Investigation of The Mechanical Properties of Tensile Test Samples Produced in Different Colors and Different Infill Patterns with A 3D Printer
Year 2021,
Volume: 26 Issue: 3, 829 - 848, 31.12.2021
Muhammed Safa Kamer
,
Şemsettin Temiz
,
Dr. Hakan Yaykaşlı
,
Ahmet Kaya
Abstract
Fused deposition modeling (FDM) is a rapidly growing rapid prototyping technology due to its ability to create functional parts with complex shapes in a reasonable time. Determining and improving the mechanical properties of the products produced by 3D printers using the FDM method is of great importance for the widespread use of this manufacturing method. In this study; tensile test specimens have been produced in different colors and different infill patterns using ABS and PLA materials with the Ultimaker 2 Extended 3D printer. The effects of filament color and infill pattern on mechanical properties have been investigated experimentally. As a result, it has been determined that the filament color used has no significant effect on the mechanical properties of the tensile samples produced by 3D printer. Among the infill patterns used, it has been determined that the highest tensile strength values are in the samples produced with the "Concentric" infill pattern.
References
- 1. Al-Maharma, A.Y., Patil, S.P. ve Markert, B. (2020) Effects of porosity on the mechanical properties of additively manufactured components: a critical review, Materials Research Express, 7(12), 2001. https://doi.org/10.1088/2053-1591/abcc5d
- 2. Andó, M., Birosz, M. ve Jeganmohan, S. (2021) Surface bonding of additive manufactured parts from multi-colored PLA materials, Measurement, 169, 1-7. https://doi.org/10.1016/j.measurement.2020.108583
- 3. ASTM D638-14, (2014). Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D0638-14
- 4. Ayrılmış, N. (2018) Effect of layer thickness on surface properties of 3D printed materials produced from wood flour/PLA filament, Polymer Testing, 71, 163-166. https://doi.org/10.1016/j.polymertesting.2018.09.009
- 5. Chacón, J.M., Caminero, M.A., García-Plaza, E. ve Núñez, P.J. (2017) Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection, Materials & Design, 124, 143-157. https://doi.org/10.1016/j.matdes.2017.03.065
- 6. Dilberoğlu, U.M., Şimşek, S. ve Yaman, U. (2019) Shrinkage compensation approach proposed for ABS material in FDM process, Materials and Manufacturing Processes, 34(9), 993-998. https://doi.org/10.1080/10426914.2019.1594252
- 7. Graziosi, S., Cannazza, F., Vedani, M., Ratti, A., Tamburrino, F. ve Bordegoni, M. (2020) Design and testing of an innovative 3D-printed metal-composite junction, Additive Manufacturing, 36, 1-18. https://doi.org/10.1016/j.addma.2020.101311
- 8. Gulcımen Cakan, B., Ensarioglu, C., Küçükakarsu, V., Tekin, İ. ve Çakır, M. (2021) FDM yöntemiyle üretilmiş öksetik bal peteği kutuların yöne bağlı darbe davranışının deneysel ve nümerik olarak incelenmesi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(3), 1657-1668. https://doi.org/10.17341/gazimmfd.829758
- 9. Kumar, R., Singh, R. ve Ahuja, I.P.S. (2019) Friction stir welding of ABS-15Al sheets by introducing compatible semi-consumable shoulder-less pin of PA6-50Al, Measurement, 131, 461-472.
