum alloy, Materials & Design, 128, 241–249. doi:10.1016/j.matdes.2017.05.006.
  • 41. Shang, B. C., Yin, Z. M., Wang, G., Liu, B. ve Huang, Z. Q. (2011) Investigation of quench sensitivity and transformation kinetics during isothermal treatment in 6082 aluminum alloy, Materials & Design, 32(7), 3818–3822. doi:10.1016/j.matdes.2011.03.016.
  • 42. TALSAD, (2020) Dünya ve Türkiye’de Alüminyum 2020 Yılı Raporu, Alüminyum Sektörü Raporu, 2020, Türkiye Alüminyum Sanayicileri Derneği.
  • 43. http://talsad.org.tr/wp-content/uploads/2020/11/TALSAD-Dünyada-Alüminyum_1.pdf Erişim Tarihi: 17.02.2021, Konu: Alüminyum Sektörü Raporu, 2019, Türkiye Alüminyum Sanayicileri Derneği.
  • 44. https://www.metalurji.org.tr/dergi/dergi137/d137_1445.pdf Erişim Tarihi: 17.02.2021, Konu: Alüminyum Raporu, 2019, TMMOB Metalurji Mühendisleri Odası.
  • 45. Yang, C., Li, Y., Dang, B., Lü, H. ve Liu, F. (2015) Effects of cooling rate on solution heat treatment of as-cast A356 alloy, Transactions of Nonferrous Metals Society of China, 25(10), 3189–3196. doi:10.1016/S1003-6326(15)63952-8.
  • 46. Yi, W., Gao, J., Tang, Y. ve Zhang, L. (2020) Thermodynamic descriptions of ternary Al–Si–Sr system supported by key experiments, Calphad, 68, 101732. doi:10.1016/j.calphad.2019.101732.
  • 47. Zhao, J.W. ve Wu, S.S. (2010). Microstructure and Mechanical Properties of Rheodiecasted A390 Alloy, Transactions of Nonferrous Metals Society of China, 3(0), 754-757.
  • 48. Zhu, M., Jian, Z., Yang, G. ve Zhou, Y. (2012) Effects of T6 heat treatment on the microstructure, tensile properties, and fracture behavior of the modified A356 alloys, Materials & Design (1980-2015), 36, 243–249. doi:10.1016/j.matdes.2011.11.018.
  • 49. Zhu, M., Jian, Z., Yao, L., Liu, C., Yang, G. ve Zhou, Y. (2010). Effect of mischmetal modification treatment on the microstructure, tensile properties, and fracture behavior of Al-7.0%Si-0.3%Mg foundry aluminum alloys, Journal of Materials Science, 46(8), 2685–2694. doi:10.1007/s10853-010-5135-7.

Overview and Evaluation of Academic and Industrial Developments in Last Years on Aluminum Casting Alloys

Yıl 2021, Cilt: 26 Sayı: 3, 1191 - 1210, 31.12.2021
https://doi.org/10.17482/uumfd.882586

Öz

Aluminum casting alloys represents the industry's favorite alloy group, considering the issues in our country’s and the world’s priority research areas such as lightening, energy saving, recycling and environmental awareness. In recent years, it has become a necessity to develop some properties of aluminum alloys such as strength, hardness, fracture toughness, fatigue life, with the increase in usage areas in the aviation, aircraft and space industries, especially in the automotive key and sub-industry. As the technological advances in the aluminum casting industry are in parallel with the development of the material of the period, the increase in product and sector diversity limits the properties of alloys. For this purpose, many studies have been done on both academic and industrial scale and have been added to the literature. In this study, national and international research articles on aluminum casting alloys, especially in recent years, are reviewed. The articles are presented under three subheadings: studies for improving microstructural and mechanical properties, grain refinement and modification studies, computational material engineering in aluminum casting and computer aided simulation studies. In addition, in the last part of the compilation study, based on the reports on R&D, innovation and competitiveness published in the aluminum casting industry in recent years, current information and statistical data about the static and dynamic situation of our country in the aluminum casting industry on a global scale are presented.

