Research Article
BibTex RIS Cite

Yay Kütle Sistemi İle Birleştirilmiş Fonksiyonel Olarak Derecelendirilmiş Nanokirişin Özdeğer Problemi İle Çözümü

Year 2021, Volume: 26 Issue: 3, 1097 - 1110, 31.12.2021
https://doi.org/10.17482/uumfd.980105

Abstract

Nanokirişler günümüzde çok sayıda titreşim frekansı araştırmasında yaygın olarak kullanılmaktadır. Bu çalışmada, nanokirişin ucuna takılı halde bulunan buckyball ve yayın titreşim frekans analizini yapabilmek için bir özdeğer problemi kullanılmıştır. Bu özdeğer probleminde sistemin titreşim frekansları tek bir (2x2) matris kullanılarak hesaplanabilir. Bu çalışmada, nanokirişlere bağlı sensörleri analiz etmek için matematiksel bir yöntem sunulmaktadır. Bu makalede elde edilen sonuçlar literatürde yapılan titreşim frekansı çalışmaları ile uyumlu bir sonuç göstermiştir ve sonuçlar tablo ve grafiklerle sunulmuştur.

References

  • 1. Akbaş, Ş. D., (2019) Axially Forced Vibration Analysis of Cracked a Nanorod. Journal of Computational Applied Mechanics, 50(1), 63-68. doi:10.22059/jcamech.2019.281285.392
  • 2. Akbaş, Ş. D. (2019) Longitudinal forced vibration analysis of porous a nanorod. Mühendislik Bilimleri ve Tasarım Dergisi,7 (4) , 736-743. DOI: 10.21923/jesd.553328
  • 3. Akbas, S. D. (2020) Modal analysis of viscoelastic nanorods under an axially harmonic load. Advances in Nano Research, 8(4), 277–282. doi: 10.12989/ANR.2020.8.4.277.
  • 4. Alimoradzadeh, M. and Akbaş, Ş. D. (2021) Superharmonic and subharmonic resonances of atomic force microscope subjected to crack failure mode based on the modified couple stress theory, European Physical Journal Plus, Vol. 136, no. 5. https://doi.org/10.1140/epjp/s13360-021-01539-0
  • 5. Aydogdu, M. (2009) A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration, Physica E 41, 1651-1655. DOI:10.1016/j.physe.2009.05.014
  • 6. Civalek, Ö., Uzun, B., & Yaylı, M. Ö. (2020) Stability analysis of nanobeams placed in electromagnetic field using a finite element method. Arabian Journal of Geosciences, 13(21), 1-9. https://doi.org/10.1007/s12517-020-06188-8
  • 7. Civalek, Ö., Demir, Ç. (2011) Bending analysis of microtubules using nonlocal Euler–Bernoulli beam theory, Appl. Math. Model, 35, 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004
  • 8. Civalek, Ö., Akgöz, B. (2010) Free vibration analysis of microtubules as cytoskeleton components: nonlocal Euler–Bernoulli beam modeling, Sci. Iranica Trans. B: Mech. Eng., 17, 367-375.
  • 9. Eltaher, M.A., Emam, S.A. (2013) Mahmoud, F.F., Static and stability analysis of nonlocal functionally graded nanobeams. Compos. Struct, 96, 82-88. doi: 10.1016/j.compstruct.2012.09.030.
