Research Article
BibTex RIS Cite

Amonyak-Su ile Çalışan Absorpsiyonlu Soğutma ile Mikrotürbin Kombine Sisteminin Tasarımı ve Termodinamik Performans Analizi

Year 2022, Volume: 27 Issue: 2, 765 - 784, 31.08.2022
https://doi.org/10.17482/uumfd.1134555

Abstract

Absorpsiyonlu soğutma sistemlerinin kojenerasyon ve trijenerasyon sistemlerine entegre edilmesi, enerji verimliliğini ve çevresel sürdürülebilirliği artırmak için faydalıdır. Bu sistemler, geleneksel sistemlere kıyasla daha yüksek verime, daha düşük emisyona ve daha düşük maliyete sahiptirler. Bu nedenle, sistemin enerji performansını öngörebilmek ve verimli sistemler tasarlayabilmek için termodinamik modeller geliştirmek çok önemlidir. Bu çalışmada, kombine bir mikro türbin ve NH3/H2O absorpsiyonlu soğutma sistemi için tasarım ve kapsamlı termodinamik analiz yapılmıştır. 60 kW güç kapasiteli mikro türbin, sistemin temel güç kaynağıdır. 14 kW kapasitesindeki absorpsiyonlu soğutucu, mikro türbinin atık ısı geri kazanım kısmından gelen egzoz gazları ile beslenmektedir. Sistemin çeşitli kontrol noktalarında, akışkanların termodinamik özellikleri belirlenmiş ve sunulmuştur. Sistemin birinci ve ikinci kanun verimi farklı tasarım parametreleri için hesaplanmıştır. Önerilen kombine sistemin enerji kullanım faktörü %28,3 olup , tekil bir mikrotürbin sistemi ile kıyaslandığında %43,5 daha yüksek verime sahiptir. Ayrıca türbinden atılan egsoz gazlarının ısısı geri kazanılmazsa çok büyük miktarda enerji kaybı olacaktır. Bu nedenle, birleşik enerji sistemlerinin uygulanması enerji verimliliği için hayati bir çözümdür.