Kaynakça

  • 1. Askeland, D. R., Fulay, P. P. ve Wright, W. J. (1990) The Science and Engineering of Materials, Second Edition, Chapman & Hall, İstanbul.
  • 2. Apelian, D., Sigworth, G. K. ve Whaler, K. R. (1984) Assessment of grain refinement and modification of Al-Si foundry alloys by thermal analysis, American Foundry Society, 92, 297-307. doi:10.1016/j.jallcom.2009.11.122.
  • 3. Assadiki, A., Esin, V. A., Bruno, M. ve Martinez, R. (2018) Stabilizing effect of alloying elements on metastable phases in cast aluminum alloys by CALPHAD calculations, Computational Materials Science, 145, 1–7. doi.10.1016/j.commatsci.2017.12.056.
  • 4. Brough, D. ve Jouhara, H. (2020) The aluminium industry: A review on state-of-the-art technologies,environmental impacts and possibilities for waste heat recovery, International Journal of Thermofluids, 1(2), 1-39. doi:10.1016/j.ijft.2019.100007.
  • 5. Bolzoni, L., Nowak, M. ve Hari Babu, N. (2015a) Grain refinement of Al–Si alloys by Nb–B inoculation. Part II: Application to commercial alloys, Materials & Design (1980-2015), 66, 376–383. doi:10.1016/j.matdes.2014.08.067.
  • 6. Bolzoni, L. Nowak, M. ve Hari Babu, N. (2015b) Grain refining potency of Nb–B inoculation on Al–12Si–0.6Fe–0.5Mn alloy, Journal of Alloys and Compounds, 623, 79–82. doi:10.1016/j.jallcom.2014.10.069.
  • 7. Bolzoni, L. ve Hari Babu, N. (2019) Towards industrial Al-Nb-B master alloys for grain refining Al-Si alloys, Journal of Materials Research and Technology, 8(6), 5631-5638. doi:10.1016/j.jmrt.2019.09.031.
  • 8. Brůna, M., Bolibruchová, D. ve Pastirčák, R. (2017) Numerical Simulation of Porosity for Al Based Alloys, Procedia Engineering, 177, 488–495. doi:10.1016/j.proeng.2017.02.250.
  • 9. Campbell, J. (1991) Castings, Butterworth-Heinemann, United Kingdom.
  • 10. Campbell, J. (2003). Castings: The New Metallurgy Of Cast Metals, Butterworth Heinemann, United Kingdom.
  • 11. Backerud, L. (1983) How Does a Good Grain Refiner Work, Light Metal Age, 6–12.
  • 12. Cui, X. L., Wu, Y. Y. ve Liu, X. F. (2014) Preparation of a novel Al-3B-5Sr master alloy and its modification and refinement performance on A356 alloy, Journal of Alloys and Compounds, 615, 906-911. doi:10.1016/j.jallcom.2014.06.205.
  • 13. Chen, Z., Kang, H., Fan, G., Li, J., Lu, Y., Jie, J. ve Wang, T. (2016) Grain refinement of hypoeutectic Al-Si alloys with B, Acta Materialia, 120, 168–178. doi:10.1016/j.actamat.2016.08.045.
  • 14. Choi, I. K., Cho, S. H., Kim, S. J., Jo, Y. S. ve Kim, S.H. (2018) Improved Corrosion Resistance of 5XXX Aluminum Alloy by Homogenization Heat Treatment, Coatings, 8(1), 39. doi:10.3390/coatings8010039.
  • 15. Casari, D., Ludwig, T. H., Merlin, M., Arnberg, L. ve Garagnani, G. L. (2014) The effect of Ni and V trace elements on the mechanical properties of A356 aluminium foundry alloy in as-cast and T6 heat treated conditions, Materials Science and Engineering A, 610, 414–426. doi:10.1016/j.msea.2014.05.059.
  • 16. Demirci, M.K. (2011) Dünya Alüminyum Ticaretinde Türkiye’nin Yeri, 5. Alüminyum Sempozyumu, İstanbul.
  • 17. Dwight, J. (2002) Aluminium Design and Construction, Taylor & Francis e-Library, New York, 320.
  • 18. Do Lee, C. (2013) Effect of T6 heat treatment on the defect susceptibility of fatigue properties to microporosity variations in a low-pressure die-cast A356 alloy, Materials Science and Engineering A, 559, 496–505. doi:10.1016/j.msea.2012.08.131.