  • 10. Eringen, A. C. (1972) Nonlocal polar elastic continua. International Journal of Engineering Science, 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  • 11. Eringen, A. C. (1983) on differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys. 54 4703–4710. https://doi.org/10.1063/1.332803
  • 12. Liu, T., Hai, M., Zhao, M. (2008) Delaminating buckling model based on nonlocal Timoshenko beam theory for microwedge indentation of a film/substrate system, Eng. Fract. Mech. 75, 4909-4919. doi:10.1016/j.engfracmech.2008.06.021.
  • 13. Lu, P., Lee, H.P., Lu, C., Zhang, P.Q. (2006) Dynamic properties of flexural beams using a nonlocal elasticity model, J. Appl. Phys., 99, 73510-73518. https://doi.org/10.1063/1.2189213
  • 14. Murmu, T., Adhikari, S., Wang, C.Y. (2011) Torsional vibration of carbon nanotube–buckyball systems based on nonlocal elasticity theory, Physica E Low-dimensional Systems and Nanostructures 43(6):1276-1280. DOI:10.1016/j.physe.2011.02.017
  • 15. Murmu, T., Pradhan, S.C. (2009) Small-scale effect on the vibration of nonuniform nanocantilever based on nonlocal elasticity theory, Physica E, 41, 1451-1456. https://doi.org/10.1016/j.physe.2009.04.015.
  • 16. Mustafa Arda & Metin Aydogdu (2020) Vibration analysis of carbon nanotube mass sensors considering both inertia and stiffness of the detected mass, Mechanics Based Design of Structures and Machines. 1-17. doi:10.1080/15397734.2020.1728548.
  • 17. Narendar, S. (2011) Buckling analysis of micro-/nano-scale plates based on two variable refined plate theory incorporating nonlocal scale effects, Compos. Struct, 93, 3093-3103. DOI:10.1016/j.compstruct.2011.06.028
  • 18. Özgür Yaylı, M., & Erdem Çerçevik, A. (2015). Axial vibration analysis of cracked nanorods with arbitrary boundary conditions. Journal of Vibroengineering, 17(6), 2907-2921.
  • 19. Pradhan, S.C., Phadikar, J.K. (2009) Nonlocal elasticity theory for vibration of nanoplates. J. Sound Vib. 325, 206-223. DOI:10.1016/j.jsv.2009.03.007.
  • 20. Rahmani, O., Pedram, O. (2014) Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory, Int. J. Eng. Sci, 77, 55-70. DOI:10.1016/j.ijengsci.2013.12.003
  • 21. Reddy, J.N. (2007) Nonlocal theories for bending, buckling and vibration of beams, Int. J. Eng. Sci.45, 288-307. DOI:10.1016/j.ijengsci.2007.04.004
  • 22. Reddy J. N., Pang, S. D. (2008) Nonlocal continuum theories of beam for the analysis of carbon nanotubes,. Journal of Applied Physics, 103, 1-16. DOI:10.1063/1.2833431
  • 23. Setoodeh, A.R., Khosrownejad, M., Malekzadeh, P. (2011) Exact nonlocal solution for post buckling of single-walled carbon nanotubes. Physica E, 43, 1730-1737. https://doi.org/10.1016/j.physe.2011.05.032.
  • 24. Shen, L., Shen, H.S., Zhang, C.L. (2010) Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments, Comput. Mater. Sci., 48, 680-685. https://doi.org/10.1016/j.commatsci.2010.03.006.
  • 25. Thai, H.T. (2012) A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci., 52, 56-64. DOI: 10.1016/j.ijengsci.2011.11.011
  • 26. Uzun, B., Yaylı, M. Ö., & Deliktaş, B. (2019). Free vibration of FG nanobeam using a finite-element method. Micro & Nano Letters, 15(1), 35-40. doi:10.1049/mnl.2019.0273.
  • 27. Uzun, B., Civalek, Ö., & Yaylı, M. Ö. (2020). Vibration of FG nano-sized beams embedded in Winkler elastic foundation and with various boundary conditions. Mechanics Based Design of Structures and Machines, 1-20. DOI: 10.1080/15397734.2020.1846560
  • 28. Uzun, B., Yaylı, M. Ö. (2020) Nonlocal vibration analysis of Ti-6Al-4V/ZrO 2 functionally graded nanobeam on elastic matrix. Arabian Journal of Geosciences 13.4, 1-10. https://doi.org/10.1007/s12517-020-5168-4
  • 29. Yayli, M.Ö. (2015) Buckling Analysis of a Rotationally Restrained Single Walled Carbon Nanotube, Acta Physica Polonica A, 127, 3, 678-683. DOI:10.24107/ijeas.252144
  • 30. Yayli, M.Ö. (2015) Stability analysis of gradient elastic microbeams with arbitrary boundary conditions, Journal of Mechanical Science and Technology, 29, 8, 3373-3380. https://doi.org/10.1007/s12206-015-0735-4
  • 31. Yayli, M.Ö. (2016). Buckling analysis of a rotationally restrained single walled carbon nanotube embedded in an elastic medium using nonlocal elasticity. International Journal of Engineering and Applied Sciences, 8(2), 40-50. DOI: 10.24107/ijeas.252144
  • 32. Yayli, M. Ö. (2017). A compact analytical method for vibration of micro-sized beams with different boundary conditions. Mechanics of Advanced Materials and Structures, 24(6), 496-508. DOI: 10.1080/15376494.2016.1143989.
  • 33. Yaylı, M. Ö. & Yerel Kandemir, S. (2017). Bending Analysis of A Cantilever Nanobeam With End Forces By Laplace Transform. International Journal of Engineering and Applied Sciences, Volume: 9 Issue: 2, 103-111. DOI: 10.24107/ijeas.314635
  • 34. Yayli, M. Ö. (2018). Torsional vibration analysis of nanorods with elastic torsional restraints using non-local elasticity theory. Micro & Nano Letters, 13(5), 595-599. doi: 10.1049/mnl.2017.0751
  • 35. Yayli, M. Ö. (2018). Free vibration analysis of a single‐walled carbon nanotube embedded in an elastic matrix under rotational restraints. Micro & Nano Letters, 13(2), 202-206. doi: 10.1049/mnl.2017.0463
  • 36. Yaylı, M. Ö., Uzun, B., & Deliktaş, B. (2021). Buckling analysis of restrained nanobeams using strain gradient elasticity. Waves in Random and Complex Media, 1-20. DOI: 10.1080/17455030.2020.1871112
  • 37. Wang, C.M., Kitipornchai, S., Lim, C.W., Eisenberger, M. (2008). Beam bending solutions based on nonlocal Timoshenko beam theory, J. Eng. Mech., 134, 475-481. DOI:10.1061/(ASCE)0733-9399(2008)134:6(475)

An EIGENVALUE SOLUTION OF FUNCTIONALLY GRADED NANOBEAM with an ATTACHED SPRING MASS SYSTEM

Year 2021, Volume: 26 Issue: 3, 1097 - 1110, 31.12.2021
https://doi.org/10.17482/uumfd.980105

Abstract

Nanobeams are now widely used in numerous vibration frequency research. In this study, an eigenvalue problem has used to determine the vibration frequency analysis of the buckyball and spring attached to the end of the nanobeam. The vibration frequencies of the system may be discovered using a single (2x2) matrix in this eigenvalue problem. A mathematical method for analyzing sensors has attached to nanobeams is presented in this paper. The results, which is obtained in this study, has showed a result that has compatible with the flicker frequency studies conducted in the literature, and the results have presented in tables and graphics.

References

  • 1. Akbaş, Ş. D., (2019) Axially Forced Vibration Analysis of Cracked a Nanorod. Journal of Computational Applied Mechanics, 50(1), 63-68. doi:10.22059/jcamech.2019.281285.392
  • 2. Akbaş, Ş. D. (2019) Longitudinal forced vibration analysis of porous a nanorod. Mühendislik Bilimleri ve Tasarım Dergisi,7 (4) , 736-743. DOI: 10.21923/jesd.553328
  • 3. Akbas, S. D. (2020) Modal analysis of viscoelastic nanorods under an axially harmonic load. Advances in Nano Research, 8(4), 277–282. doi: 10.12989/ANR.2020.8.4.277.
  • 4. Alimoradzadeh, M. and Akbaş, Ş. D. (2021) Superharmonic and subharmonic resonances of atomic force microscope subjected to crack failure mode based on the modified couple stress theory, European Physical Journal Plus, Vol. 136, no. 5. https://doi.org/10.1140/epjp/s13360-021-01539-0
  • 5. Aydogdu, M. (2009) A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration, Physica E 41, 1651-1655. DOI:10.1016/j.physe.2009.05.014
  • 6. Civalek, Ö., Uzun, B., & Yaylı, M. Ö. (2020) Stability analysis of nanobeams placed in electromagnetic field using a finite element method. Arabian Journal of Geosciences, 13(21), 1-9. https://doi.org/10.1007/s12517-020-06188-8
  • 7. Civalek, Ö., Demir, Ç. (2011) Bending analysis of microtubules using nonlocal Euler–Bernoulli beam theory, Appl. Math. Model, 35, 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004
  • 8. Civalek, Ö., Akgöz, B. (2010) Free vibration analysis of microtubules as cytoskeleton components: nonlocal Euler–Bernoulli beam modeling, Sci. Iranica Trans. B: Mech. Eng., 17, 367-375.
  • 9. Eltaher, M.A., Emam, S.A. (2013) Mahmoud, F.F., Static and stability analysis of nonlocal functionally graded nanobeams. Compos. Struct, 96, 82-88. doi: 10.1016/j.compstruct.2012.09.030.
  • 10. Eringen, A. C. (1972) Nonlocal polar elastic continua. International Journal of Engineering Science, 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  • 11. Eringen, A. C. (1983) on differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys. 54 4703–4710. https://doi.org/10.1063/1.332803
  • 12. Liu, T., Hai, M., Zhao, M. (2008) Delaminating buckling model based on nonlocal Timoshenko beam theory for microwedge indentation of a film/substrate system, Eng. Fract. Mech. 75, 4909-4919. doi:10.1016/j.engfracmech.2008.06.021.
  • 13. Lu, P., Lee, H.P., Lu, C., Zhang, P.Q. (2006) Dynamic properties of flexural beams using a nonlocal elasticity model, J. Appl. Phys., 99, 73510-73518. https://doi.org/10.1063/1.2189213
  • 14. Murmu, T., Adhikari, S., Wang, C.Y. (2011) Torsional vibration of carbon nanotube–buckyball systems based on nonlocal elasticity theory, Physica E Low-dimensional Systems and Nanostructures 43(6):1276-1280. DOI:10.1016/j.physe.2011.02.017
  • 15. Murmu, T., Pradhan, S.C. (2009) Small-scale effect on the vibration of nonuniform nanocantilever based on nonlocal elasticity theory, Physica E, 41, 1451-1456. https://doi.org/10.1016/j.physe.2009.04.015.
  • 16. Mustafa Arda & Metin Aydogdu (2020) Vibration analysis of carbon nanotube mass sensors considering both inertia and stiffness of the detected mass, Mechanics Based Design of Structures and Machines. 1-17. doi:10.1080/15397734.2020.1728548.
  • 17. Narendar, S. (2011) Buckling analysis of micro-/nano-scale plates based on two variable refined plate theory incorporating nonlocal scale effects, Compos. Struct, 93, 3093-3103. DOI:10.1016/j.compstruct.2011.06.028
  • 18. Özgür Yaylı, M., & Erdem Çerçevik, A. (2015). Axial vibration analysis of cracked nanorods with arbitrary boundary conditions. Journal of Vibroengineering, 17(6), 2907-2921.
  • 19. Pradhan, S.C., Phadikar, J.K. (2009) Nonlocal elasticity theory for vibration of nanoplates. J. Sound Vib. 325, 206-223. DOI:10.1016/j.jsv.2009.03.007.
  • 20. Rahmani, O., Pedram, O. (2014) Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory, Int. J. Eng. Sci, 77, 55-70. DOI:10.1016/j.ijengsci.2013.12.003
  • 21. Reddy, J.N. (2007) Nonlocal theories for bending, buckling and vibration of beams, Int. J. Eng. Sci.45, 288-307. DOI:10.1016/j.ijengsci.2007.04.004
  • 22. Reddy J. N., Pang, S. D. (2008) Nonlocal continuum theories of beam for the analysis of carbon nanotubes,. Journal of Applied Physics, 103, 1-16. DOI:10.1063/1.2833431
  • 23. Setoodeh, A.R., Khosrownejad, M., Malekzadeh, P. (2011) Exact nonlocal solution for post buckling of single-walled carbon nanotubes. Physica E, 43, 1730-1737. https://doi.org/10.1016/j.physe.2011.05.032.
  • 24. Shen, L., Shen, H.S., Zhang, C.L. (2010) Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments, Comput. Mater. Sci., 48, 680-685. https://doi.org/10.1016/j.commatsci.2010.03.006.
  • 25. Thai, H.T. (2012) A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci., 52, 56-64. DOI: 10.1016/j.ijengsci.2011.11.011
  • 26. Uzun, B., Yaylı, M. Ö., & Deliktaş, B. (2019). Free vibration of FG nanobeam using a finite-element method. Micro & Nano Letters, 15(1), 35-40. doi:10.1049/mnl.2019.0273.
  • 27. Uzun, B., Civalek, Ö., & Yaylı, M. Ö. (2020). Vibration of FG nano-sized beams embedded in Winkler elastic foundation and with various boundary conditions. Mechanics Based Design of Structures and Machines, 1-20. DOI: 10.1080/15397734.2020.1846560
  • 28. Uzun, B., Yaylı, M. Ö. (2020) Nonlocal vibration analysis of Ti-6Al-4V/ZrO 2 functionally graded nanobeam on elastic matrix. Arabian Journal of Geosciences 13.4, 1-10. https://doi.org/10.1007/s12517-020-5168-4
  • 29. Yayli, M.Ö. (2015) Buckling Analysis of a Rotationally Restrained Single Walled Carbon Nanotube, Acta Physica Polonica A, 127, 3, 678-683. DOI:10.24107/ijeas.252144
  • 30. Yayli, M.Ö. (2015) Stability analysis of gradient elastic microbeams with arbitrary boundary conditions, Journal of Mechanical Science and Technology, 29, 8, 3373-3380. https://doi.org/10.1007/s12206-015-0735-4
  • 31. Yayli, M.Ö. (2016). Buckling analysis of a rotationally restrained single walled carbon nanotube embedded in an elastic medium using nonlocal elasticity. International Journal of Engineering and Applied Sciences, 8(2), 40-50. DOI: 10.24107/ijeas.252144
  • 32. Yayli, M. Ö. (2017). A compact analytical method for vibration of micro-sized beams with different boundary conditions. Mechanics of Advanced Materials and Structures, 24(6), 496-508. DOI: 10.1080/15376494.2016.1143989.
  • 33. Yaylı, M. Ö. & Yerel Kandemir, S. (2017). Bending Analysis of A Cantilever Nanobeam With End Forces By Laplace Transform. International Journal of Engineering and Applied Sciences, Volume: 9 Issue: 2, 103-111. DOI: 10.24107/ijeas.314635
  • 34. Yayli, M. Ö. (2018). Torsional vibration analysis of nanorods with elastic torsional restraints using non-local elasticity theory. Micro & Nano Letters, 13(5), 595-599. doi: 10.1049/mnl.2017.0751
  • 35. Yayli, M. Ö. (2018). Free vibration analysis of a single‐walled carbon nanotube embedded in an elastic matrix under rotational restraints. Micro & Nano Letters, 13(2), 202-206. doi: 10.1049/mnl.2017.0463
  • 36. Yaylı, M. Ö., Uzun, B., & Deliktaş, B. (2021). Buckling analysis of restrained nanobeams using strain gradient elasticity. Waves in Random and Complex Media, 1-20. DOI: 10.1080/17455030.2020.1871112
  • 37. Wang, C.M., Kitipornchai, S., Lim, C.W., Eisenberger, M. (2008). Beam bending solutions based on nonlocal Timoshenko beam theory, J. Eng. Mech., 134, 475-481. DOI:10.1061/(ASCE)0733-9399(2008)134:6(475)
There are 37 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Articles
Authors

Togay Küpeli 0000-0002-5921-8667

Yakup Harun Çavuş 0000-0002-6607-9650

Büşra Uzun 0000-0002-7636-7170

Mustafa Özgür Yaylı 0000-0003-2231-170X

Publication Date December 31, 2021
Submission Date August 7, 2021
Acceptance Date October 8, 2021
Published in Issue Year 2021 Volume: 26 Issue: 3

Cite

APA Küpeli, T., Çavuş, Y. H., Uzun, B., Yaylı, M. Ö. (2021). An EIGENVALUE SOLUTION OF FUNCTIONALLY GRADED NANOBEAM with an ATTACHED SPRING MASS SYSTEM. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(3), 1097-1110. https://doi.org/10.17482/uumfd.980105
AMA Küpeli T, Çavuş YH, Uzun B, Yaylı MÖ. An EIGENVALUE SOLUTION OF FUNCTIONALLY GRADED NANOBEAM with an ATTACHED SPRING MASS SYSTEM. UUJFE. December 2021;26(3):1097-1110. doi:10.17482/uumfd.980105
Chicago Küpeli, Togay, Yakup Harun Çavuş, Büşra Uzun, and Mustafa Özgür Yaylı. “An EIGENVALUE SOLUTION OF FUNCTIONALLY GRADED NANOBEAM With an ATTACHED SPRING MASS SYSTEM”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, no. 3 (December 2021): 1097-1110. https://doi.org/10.17482/uumfd.980105.
EndNote Küpeli T, Çavuş YH, Uzun B, Yaylı MÖ (December 1, 2021) An EIGENVALUE SOLUTION OF FUNCTIONALLY GRADED NANOBEAM with an ATTACHED SPRING MASS SYSTEM. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26 3 1097–1110.
IEEE T. Küpeli, Y. H. Çavuş, B. Uzun, and M. Ö. Yaylı, “An EIGENVALUE SOLUTION OF FUNCTIONALLY GRADED NANOBEAM with an ATTACHED SPRING MASS SYSTEM”, UUJFE, vol. 26, no. 3, pp. 1097–1110, 2021, doi: 10.17482/uumfd.980105.
ISNAD Küpeli, Togay et al. “An EIGENVALUE SOLUTION OF FUNCTIONALLY GRADED NANOBEAM With an ATTACHED SPRING MASS SYSTEM”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/3 (December 2021), 1097-1110. https://doi.org/10.17482/uumfd.980105.
JAMA Küpeli T, Çavuş YH, Uzun B, Yaylı MÖ. An EIGENVALUE SOLUTION OF FUNCTIONALLY GRADED NANOBEAM with an ATTACHED SPRING MASS SYSTEM. UUJFE. 2021;26:1097–1110.
MLA Küpeli, Togay et al. “An EIGENVALUE SOLUTION OF FUNCTIONALLY GRADED NANOBEAM With an ATTACHED SPRING MASS SYSTEM”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 26, no. 3, 2021, pp. 1097-10, doi:10.17482/uumfd.980105.
Vancouver Küpeli T, Çavuş YH, Uzun B, Yaylı MÖ. An EIGENVALUE SOLUTION OF FUNCTIONALLY GRADED NANOBEAM with an ATTACHED SPRING MASS SYSTEM. UUJFE. 2021;26(3):1097-110.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.