https://doi.org/10.1016/j.measurement.2018.09.005
- 10. Lay, M., Thajudin, N.L.N., Hamid, Z.A.A., Rusli, A., Abdullah, M.K. ve Shuib, R.K. (2019) Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding, Composites Part B, 176, 107341. https://doi.org/10.1016/j.compositesb.2019.107341
- 11. Liao, Y., Liu, C., Coppola, B., Barra, G., Di Maio, L., Incarnato, L. ve Lafdi, K. (2019) Effect of porosity and crystallinity on 3d printed PLA properties. Polymers, 11(9), 1487. https://doi.org/10.3390/polym11091487
- 12. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T.Q. ve Hui, D. (2018) Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering, 143, 172-196. https://doi.org/10.1016/j.compositesb.2018.02.012
- 13. Ning, F., Cong, W., Hu, Y. ve Wang, H. (2017) Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties, Journal of Composite Materials, 51, 451-462. https://doi.org/10.1177/0021998316646169
- 14. Noori, H. (2019) Interlayer fracture energy of 3D-printed PLA material, The International Journal of Advanced Manufacturing Technology, 101, 1959-1965. https://doi.org/10.1007/s00170-018-3031-5
- 15. Popescu, D., Zapciu, A., Amza, C., Baciu, F. ve Marinescu, R. (2018) FDM process parameters influence over the mechanical properties of polymer specimens: A review, Polymer Testing, 69, 157-166. https://doi.org/10.1016/j.polymertesting.2018.05.020
- 16. Sezer, H., Eren, O., Börklü, H. ve Özdemir, V. (2019) Karbon fiber takviyeli polimer kompozitlerin ergiyik biriktirme yöntemi ile eklemeli imalatı: Fiber oranı ve yazdırma parametrelerinin mekanik özelliklere etkisi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34 (2), 663-674. https://doi.org/10.17341/gazimmfd.416523
- 17. Solmaz, M.Y. ve Çelik, E. (2018) 3 Boyutlu Yazıcı Kullanılarak Üretilen Bal Peteği Sandviç Kompozitlerin Basma Yükü Altındaki Performanslarının Araştırılması, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30(1), 277-286. https://dergipark.org.tr/tr/pub/fumbd/issue/35837/400526
- 18. Sood, A.K., Ohdar, R.K. ve Mahapatra, S.S. (2010) Parametric appraisal of mechanical property of fused deposition modelling processed parts, Materials & Design, 31, 287-295. https://doi.org/10.1016/j.matdes.2009.06.016
- 19. Tatlı, O. ve Özgül, H.G. (2020) 3d printer design, manufacturing and effect of infill patterns on mechanical properties, Icontech International Journal, 4(1), 13-24. https://doi.org/10.46291/ICONTECHvol4iss1pp13-24
- 20. The Ultimaker 2 Extended specifications, (n.d.). Erişim Adresi: https://support.ultimaker.com/hc/en-us/articles/360011987939-The-Ultimaker-2-Extended-specifications (Erişim Tarihi: 06.02.2021)
- 21. The Ultimaker 2 Extended user manual, (n.d.). Erişim Adresi: https://support.ultimaker.com/hc/en-us/articles/360011987819-The-Ultimaker-2-Extended-user-manual (Erişim Tarihi: 06.02.2021)
- 22. Ultimaker ABS SDS, (2017). Erişim Adresi: https://support.ultimaker.com/hc/en-us/articles/360011962900-
Ultimaker-ABS-SDS (Erişim Tarihi: 15.02.2021)
- 23. Ultimaker ABS TDS, (2018). Erişim Adresi: https://support.ultimaker.com/hc/en-us/articles/360012759139-Ultimaker-ABS-TDS (Erişim Tarihi: 15.02.2021)
- 24. Ultimaker PLA SDS, (2019). Erişim Adresi: https://support.ultimaker.com/hc/en-us/articles/360012759359-Ultimaker-PLA-SDS (Erişim Tarihi: 15.02.2021)
- 25. Ultimaker PLA TDS, (2018). Erişim Adresi: https://support.ultimaker.com/hc/en-us/articles/360011962720-Ultimaker-PLA-TDS (Erişim Tarihi: 15.02.2021)
- 26. Uzun, M., Gür, Y. ve Usca, Ü. (2018) Manufacturing of new type curvilinear tooth profiled involute gears using 3D printing, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(1), 278-286. doi: 10.25092/baunfbed.398462
- 27. Uzun, M. ve Erdoğdu, Y.E. (2020) Eriyik yığma modellemesi ile üretimde takviyesiz ve takviyeli pla kullanımının mekanik özelliklere etkisinin araştırılması, Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(4), 2800-2808. https://doi.org/10.21597/jist.799230