  • 19. Eroğlu, G., ve Şahiner, M. (2018) Dünya ve Türkiye’de Alüminyum, Maden Tetkik Arama Genel Müdürlüğü, Fizibilite Etütleri Daire Başkanlığı.
  • 20. Fortini, A., Merlin, M., Fabbri, E., Pirletti, S. ve Garagnani, G. L. (2016) On the influence of Mn and Mg additions on tensile properties, microstructure and quality index of the A356 aluminum foundry alloy, Procedia Structural Integrity, 2, 2238-2245. doi:10.1016/j.prostr.2016.06.280.
  • 21. Hwang, J. Y., Doty, H.W. ve Kaufman, M. J. (2008) The effects of Mn additions on the microstructure and mechanical properties of Al-Si-Cu casting alloys, Materials Science and Engineering A, 488, 496-504. doi:10.1016/j.msea.2007.12.026.
  • 22. Haskel, T., Verran, G. Q. ve Barbieri, R. (2018) Rotating and bending fatigue behavior of A356 aluminum alloy: effects of strontium addition and T6 heat treatment, International Journal of Fatigue, 114, 1-10. doi:10.1016/j.ijfatigue.2018.04.012.
  • 23. Jiao, X. Y., Liu, C. F., Guo, Z. P., Tong, G. D., Ma, S. L., Bi, Y. ve Xiong, S. M. (2020) The Characterization of Fe-rich Phases in a High-Pressure Die Cast Hypoeutectic Aluminum-Silicon Alloy, Journal of Materials Science and Technology, 51, 54-62. doi:10.1016/j.jmst.2020.02.040.
  • 24. https://www.turkishmetals.org/download/files/downloads/ihracat/raporlar/2015/Kasim.pdf Erişim Tarihi: 17.02.2021, Konu: Türkiye Alüminyum Sektörü Raporu, 2015, İstanbul Demir ve Demir Dışı Metaller İhracatçılar Birliği.
  • 25. Kayalı E.S. ve Ensari C. (1986) Metallere Plastik Şekil Verme İlke ve Uygulamaları, İstanbul, İ.T.Ü. Metalurji Bölümü, 90.
  • 26. Kamali, H., Emamy, M. ve Razaghian, A. (2014) The influence of Ti on the microstructure and tensile properties of cast Al–4.5Cu–0.3Mg alloy, Materials Science and Engineering A, 590, 161–167. doi: /10.1016/j.msea.2013.10.032.
  • 27. Kabir M. S., Minhaj T. I., Ashrafi E. A. ve Islam M. M. (2014) The influence of ageing time and temperature on the structure and properties of heat treated A201.0 aluminum alloy, International Journal of Recent Technology and Engineering, 3(3), 78-83.
  • 28. Lee, C. (2016) Effect of Ti-B addition on the variation of microporosity and tensile properties of A356 aluminium alloys, Materials Science and Engineering A, 668, 152-159. doi:10.1016/j.msea.2016.05.059.
  • 29. Lumley, R. (2011) Fundamentals of Aluminium Metallurgy: Production, Processing and Applications, Woodhead Publishing Limited.
  • 30. Li, J., Yang, G., Hage, F. S., Chen, Z., Wang, T., Ramasse, Q. M. ve Schumacher, P. (2017) Heterogeneous nucleation of Al on AlB2 in Al-7Si alloy, Materials Characterization, 128, 7–13. doi:10.1016/j.matchar.2017.03.029.
  • 31. Lee, C. D., So, T. I. ve Shin, K. S. (2014) Effect of geometric array of eutectic silicon particles and microscopic voids on the tensile behaviour of a cast aluminium alloy, Materials Science and Engineering A, 599, 28–37. doi:10.1016/j.msea.2014.01.063.
  • 32. Lee, C., Youn, J., Lee, Y. ve Kim, Y. (2016) Defect Susceptibility of Tensile Properties to Microporosity Variation in As-Cast Al–xSi Alloys, International Journal of Metalcasting, 11(1), 84–93. doi:10.1007/s40962-016-0107-6.
  • 33. Liu, T., Kärkkäinen, M., Nastac, L., Arvikar, V., Levin, I., ve Brewer, L. N. (2020) Iron-rich intermetallics in high pressure die cast A383 aluminum alloys, Intermetallics, 126, 106814. doi:10.1016/j.intermet.2020.106814.