References

  • 1. Adewusi, S.A., Zubair, S.M. (2004). Second law based thermodynamic analysis of ammonia-water absorption systems, Energy Convers. Manag., 45, 2355–2369. https://doi.org/10.1016/j.enconman.2003.11.020
  • 2. Akbari Kordlar, M., Mahmoudi, S.M.S. (2017). Exergeoconomic analysis and optimization of a novel cogeneration system producing power and refrigeration, Energy Convers. Manag., 134, 208–220. https://doi.org/10.1016/j.enconman.2016.12.007
  • 3. Çakmak, T., Kılıç, M. (2007). The Simulation of a Micro-gas Turbine Cycle and Optimization of the System Components, Uludag Univ. J. Eng. Fac., 12, 97–108.
  • 4. Chu, X., Yang, D., Li, J. (2019). Sustainability Assessment of Combined Cooling , Heating , and Power Systems under Carbon Emission Regulations, Sustain., 11, 1–17. https://doi.org/10.3390/su11215917
  • 5. Doseva, N., Chakyrova, D. (2015). Energy and exergy analysis of cogeneration system with biogas engines, J. Therm. Eng., 1, 391–401. https://doi.org/10.18186/jte.75021
  • 6. Herold, K.., Radermacher, R., Klein, S.A. (2016). Absorption Chillers and heat pumps, CRC Press.
  • 7. Herrera, M.D.M., Arrieta, F.R.P., Sodré, J.R. (2014). Thermoeconomic assessment of an absorption refrigeration and hydrogen-fueled diesel power generator cogeneration system, Int. J. Hydrogen Energy, 39, 4590–4599. https://doi.org/10.1016/j.ijhydene.2014.01.028
  • 8. Huicochea, A., Rivera, W., Gutiérrez-Urueta, G., Bruno, J.C., Coronas, A. (2011). Thermodynamic analysis of a trigeneration system consisting of a micro gas turbine and a double effect absorption chiller, Appl. Therm., Eng., 31, 3347–3353. https://doi.org/10.1016/j.applthermaleng.2011.06.016
  • 9. Javanshir, N., Seyed Mahmoudi, S.M., Kordlar, M.A., Rosen, M.A. (2020). Energy and cost analysis and optimization of a geothermal-based cogeneration cycle using an ammonia-water solution: Thermodynamic and thermoeconomic viewpoints., Sustain., 12. https://doi.org/10.3390/su12020484
  • 10. Kazemiani-najafabadi, P., Amiri, E., James, C. (2022). Designing and thermodynamic optimization of a novel combined absorption cooling and power cycle based on a water-ammonia mixture., Energy, 253, 124076. https://doi.org/10.1016/j.energy.2022.124076
  • 11. Keçeciler, A., Acar, H.İ., Doǧan, A. (2000). Thermodynamic analysis of the absorption refrigeration system with geothermal energy: An experimental study., Energy Convers. Manag., 41, 37–48. https://doi.org/10.1016/S0196-8904(99)00091-6
  • 12. Martínez, J.C., Martinez, P.J., Bujedo, L.A. (2016). Development and experimental validation of a simulation model to reproduce the performance of a 17.6 kW LiBr-water absorption chiller., Renew. Energy, 86, 473–482. https://doi.org/10.1016/j.renene.2015.08.049
  • 13. Mirzaee, M., Zare, R., Sadeghzadeh, M., Maddah, H., Ahmadi, M.H., Acıkkalp, E., Chen, L. (2019). Thermodynamic analyses of different scenarios in a CCHP system with micro turbine – Absorption chiller, and heat exchanger., Energy Convers. Manag., 198. https://doi.org/10.1016/j.enconman.2019.111919
  • 14. Seyfouri, Z., Ameri, M. (2012). Analysis of integrated compression-absorption refrigeration systems powered by a microturbine., Int. J. Refrig., 35, 1639–1646. https://doi.org/10.1016/j.ijrefrig.2012.04.010
  • 15. Shankar, R., Rivera, W. (2020). Investigation of new cooling cogeneration cycle using NH3–H2O mixture., Int. J. Refrig., 114, 88–97. https://doi.org/10.1016/j.ijrefrig.2020.02.014
  • 16. Sun, L., Han, W., Jing, X., Zheng, D., Jin, H. (2013). A power and cooling cogeneration system using mid/low-temperature heat source., Appl. Energy, 112, 886–897. https://doi.org/10.1016/j.apenergy.2013.03.049
  • 17. Sun, Z.G., Xie, N.L. (2010). Experimental studying of a small combined cold and power system driven by a micro gas turbine., Appl. Therm. Eng., 30, 1242–1246. https://doi.org/10.1016/j.applthermaleng.2010.02.006
  • 18. Thu, K., Saha, B.B., Chua, K.J., Bui, T.D. (2016). Thermodynamic analysis on the part-load performance of a microturbine system for micro/mini-CHP applications., Appl. Energy, 178, 600–608. https://doi.org/10.1016/j.apenergy.2016.06.106
  • 19. Wang, J., Wang, J., Zhao, P., Dai, Y. (2016). Thermodynamic analysis of a new combined cooling and power system using ammonia-water mixture., Energy Convers. Manag., 117, 335–342. https://doi.org/10.1016/j.enconman.2016.03.019

DESIGN AND THERMODYNAMIC PERFORMANCE ANALYSIS OF AN AMMONIA-WATER ABSORPTION REFRIGERATION AND MICROTURBINE COMBINED SYSTEM

Year 2022, Volume: 27 Issue: 2, 765 - 784, 31.08.2022
https://doi.org/10.17482/uumfd.1134555

Abstract

Integrating absorption chillers in cogeneration and trigeneration systems are beneficial for increasing energy efficiency and sustainability. Those systems have higher efficiency, lower emissions, and lower costs compared to conventional systems. Therefore, it is crucial to develop thermodynamic models to predict the energy behaviour of the system for efficient design. System design and extensive thermodynamic analysis were conducted for a microturbine-NH3/H2O absorption cold and power system. The microturbine with a 60 kW power capacity is the prime mover.14 kW absorption chiller is fed by exhaust gases coming from the waste heat recovery part of the microturbine. The thermodynamic properties of the fluid at various state points were determined. The first and second law efficiency of the system was presented for different design parameters such as evaporation, condensation, generation temperature of the absorption system, effectiveness of the condenser-evaporator heat exchanger, and the solution heat exchanger. The proposed system's energy utilization factor is 28.3%, representing a 43.5% efficiency increase relative to the sole microturbine cycle. In addition, if waste heat from the flue gases discharged from the turbine is not recovered, a tremendous amount of energy may be lost. Therefore, the application of combined energy systems is a vital solution for energy efficiency.

