TERMAL ENERJİ DEPOLAMADA POLİMER-NANO MALZEME KATKILI PARAFİN VAKSTAN ÜRETİLEN FAZ DEĞİŞİM MALZEMELERİ ÜZERİNE BİR DEĞERLENDİRME
Year 2022,
Volume: 27 Issue: 2, 877 - 896, 31.08.2022
Çağrı Önder Özdemir
,
Hasret Akgün
,
Aysun Özkan
,
Zerrin Günkaya
,
Mufide Banar
Abstract
Faz değişim malzemeleri (FDM) kullanılarak gizli ısının depolanması, termal enerji depolamada, oldukça etkili bir yoldur. Bu malzemeler, faz geçişi sırasında enerjiyi sabit sıcaklıkta gizli ısı formunda depolar ve depolanan aynı enerjiyi serbest bırakır. Parafin, kapsülleme gibi yöntemlerle sabit bir şekle getirilerek kullanılan önemli organik FDM'lerden birisidir. Herhangi bir teknik sınıf parafinin ekonomik maliyetinin yüksek olması, faz geçiş prosedürü sırasında sıvı sızıntısı, düşük termal iletkenlik ve düşük yüzey alanı gibi malzemenin termal performansını etkileyen birçok sınırlama, gizli ısı depolamada istenen fiziksel özellikleri ve termal performansı iyileştirmek için parafin vaks ile oluşturulan kompozit faz değişim malzemelerinin geliştirilmesini önemli kılmaktadır. Bu derleme makalede; parafin vaks kullanılarak elde edilmiş faz değişim malzemeleriyle ilgili çalışmalar özetlenmiş, küresel iklim değişikliği azaltım stratejileri çerçevesinde, çevrede aşırı miktarda olan, plastik, vaks, organik ve inorganik malzemelerin kompozit faz değişim malzemelerinde kullanılabilirliği ile ilgili öneriler sunulmuştur.
Supporting Institution
Eskişehir Teknik Üniversitesi
References
- 1. Abdelrazeq, H.W. (2016). Heat absorbers based on recycled polyethylene and paraffın wax for energy storage. Master’s Thesis, Qatar University, College of Arts and Sciences. doi: http://hdl.handle.net/10576/5098
- 2. Abdelrazeq, H., Sobolčiak, P., Al-Ali Al-Maadeed, M., Ouederni, M ve Krupa, I. (2019) Recycled polyethylene/paraffin wax/expanded graphite based heat absorbers for thermal energy storage: an artificial aging study. Molecules, 24(7): 1217. doi: https://doi.org/10.3390/molecules24071217
- 3. Abdou, S. M., Elnahas, H. H., El-Zahed, H., ve Abdeldaym, A. (2016) Thermal behavior of gamma-irradiated low-density polyethylene/paraffin wax blend. Radiation Effects and Defects in Solids, 171(5-6), 503-510. doi: https://doi.org/10.1080/10420150.2016.1213729
- 4. Alkan C., Kaya K., Sarı A. (2009). Preparation, Thermal Properties and Thermal Reliability of Form-Stable Paraffin/Polypropylene Composite for Thermal Energy Storage , 17(4), 254–258. doi:10.1007/s10924-009-0146-7
- 5. AlMaadeed, M. A., Labidi, S., Krupa, I. ve Karkri, M. (2015a) Effect of expanded graphite on the phase change materials of high density polyethylene/wax blends. Thermochimica Acta, 600, 35-44. doi: https://doi.org/10.1016/j.tca.2014.11.023
- 6. AlMaadeed, M. A., Labidi, S., Krupa, I. ve Ouederni, M. (2015b) Effect of waste wax and chain structure on the mechanical and physical properties of polyethylene. Arabian Journal of Chemistry, 8(3), 388-399. doi: https://doi.org/10.1016/j.arabjc.2014.01.006
- 7. Al Ghossein, R. M., Hossain, M. S., & Khodadadi, J. M. (2017). Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based silver nanostructure-enhanced phase change materials for thermal energy storage. International Journal of Heat and Mass Transfer, 107, 697-711. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.059
- 8. Aqel, A., Abou El-Nour, K. M., Ammar, R. A. ve Al-Warthan, A. (2012) Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arabian Journal of Chemistry, 5(1), 1-23. doi: https://doi.org/10.1016/j.arabjc.2010.08.022