  • 34. Li, S., Huang, Z., Chen, W., Liu, Z. ve Qi, W. (2013) Quench sensitivity of 6351 aluminum alloy, Transactions of Nonferrous Metals Society of China, 23(1), 46–52. doi:10.1016/S1003-6326(13)62427-9.
  • 35. Mazahery, A., Habibnejad-korayem, M. ve Takrouri, K. (2019) Performance of europium in microstructural modification of high strength lightweight aluminum components, International Journal of Lightweight Materials and Manufacture, 2(3), 250-254. doi:10.1016/j.ijlmm.2019.01.003.
  • 36. Navaneeth, V. (2009). Developing an effective die cooling technique for casting solidification, Master of Thesis, Auckland University of Technology, New Zealand.
  • 37. Rooy, E. L. (1990) Introduction to Aluminum and Aluminum Alloys, Zorc, T. B., Henry, S. D., ASM Handbook Volume 2 Properties and Selection: Nonferrous Alloys and Special Purpose Materials, ASM International, Ohio, 1328.
  • 38. Sjölander, E. ve Seifeddine, S. (2010) The heat treatment of Al–Si–Cu–Mg casting alloys, The Journal of Materials Processing Technology, 210(10), 1249–1259. doi:10.1016/j.jmatprotec.2010.03.020.
  • 39. Shaha, S. K., Czerwinski, F., Kasprzak, W., Friedman, J. ve Chen, D. L. (2015) Microstructure and mechanical properties of Al-Si cast alloy with additions of Zr-Ti-V, Materials & Design, 83, 801-812. doi:10.1016/j.matdes.2015.05.057.
  • 40. Sadeghi, I., Wells, M. A. ve Esmaeili, S. (2017) Modeling homogenization behavior of Al-Si-Cu-Mg aluminum alloy, Materials & Design, 128, 241–249. doi:10.1016/j.matdes.2017.05.006.
  • 41. Shang, B. C., Yin, Z. M., Wang, G., Liu, B. ve Huang, Z. Q. (2011) Investigation of quench sensitivity and transformation kinetics during isothermal treatment in 6082 aluminum alloy, Materials & Design, 32(7), 3818–3822. doi:10.1016/j.matdes.2011.03.016.
  • 42. TALSAD, (2020) Dünya ve Türkiye’de Alüminyum 2020 Yılı Raporu, Alüminyum Sektörü Raporu, 2020, Türkiye Alüminyum Sanayicileri Derneği.
  • 43. http://talsad.org.tr/wp-content/uploads/2020/11/TALSAD-Dünyada-Alüminyum_1.pdf Erişim Tarihi: 17.02.2021, Konu: Alüminyum Sektörü Raporu, 2019, Türkiye Alüminyum Sanayicileri Derneği.
  • 44. https://www.metalurji.org.tr/dergi/dergi137/d137_1445.pdf Erişim Tarihi: 17.02.2021, Konu: Alüminyum Raporu, 2019, TMMOB Metalurji Mühendisleri Odası.
  • 45. Yang, C., Li, Y., Dang, B., Lü, H. ve Liu, F. (2015) Effects of cooling rate on solution heat treatment of as-cast A356 alloy, Transactions of Nonferrous Metals Society of China, 25(10), 3189–3196. doi:10.1016/S1003-6326(15)63952-8.
  • 46. Yi, W., Gao, J., Tang, Y. ve Zhang, L. (2020) Thermodynamic descriptions of ternary Al–Si–Sr system supported by key experiments, Calphad, 68, 101732. doi:10.1016/j.calphad.2019.101732.
  • 47. Zhao, J.W. ve Wu, S.S. (2010). Microstructure and Mechanical Properties of Rheodiecasted A390 Alloy, Transactions of Nonferrous Metals Society of China, 3(0), 754-757.
  • 48. Zhu, M., Jian, Z., Yang, G. ve Zhou, Y. (2012) Effects of T6 heat treatment on the microstructure, tensile properties, and fracture behavior of the modified A356 alloys, Materials & Design (1980-2015), 36, 243–249. doi:10.1016/j.matdes.2011.11.018.
  • 49. Zhu, M., Jian, Z., Yao, L., Liu, C., Yang, G. ve Zhou, Y. (2010). Effect of mischmetal modification treatment on the microstructure, tensile properties, and fracture behavior of Al-7.0%Si-0.3%Mg foundry aluminum alloys, Journal of Materials Science, 46(8), 2685–2694. doi:10.1007/s10853-010-5135-7.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Mühendisliği (Diğer)
Bölüm Derleme Makaleler
Yazarlar