References

  • 1. Adewusi, S.A., Zubair, S.M. (2004). Second law based thermodynamic analysis of ammonia-water absorption systems, Energy Convers. Manag., 45, 2355–2369. https://doi.org/10.1016/j.enconman.2003.11.020
  • 2. Akbari Kordlar, M., Mahmoudi, S.M.S. (2017). Exergeoconomic analysis and optimization of a novel cogeneration system producing power and refrigeration, Energy Convers. Manag., 134, 208–220. https://doi.org/10.1016/j.enconman.2016.12.007
  • 3. Çakmak, T., Kılıç, M. (2007). The Simulation of a Micro-gas Turbine Cycle and Optimization of the System Components, Uludag Univ. J. Eng. Fac., 12, 97–108.
  • 4. Chu, X., Yang, D., Li, J. (2019). Sustainability Assessment of Combined Cooling , Heating , and Power Systems under Carbon Emission Regulations, Sustain., 11, 1–17. https://doi.org/10.3390/su11215917
  • 5. Doseva, N., Chakyrova, D. (2015). Energy and exergy analysis of cogeneration system with biogas engines, J. Therm. Eng., 1, 391–401. https://doi.org/10.18186/jte.75021
  • 6. Herold, K.., Radermacher, R., Klein, S.A. (2016). Absorption Chillers and heat pumps, CRC Press.
  • 7. Herrera, M.D.M., Arrieta, F.R.P., Sodré, J.R. (2014). Thermoeconomic assessment of an absorption refrigeration and hydrogen-fueled diesel power generator cogeneration system, Int. J. Hydrogen Energy, 39, 4590–4599. https://doi.org/10.1016/j.ijhydene.2014.01.028
  • 8. Huicochea, A., Rivera, W., Gutiérrez-Urueta, G., Bruno, J.C., Coronas, A. (2011). Thermodynamic analysis of a trigeneration system consisting of a micro gas turbine and a double effect absorption chiller, Appl. Therm., Eng., 31, 3347–3353. https://doi.org/10.1016/j.applthermaleng.2011.06.016
  • 9. Javanshir, N., Seyed Mahmoudi, S.M., Kordlar, M.A., Rosen, M.A. (2020). Energy and cost analysis and optimization of a geothermal-based cogeneration cycle using an ammonia-water solution: Thermodynamic and thermoeconomic viewpoints., Sustain., 12. https://doi.org/10.3390/su12020484
  • 10. Kazemiani-najafabadi, P., Amiri, E., James, C. (2022). Designing and thermodynamic optimization of a novel combined absorption cooling and power cycle based on a water-ammonia mixture., Energy, 253, 124076. https://doi.org/10.1016/j.energy.2022.124076
  • 11. Keçeciler, A., Acar, H.İ., Doǧan, A. (2000). Thermodynamic analysis of the absorption refrigeration system with geothermal energy: An experimental study., Energy Convers. Manag., 41, 37–48. https://doi.org/10.1016/S0196-8904(99)00091-6
  • 12. Martínez, J.C., Martinez, P.J., Bujedo, L.A. (2016). Development and experimental validation of a simulation model to reproduce the performance of a 17.6 kW LiBr-water absorption chiller., Renew. Energy, 86, 473–482. https://doi.org/10.1016/j.renene.2015.08.049
  • 13. Mirzaee, M., Zare, R., Sadeghzadeh, M., Maddah, H., Ahmadi, M.H., Acıkkalp, E., Chen, L. (2019). Thermodynamic analyses of different scenarios in a CCHP system with micro turbine – Absorption chiller, and heat exchanger., Energy Convers. Manag., 198. https://doi.org/10.1016/j.enconman.2019.111919
  • 14. Seyfouri, Z., Ameri, M. (2012). Analysis of integrated compression-absorption refrigeration systems powered by a microturbine., Int. J. Refrig., 35, 1639–1646. https://doi.org/10.1016/j.ijrefrig.2012.04.010
  • 15. Shankar, R., Rivera, W. (2020). Investigation of new cooling cogeneration cycle using NH3–H2O mixture., Int. J. Refrig., 114, 88–97. https://doi.org/10.1016/j.ijrefrig.2020.02.014
  • 16. Sun, L., Han, W., Jing, X., Zheng, D., Jin, H. (2013). A power and cooling cogeneration system using mid/low-temperature heat source., Appl. Energy, 112, 886–897. https://doi.org/10.1016/j.apenergy.2013.03.049
  • 17. Sun, Z.G., Xie, N.L. (2010). Experimental studying of a small combined cold and power system driven by a micro gas turbine., Appl. Therm. Eng., 30, 1242–1246. https://doi.org/10.1016/j.applthermaleng.2010.02.006
  • 18. Thu, K., Saha, B.B., Chua, K.J., Bui, T.D. (2016). Thermodynamic analysis on the part-load performance of a microturbine system for micro/mini-CHP applications., Appl. Energy, 178, 600–608. https://doi.org/10.1016/j.apenergy.2016.06.106
  • 19. Wang, J., Wang, J., Zhao, P., Dai, Y. (2016). Thermodynamic analysis of a new combined cooling and power system using ammonia-water mixture., Energy Convers. Manag., 117, 335–342. https://doi.org/10.1016/j.enconman.2016.03.019
There are 19 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Ayşe Fidan Altun 0000-0001-7236-8398

Publication Date August 31, 2022
Submission Date June 22, 2022
Acceptance Date August 2, 2022
Published in Issue Year 2022 Volume: 27 Issue: 2

Cite

APA Altun, A. F. (2022). DESIGN AND THERMODYNAMIC PERFORMANCE ANALYSIS OF AN AMMONIA-WATER ABSORPTION REFRIGERATION AND MICROTURBINE COMBINED SYSTEM. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(2), 765-784. https://doi.org/10.17482/uumfd.1134555
AMA Altun AF. DESIGN AND THERMODYNAMIC PERFORMANCE ANALYSIS OF AN AMMONIA-WATER ABSORPTION REFRIGERATION AND MICROTURBINE COMBINED SYSTEM. UUJFE. August 2022;27(2):765-784. doi:10.17482/uumfd.1134555
Chicago Altun, Ayşe Fidan. “DESIGN AND THERMODYNAMIC PERFORMANCE ANALYSIS OF AN AMMONIA-WATER ABSORPTION REFRIGERATION AND MICROTURBINE COMBINED SYSTEM”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27, no. 2 (August 2022): 765-84. https://doi.org/10.17482/uumfd.1134555.
EndNote Altun AF (August 1, 2022) DESIGN AND THERMODYNAMIC PERFORMANCE ANALYSIS OF AN AMMONIA-WATER ABSORPTION REFRIGERATION AND MICROTURBINE COMBINED SYSTEM. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27 2 765–784.
IEEE A. F. Altun, “DESIGN AND THERMODYNAMIC PERFORMANCE ANALYSIS OF AN AMMONIA-WATER ABSORPTION REFRIGERATION AND MICROTURBINE COMBINED SYSTEM”, UUJFE, vol. 27, no. 2, pp. 765–784, 2022, doi: 10.17482/uumfd.1134555.
ISNAD Altun, Ayşe Fidan. “DESIGN AND THERMODYNAMIC PERFORMANCE ANALYSIS OF AN AMMONIA-WATER ABSORPTION REFRIGERATION AND MICROTURBINE COMBINED SYSTEM”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27/2 (August 2022), 765-784. https://doi.org/10.17482/uumfd.1134555.
JAMA Altun AF. DESIGN AND THERMODYNAMIC PERFORMANCE ANALYSIS OF AN AMMONIA-WATER ABSORPTION REFRIGERATION AND MICROTURBINE COMBINED SYSTEM. UUJFE. 2022;27:765–784.
MLA Altun, Ayşe Fidan. “DESIGN AND THERMODYNAMIC PERFORMANCE ANALYSIS OF AN AMMONIA-WATER ABSORPTION REFRIGERATION AND MICROTURBINE COMBINED SYSTEM”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 27, no. 2, 2022, pp. 765-84, doi:10.17482/uumfd.1134555.
Vancouver Altun AF. DESIGN AND THERMODYNAMIC PERFORMANCE ANALYSIS OF AN AMMONIA-WATER ABSORPTION REFRIGERATION AND MICROTURBINE COMBINED SYSTEM. UUJFE. 2022;27(2):765-84.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.