- 28. Wojtyła, S., Klama, P. ve Baran, T. (2017) Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon, Journal of Occupational and Environmental Hygiene, 14(6), 80-85. https://doi.org/10.1080/15459624.2017.1285489
- 29. Yaman, U. (2018) Shrinkage compensation of holes via shrinkage of interior structure in FDM process, International Journal of Advanced Manufacturing Technology, 94, 2187–2197. https://doi.org/10.1007/s00170-017-1018-2
- 30. Yaman, U. (2019) Topoloji optimizasyonu yapılmış parçaların 3b yazıcılar ile doğrudan üretilmesi, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 7(1), 236-244. https://doi.org/10.29109/gujsc.491244
- 31. Zhang, P. ve To, A.C. (2016) Transversely isotropic hyperelastic-viscoplastic model for glassy polymers with application to additive manufactured photopolymers, International Journal of Plasticity, 80, 56-74. https://doi.org/10.1016/j.ijplas.2015.12.012
3 BOYUTLU YAZICI İLE FARKLI RENKLERDE VE FARKLI DOLGU DESENLERİNDE ÜRETİLEN ÇEKME TEST NUMUNELERİNİN MEKANİK ÖZELLİKLERİNİN İNCELENMESİ
Year 2021,
Volume: 26 Issue: 3, 829 - 848, 31.12.2021
Muhammed Safa Kamer
,
Şemsettin Temiz
,
Dr. Hakan Yaykaşlı
,
Ahmet Kaya
Abstract
Erimiş yığma modellemesi (FDM), makul bir süre içinde karmaşık şekillere sahip işlevsel parçalar oluşturma yeteneği nedeniyle hızla büyüyen bir hızlı prototipleme teknolojisidir. FDM yöntemiyle üretim yapan 3 boyutlu yazıcılarla üretilen ürünlerin mekanik özelliklerinin belirlenmesi ve geliştirilmesi, bu imalat yönteminin kullanımının yaygınlaşması açısından büyük öneme sahiptir. Bu çalışmada; Ultimaker 2 Extended 3B yazıcı ile ABS ve PLA malzeme kullanılarak farklı renklerde ve farklı dolgu desenlerinde çekme test numuneleri üretilmiştir. Filament renginin ve dolgu deseninin mekanik özellikler üzerindeki etkileri deneysel olarak araştırılmıştır. Sonuç olarak, kullanılan filament renginin, 3 boyutlu yazıcı ile üretilen çekme numunelerinin mekanik özellikleri üzerinde kayda değer bir etkisinin olmadığı tespit edilmiştir. Kullanılan dolgu desenleri arasından en yüksek çekme mukavemeti değerlerinin “Concentric” dolgu deseniyle üretilen numunelerde olduğu belirlenmiştir.
References
- 1. Al-Maharma, A.Y., Patil, S.P. ve Markert, B. (2020) Effects of porosity on the mechanical properties of additively manufactured components: a critical review, Materials Research Express, 7(12), 2001. https://doi.org/10.1088/2053-1591/abcc5d
- 2. Andó, M., Birosz, M. ve Jeganmohan, S. (2021) Surface bonding of additive manufactured parts from multi-colored PLA materials, Measurement, 169, 1-7. https://doi.org/10.1016/j.measurement.2020.108583
- 3. ASTM D638-14, (2014). Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D0638-14
- 4. Ayrılmış, N. (2018) Effect of layer thickness on surface properties of 3D printed materials produced from wood flour/PLA filament, Polymer Testing, 71, 163-166. https://doi.org/10.1016/j.polymertesting.2018.09.009
- 5. Chacón, J.M., Caminero, M.A., García-Plaza, E. ve Núñez, P.J. (2017) Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection, Materials & Design, 124, 143-157. https://doi.org/10.1016/j.matdes.2017.03.065
- 6. Dilberoğlu, U.M., Şimşek, S. ve Yaman, U. (2019) Shrinkage compensation approach proposed for ABS material in FDM process, Materials and Manufacturing Processes, 34(9), 993-998. https://doi.org/10.1080/10426914.2019.1594252
- 7. Graziosi, S., Cannazza, F., Vedani, M., Ratti, A., Tamburrino, F. ve Bordegoni, M. (2020) Design and testing of an innovative 3D-printed metal-composite junction, Additive Manufacturing, 36, 1-18. https://doi.org/10.1016/j.addma.2020.101311
- 8. Gulcımen Cakan, B., Ensarioglu, C., Küçükakarsu, V., Tekin, İ. ve Çakır, M. (2021) FDM yöntemiyle üretilmiş öksetik bal peteği kutuların yöne bağlı darbe davranışının deneysel ve nümerik olarak incelenmesi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(3), 1657-1668. https://doi.org/10.17341/gazimmfd.829758
- 9. Kumar, R., Singh, R. ve Ahuja, I.P.S. (2019) Friction stir welding of ABS-15Al sheets by introducing compatible semi-consumable shoulder-less pin of PA6-50Al, Measurement, 131, 461-472.
https://doi.org/10.1016/j.measurement.2018.09.005
- 10. Lay, M., Thajudin, N.L.N., Hamid, Z.A.A., Rusli, A., Abdullah, M.K. ve Shuib, R.K. (2019) Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding, Composites Part B, 176, 107341. https://doi.org/10.1016/j.compositesb.2019.107341
- 11. Liao, Y., Liu, C., Coppola, B., Barra, G., Di Maio, L., Incarnato, L. ve Lafdi, K. (2019) Effect of porosity and crystallinity on 3d printed PLA properties. Polymers, 11(9), 1487. https://doi.org/10.3390/polym11091487
- 12. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T.Q. ve Hui, D. (2018) Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering, 143, 172-196. https://doi.org/10.1016/j.compositesb.2018.02.012
- 13. Ning, F., Cong, W., Hu, Y. ve Wang, H. (2017) Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties, Journal of Composite Materials, 51, 451-462. https://doi.org/10.1177/0021998316646169
- 14. Noori, H. (2019) Interlayer fracture energy of 3D-printed PLA material, The International Journal of Advanced Manufacturing Technology, 101, 1959-1965. https://doi.org/10.1007/s00170-018-3031-5
- 15. Popescu, D., Zapciu, A., Amza, C., Baciu, F. ve Marinescu, R. (2018) FDM process parameters influence over the mechanical properties of polymer specimens: A review, Polymer Testing, 69, 157-166. https://doi.org/10.1016/j.polymertesting.2018.05.020
- 16. Sezer, H., Eren, O., Börklü, H. ve Özdemir, V. (2019) Karbon fiber takviyeli polimer kompozitlerin ergiyik biriktirme yöntemi ile eklemeli imalatı: Fiber oranı ve yazdırma parametrelerinin mekanik özelliklere etkisi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34 (2), 663-674. https://doi.org/10.17341/gazimmfd.416523
- 17. Solmaz, M.Y. ve Çelik, E. (2018) 3 Boyutlu Yazıcı Kullanılarak Üretilen Bal Peteği Sandviç Kompozitlerin Basma Yükü Altındaki Performanslarının Araştırılması, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30(1), 277-286. https://dergipark.org.tr/tr/pub/fumbd/issue/35837/400526
- 18. Sood, A.K., Ohdar, R.K. ve Mahapatra, S.S. (2010) Parametric appraisal of mechanical property of fused deposition modelling processed parts, Materials & Design, 31, 287-295. https://doi.org/10.1016/j.matdes.2009.06.016
- 19. Tatlı, O. ve Özgül, H.G. (2020) 3d printer design, manufacturing and effect of infill patterns on mechanical properties, Icontech International Journal, 4(1), 13-24. https://doi.org/10.46291/ICONTECHvol4iss1pp13-24
- 20. The Ultimaker 2 Extended specifications, (n.d.). Erişim Adresi: https://support.ultimaker.com/hc/en-us/articles/360011987939-The-Ultimaker-2-Extended-specifications (Erişim Tarihi: 06.02.2021)
- 21. The Ultimaker 2 Extended user manual, (n.d.). Erişim Adresi: https://support.ultimaker.com/hc/en-us/articles/360011987819-The-Ultimaker-2-Extended-user-manual (Erişim Tarihi: 06.02.2021)
- 22. Ultimaker ABS SDS, (2017). Erişim Adresi: https://support.ultimaker.com/hc/en-us/articles/360011962900-
Ultimaker-ABS-SDS (Erişim Tarihi: 15.02.2021)
- 23. Ultimaker ABS TDS, (2018). Erişim Adresi: https://support.ultimaker.com/hc/en-us/articles/360012759139-Ultimaker-ABS-TDS (Erişim Tarihi: 15.02.2021)
- 24. Ultimaker PLA SDS, (2019). Erişim Adresi: https://support.ultimaker.com/hc/en-us/articles/360012759359-Ultimaker-PLA-SDS (Erişim Tarihi: 15.02.2021)
- 25. Ultimaker PLA TDS, (2018). Erişim Adresi: https://support.ultimaker.com/hc/en-us/articles/360011962720-Ultimaker-PLA-TDS (Erişim Tarihi: 15.02.2021)
- 26. Uzun, M., Gür, Y. ve Usca, Ü. (2018) Manufacturing of new type curvilinear tooth profiled involute gears using 3D printing, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(1), 278-286. doi: 10.25092/baunfbed.398462
- 27. Uzun, M. ve Erdoğdu, Y.E. (2020) Eriyik yığma modellemesi ile üretimde takviyesiz ve takviyeli pla kullanımının mekanik özelliklere etkisinin araştırılması, Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(4), 2800-2808. https://doi.org/10.21597/jist.799230
- 28. Wojtyła, S., Klama, P. ve Baran, T. (2017) Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon, Journal of Occupational and Environmental Hygiene, 14(6), 80-85. https://doi.org/10.1080/15459624.2017.1285489
- 29. Yaman, U. (2018) Shrinkage compensation of holes via shrinkage of interior structure in FDM process, International Journal of Advanced Manufacturing Technology, 94, 2187–2197. https://doi.org/10.1007/s00170-017-1018-2
- 30. Yaman, U. (2019) Topoloji optimizasyonu yapılmış parçaların 3b yazıcılar ile doğrudan üretilmesi, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 7(1), 236-244. https://doi.org/10.29109/gujsc.491244
- 31. Zhang, P. ve To, A.C. (2016) Transversely isotropic hyperelastic-viscoplastic model for glassy polymers with application to additive manufactured photopolymers, International Journal of Plasticity, 80, 56-74. https://doi.org/10.1016/j.ijplas.2015.12.012