Tuğçe Yağcı 0000-0001-7478-9882

Ümit Cöcen 0000-0002-7776-2412

Osman Çulha 0000-0003-1611-8452

Adem Korkmaz 0000-0001-6816-2004

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 18 Şubat 2021
Kabul Tarihi 16 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 26 Sayı: 3

Kaynak Göster

APA Yağcı, T., Cöcen, Ü., Çulha, O., Korkmaz, A. (2021). ALÜMİNYUM DÖKÜM ALAŞIMLARINA DAİR SON YILLARDAKİ AKADEMİK VE ENDÜSTRİYEL GELİŞMELERE GENEL BAKIŞ VE DEĞERLENDİRME. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(3), 1191-1210. https://doi.org/10.17482/uumfd.882586
AMA Yağcı T, Cöcen Ü, Çulha O, Korkmaz A. ALÜMİNYUM DÖKÜM ALAŞIMLARINA DAİR SON YILLARDAKİ AKADEMİK VE ENDÜSTRİYEL GELİŞMELERE GENEL BAKIŞ VE DEĞERLENDİRME. UUJFE. Aralık 2021;26(3):1191-1210. doi:10.17482/uumfd.882586
Chicago Yağcı, Tuğçe, Ümit Cöcen, Osman Çulha, ve Adem Korkmaz. “ALÜMİNYUM DÖKÜM ALAŞIMLARINA DAİR SON YILLARDAKİ AKADEMİK VE ENDÜSTRİYEL GELİŞMELERE GENEL BAKIŞ VE DEĞERLENDİRME”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, sy. 3 (Aralık 2021): 1191-1210. https://doi.org/10.17482/uumfd.882586.
EndNote Yağcı T, Cöcen Ü, Çulha O, Korkmaz A (01 Aralık 2021) ALÜMİNYUM DÖKÜM ALAŞIMLARINA DAİR SON YILLARDAKİ AKADEMİK VE ENDÜSTRİYEL GELİŞMELERE GENEL BAKIŞ VE DEĞERLENDİRME. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26 3 1191–1210.
IEEE T. Yağcı, Ü. Cöcen, O. Çulha, ve A. Korkmaz, “ALÜMİNYUM DÖKÜM ALAŞIMLARINA DAİR SON YILLARDAKİ AKADEMİK VE ENDÜSTRİYEL GELİŞMELERE GENEL BAKIŞ VE DEĞERLENDİRME”, UUJFE, c. 26, sy. 3, ss. 1191–1210, 2021, doi: 10.17482/uumfd.882586.
ISNAD Yağcı, Tuğçe vd. “ALÜMİNYUM DÖKÜM ALAŞIMLARINA DAİR SON YILLARDAKİ AKADEMİK VE ENDÜSTRİYEL GELİŞMELERE GENEL BAKIŞ VE DEĞERLENDİRME”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/3 (Aralık 2021), 1191-1210. https://doi.org/10.17482/uumfd.882586.
JAMA Yağcı T, Cöcen Ü, Çulha O, Korkmaz A. ALÜMİNYUM DÖKÜM ALAŞIMLARINA DAİR SON YILLARDAKİ AKADEMİK VE ENDÜSTRİYEL GELİŞMELERE GENEL BAKIŞ VE DEĞERLENDİRME. UUJFE. 2021;26:1191–1210.
MLA Yağcı, Tuğçe vd. “ALÜMİNYUM DÖKÜM ALAŞIMLARINA DAİR SON YILLARDAKİ AKADEMİK VE ENDÜSTRİYEL GELİŞMELERE GENEL BAKIŞ VE DEĞERLENDİRME”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 26, sy. 3, 2021, ss. 1191-10, doi:10.17482/uumfd.882586.
Vancouver Yağcı T, Cöcen Ü, Çulha O, Korkmaz A. ALÜMİNYUM DÖKÜM ALAŞIMLARINA DAİR SON YILLARDAKİ AKADEMİK VE ENDÜSTRİYEL GELİŞMELERE GENEL BAKIŞ VE DEĞERLENDİRME. UUJFE. 2021;26(3):1191-210.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr