Absorpsiyonlu soğutma sistemlerinin kojenerasyon ve trijenerasyon sistemlerine entegre edilmesi, enerji verimliliğini ve çevresel sürdürülebilirliği artırmak için faydalıdır. Bu sistemler, geleneksel sistemlere kıyasla daha yüksek verime, daha düşük emisyona ve daha düşük maliyete sahiptirler. Bu nedenle, sistemin enerji performansını öngörebilmek ve verimli sistemler tasarlayabilmek için termodinamik modeller geliştirmek çok önemlidir. Bu çalışmada, kombine bir mikro türbin ve NH3/H2O absorpsiyonlu soğutma sistemi için tasarım ve kapsamlı termodinamik analiz yapılmıştır. 60 kW güç kapasiteli mikro türbin, sistemin temel güç kaynağıdır. 14 kW kapasitesindeki absorpsiyonlu soğutucu, mikro türbinin atık ısı geri kazanım kısmından gelen egzoz gazları ile beslenmektedir. Sistemin çeşitli kontrol noktalarında, akışkanların termodinamik özellikleri belirlenmiş ve sunulmuştur. Sistemin birinci ve ikinci kanun verimi farklı tasarım parametreleri için hesaplanmıştır. Önerilen kombine sistemin enerji kullanım faktörü %28,3 olup , tekil bir mikrotürbin sistemi ile kıyaslandığında %43,5 daha yüksek verime sahiptir. Ayrıca türbinden atılan egsoz gazlarının ısısı geri kazanılmazsa çok büyük miktarda enerji kaybı olacaktır. Bu nedenle, birleşik enerji sistemlerinin uygulanması enerji verimliliği için hayati bir çözümdür.
Integrating absorption chillers in cogeneration and trigeneration systems are beneficial for increasing energy efficiency and sustainability. Those systems have higher efficiency, lower emissions, and lower costs compared to conventional systems. Therefore, it is crucial to develop thermodynamic models to predict the energy behaviour of the system for efficient design. System design and extensive thermodynamic analysis were conducted for a microturbine-NH3/H2O absorption cold and power system. The microturbine with a 60 kW power capacity is the prime mover.14 kW absorption chiller is fed by exhaust gases coming from the waste heat recovery part of the microturbine. The thermodynamic properties of the fluid at various state points were determined. The first and second law efficiency of the system was presented for different design parameters such as evaporation, condensation, generation temperature of the absorption system, effectiveness of the condenser-evaporator heat exchanger, and the solution heat exchanger. The proposed system's energy utilization factor is 28.3%, representing a 43.5% efficiency increase relative to the sole microturbine cycle. In addition, if waste heat from the flue gases discharged from the turbine is not recovered, a tremendous amount of energy may be lost. Therefore, the application of combined energy systems is a vital solution for energy efficiency.
Primary Language | English |
---|---|
Subjects | Mechanical Engineering |
Journal Section | Research Articles |
Authors | |
Publication Date | August 31, 2022 |
Submission Date | June 22, 2022 |
Acceptance Date | August 2, 2022 |
Published in Issue | Year 2022 Volume: 27 Issue: 2 |
Announcements:
30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.