- 9. Arasu, A., Sasmito, A., & Mujumdar, A. (2012). Thermal performance enhancement of paraffin wax with Al2O3 and CuO nanoparticles–a numerical study. Frontiers in Heat and Mass Transfer (FHMT), 2(4). doi: http://dx.doi.org/10.5098/hmt.v2.4.3005
- 10. Arena, U., Mastellone, M.L., Camino, G. ve Boccaleri, E. (2006) An innovative process for mass production of multi-wall carbon nanotubes by means of low-cost pyrolysis of polyolefins. Polymer Degradation and Stability, 91: 763-768. doi: https://doi.org/10.1016/j.polymdegradstab.2005.05.029
- 11. Arnaiz, N., Gomez-Rico, M.F., Gullon, I.M. ve Font, R. (2013) Production of carbon nanotubes from polyethylene pyrolysis gas and effect of temperature. Industrial and Engineering Chemistry Research, 52: 14847-14854. doi: https://doi.org/10.1021/ie401688n
- 12. Arshad, A., Jabbal, M., & Yan, Y. (2020). Thermophysical characteristics and application of metallic-oxide based mono and hybrid nanocomposite phase change materials for thermal management systems. Applied Thermal Engineering, 181, 115999. doi: https://doi.org/10.1016/j.applthermaleng.2020.115999
- 13. Aydın, A.A. (2010). The Synthesis and Thermal Properties of Novel Organic Phase Change Materials. Doktora Tezi, İstanbul Teknik Üniversitesi, İstanbul
- 14. Cárdenas, B. ve León, N. (2013) High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques. Renewable and Sustainable Energy Reviews, 27, 724-737. doi: https://doi.org/10.1016/j.rser.2013.07.028
- 15. Chaichan, M. T., & Kazem, H. A. (2018). Single slope solar distillator productivity improvement using phase change material and Al2O3 nanoparticle. Solar Energy, 164, 370-381. doi: https://doi.org/10.1016/j.solener.2018.02.049
- 16. Chaudhry, A. U., Lonkar, S. P., Chudhary, R. G., Mabrouk, A. ve Abdala, A. A. (2020) Thermal, electrical, and mechanical properties of highly filled HDPE/graphite nanoplatelets composites. Materials Today: Proceedings, 29, 704-708. doi: https://doi.org/10.1016/j.matpr.2020.04.168
- 17. Chen, L., Zou, R., Xia, W., Liu, Z., Shang, Y., Zhu, J., ... & Cao, A. (2012). Electro-and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges. ACS nano, 6(12), 10884-10892. doi: https://doi.org/10.1021/nn304310n
- 18. Coetzee, D., Venkataraman, M., Militky, J., & Petru, M. (2020). Influence of nanoparticles on thermal and electrical conductivity of composites. Polymers, 12(4), 742. doi: https://doi.org/10.3390/polym12040742
- 19. Ebrahimi, A., & Dadvand, A. (2015). Simulation of melting of a nano-enhanced phase change material (NePCM) in a square cavity with two heat source–sink pairs. Alexandria engineering journal, 54(4), 1003-
1017. doi: https://doi.org/10.1016/j.aej.2015.09.007
- 20. Elnahas, H. H., Abdou, S. M., El-Zahed, H. ve Abdeldaym, A. (2018) Structural, morphological and mechanical properties of gamma irradiated low density polyethylene/paraffin wax blends. Radiation Physics and Chemistry, 151, 217-224. doi: https://doi.org/10.1016/j.radphyschem.2018.06.030
- 21. Fang, G., Tang, F. ve Cao, L. (2014) Preparation, thermal properties and applications of shape-stabilized thermal energy storage materials. Renewable and Sustainable Energy Reviews, 40, 237-259. doi: https://doi.org/10.1016/j.rser.2014.07.179
- 22. Farid, M. M., Khudhair, A. M., Razack, S. A. K. ve Al-Hallaj, S. (2004) A review on phase change energy storage: materials and applications. Energy Conversion And Management, 45(9-10), 1597-1615. doi: https://doi.org/10.1016/j.enconman.2003.09.015
- 23. Freeman, T. B., Messenger, M. A., Troxler, C. J., Nawaz, K., Rodriguez, R. M., & Boetcher, S. K. (2021). Fused filament fabrication of novel phase-change material functional composites. Additive Manufacturing, 39, 101839. doi: https://doi.org/10.1016/j.addma.2021.101839
- 24. George, M., Pandey, A. K., Abd Rahim, N., Tyagi, V. V., Shahabuddin, S. ve Saidur, R. (2020) A novel polyaniline (PANI)/paraffin wax nano composite phase change material: Superior transition heat storage capacity, thermal conductivity and thermal reliability. Solar Energy, 204, 448-458. doi: https://doi.org/10.1016/j.solener.2020.04.087
- 25. Han, Z. ve Fina, A. (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Progress in Polymer Science, 36(7), 914-944. doi: https://doi.org/10.1016/j.progpolymsci.2010.11.004
- 26. Harmen, Y., Chhiti, Y., Alaoui, F. E. M. H., Bentiss, F., Elkhouakhi, M., Deshayes, L., ... & Bensitel, M. (2020, June). Storage efficiency of paraffin-LDPE-MWCNT phase change material for industrial building applications. In 2020 5th International Conference on Renewable Energies for Developing Countries (REDEC) (pp. 1-6). IEEE. doi: 10.1109/REDEC49234.2020.9163856
- 27. Hu, D., Han, L., Zhou, W., Li, P., Huang, Y., Yang, Z., & Jia, X. (2022). Flexible phase change composite based on loading paraffin into cross-linked CNT/SBS network for thermal management and thermal storage. Chemical Engineering Journal, 437, 135056. doi: https://doi.org/10.1016/j.cej.2022.135056
- 28. Intergovernmental Panel on Climate Change (IPCC), (2018). Global Warming of 1.5 °C, Special Report of the Intergovernmental Panel on Climate Change. Erişim adresi: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_SPM_version_report_LR.pdf (Erişim Tarihi: 07.05.2021)
- 29. JianShe, H., Chao, Y., Xu, Z., Jiao, Z., & JinXing, D. (2019). Structure and thermal properties of expanded graphite/paraffin composite phase change material. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(1), 86-93. doi: https://doi.org/10.1080/15567036.2018.1496199
- 30. Karaipekli, A., Biçer, A., Sarı, A., & Tyagi, V. V. (2017). Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy conversion and management, 134, 373-381. doi: https://doi.org/10.1016/j.enconman.2016.12.053
- 31. Katekar, V. P. ve Deshmukh, S. S. (2020) A review of the use of phase change materials on performance of solar stills. Journal of Energy Storage, 30, 101398. doi: https://doi.org/10.1016/j.est.2020.101398
- 32. Khudhair, A. M. ve Farid, M. M. (2004) A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Conversion and Management, 45(2), 263-275. doi: https://doi.org/10.1016/S0196-8904(03)00131-6
- 33. Krupa, I., Miková, G. ve Luyt, A. S. (2007) Phase change materials based on low-density polyethylene/paraffin wax blends. European Polymer Journal, 43(11), 4695-4705. doi: https://doi.org/10.1016/j.eurpolymj.2007.08.022
- 34. Krupa, I., Nógellová, Z., Špitalský, Z., Malíková, M., Sobolčiak, P., Abdelrazeq, H. W., ... ve Al-Maadeed, M. A. S. (2015) Positive influence of expanded graphite on the physical behavior of phase change materials based on linear low-density polyethylene and paraffin wax. Thermochimica Acta, 614, 218-225. doi: https://doi.org/10.1016/j.tca.2015.06.028
- 35. Krupa, I. ve Luyt, A. S. (2000) Thermal properties of uncross-linked and cross-linked LLDPE/wax blends. Polymer Degradation and Stability, 70(1), 111-117. doi: https://doi.org/10.1016/S0141-3910(00)00097-5
- 36. Krupa, I. ve Luyt, A. S. (2001) Thermal and mechanical properties of extruded LLDPE/wax blends. Polymer Degradation and Stability 73(1), 157-161. doi: https://doi.org/10.1016/S0141-3910(01)00082-9
- 37. Kumar, P. M., Anandkumar, R., Sudarvizhi, D., Mylsamy, K. ve Nithish, M. (2020) Experimental and theoretical investigations on thermal conductivity of the paraffin wax using CuO nanoparticles. Materials Today: Proceedings, 22, 1987-1993. doi: https://doi.org/10.1016/j.matpr.2020.03.164
- 38. Lachheb, M., Karkri, M., Albouchi, F., Mzali, F. ve Nasrallah, S. B. (2014) Thermophysical properties estimation of paraffin/graphite composite phase change material using an inverse method. Energy Conversion and Management, 82, 229-237. doi: https://doi.org/10.1016/j.enconman.2014.03.021
- 39. Li, J., Xue, P., Ding, W., Han, J., & Sun, G. (2009). Micro-encapsulated paraffin/high-density polyethylene/wood flour composite as form-stable phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 93(10), 1761-1767. doi: https://doi.org/10.1016/j.solmat.2009.06.007
- 40. Li, Y., Li, J., Deng, Y., Guan, W., Wang, X., & Qian, T. (2016). Preparation of paraffin/porous TiO2 foams with enhanced thermal conductivity as PCM, by covering the TiO2 surface with a carbon layer. Applied energy, 171, 37-45. doi: https://doi.org/10.1016/j.apenergy.2016.03.010
- 41. Lin, S. C. ve Al-Kayiem, H. H. (2016) Evaluation of copper nanoparticles–Paraffin wax compositions for solar thermal energy storage. Solar Energy, 132, 267-278. doi: https://doi.org/10.1016/j.solener.2016.03.004
- 42. Lin, J., Ouyang, Y., Chen, L., Wen, K., Li, Y., Mu, H., ... & Long, J. (2022). Enhancing the solar absorption capacity of expanded graphite-paraffin wax composite phase change materials by introducing carbon
nanotubes additives. Surfaces and Interfaces, 30, 101871. doi: https://doi.org/10.1016/j.surfin.2022.101871
- 43. Ling, Z., Chen, J., Xu, T., Fang, X., Gao, X., & Zhang, Z. (2015). Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model. Energy Conversion and Management, 102, 202-208. doi: https://doi.org/10.1016/j.enconman.2014.11.040
- 44. López, S. Y. R., Rodrıguez, J. S. ve Sueyoshi, S. S. (2006) Low-temperature formation of alpha alumina powders via metal organic synthesis. AZo J. of Materials Online, 2. doi: 10.2240/azojomo0186
- 45. Magendran, S. S., Khan, F. S. A., Mubarak, N. M., Vaka, M., Walvekar, R., Khalid, M., ... ve Karri, R. R. (2019) Synthesis of organic phase change materials (PCM) for energy storage applications: A review. Nano-
Structures & Nano-Objects, 20, 100399. doi: https://doi.org/10.1016/j.nanoso.2019.100399
- 46. Mhike, W., Focke, W. W., Mofokeng, J. P. ve Luyt, A. S. (2012) Thermally conductive phase-change materials for energy storage based on low-density polyethylene, soft Fischer–Tropsch wax and graphite. Thermochimica Acta, 527, 75-82. doi: https://doi.org/10.1016/j.tca.2011.10.008
- 47. Mohamed, N. H., Soliman, F. S., El Maghraby, H. ve Moustfa, Y. M. (2017) Thermal conductivity enhancement of treated petroleum waxes, as phase change material, by α nano alumina: Energy storage. Renewable and Sustainable Energy Reviews, 70, 1052-1058. doi: https://doi.org/10.1016/j.rser.2016.12.009
- 48. Molefi, J. A., Luyt, A. S. ve Krupa, I. (2010) Comparison of LDPE, LLDPE and HDPE as matrices for phase change materials based on a soft Fischer–Tropsch paraffin wax. Thermochimica Acta, 500(1-2), 88-92. doi: https://doi.org/10.1016/j.tca.2010.01.002
- 49. Moon, H., Miljkovic, N. ve King, W. P. (2020) High power density thermal energy storage using additively manufactured heat exchangers and phase change material. International Journal of Heat and Mass Transfer, 153, 119591. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119591
- 50. Motawie, M., Hanafi, S. A., Elmelawy, M. S., Ahmed, S. M., Mansour, N. A., Darwish, M. S. ve Abulyazied, D. E. (2015) Wax co-cracking synergism of high density polyethylene to alternative fuels. Egyptian Journal of
Petroleum, 24(3), 353-361. doi: https://doi.org/10.1016/j.ejpe.2015.07.004
- 51. Mu, M., Basheer, P. A. M., Sha, W., Bai, Y. ve McNally, T. (2016) Shape stabilised phase change materials based on a high melt viscosity HDPE and paraffin waxes. Applied Energy, 162, 68-82. doi: https://doi.org/10.1016/j.apenergy.2015.10.030
- 52. Nazari, M. A., Maleki, A., Assad, M. E. H., Rosen, M. A., Haghighi, A., Sharabaty, H., & Chen, L. (2021). A review of nanomaterial incorporated phase change materials for solar thermal energy storage. Solar Energy, 228, 725-743. doi: https://doi.org/10.1016/j.solener.2021.08.051
- 53. Pradeep, N., Paramasivam, K., Rajesh, T., Purusothamanan, V. S. ve Iyahraja, S. (2021) Silver nanoparticles for enhanced thermal energy storage of phase change materials. Materials Today: Proceedings. doi: https://doi.org/10.1016/j.matpr.2020.02.671
- 54. Qu, Y., Wang, S., Tian, Y. ve Zhou, D. (2019) Comprehensive evaluation of Paraffin-HDPE shape stabilized PCM with hybrid carbon nano-additives. Applied Thermal Engineering, 163, 114404. doi: https://doi.org/10.1016/j.applthermaleng.2019.114404
- 55. Rathod, M. K. (2018) Thermal stability of phase change material. Phase Change Materials and Their Applications. doi: 10.5772/intechopen.75923
- 56. Ronca, S. (2017) Polyethylene. In Brydson's plastics materials. 247-278. Butterworth-Heinemann. doi: https://doi.org/10.1016/B978-0-323-35824-8.00010-4
- 57. Sciacovelli, A., Navarro, M. E., Jin, Y., Qiao, G., Zheng, L., Leng, G., ... ve Ding, Y. (2018). High density polyethylene (HDPE)—Graphite composite manufactured by extrusion: A novel way to fabricate phase change materials for thermal energy storage. Particuology, 40, 131-140. doi: https://doi.org/10.1016/j.partic.2017.11.011
- 58. Sharma, A., Tyagi, V. V., Chen, C. R. ve Buddhi, D. (2009) Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13(2), 318-345. doi: https://doi.org/10.1016/j.rser.2007.10.005
- 59. Sobolciak, P., Karkri, M., Al-Maadeed, M. A. ve Krupa, I. (2016) Thermal characterization of phase change materials based on linear low-density polyethylene, paraffin wax and expanded graphite. Renewable Energy, 88, 372-382. doi: https://doi.org/10.1016/j.renene.2015.11.056
- 60. Sotomayor, M. E., Krupa, I., Várez, A. ve Levenfeld, B. (2014) Thermal and mechanical characterization of injection moulded high density polyethylene/paraffin wax blends as phase change materials. Renewable Energy, 68, 140-145. doi: https://doi.org/10.1016/j.renene.2014.01.036
- 61. Telkes, M. ve Raymond, E. (1949) Storing solar heat in chemicals. Heat. Vent. 46. URL: https://www.osti.gov/biblio/5118227
- 62. Tong, X., Li, N., Zeng, M., & Wang, Q. (2019). Organic phase change materials confined in carbon-based materials for thermal properties enhancement: Recent advancement and challenges. Renewable and
Sustainable Energy Reviews, 108, 398-422. doi: https://doi.org/10.1016/j.rser.2019.03.031
- 63. Tony, M. A. (2021). Recent frontiers in solar energy storage via nanoparticles enhanced phase change materials: Succinct review on basics, applications, and their environmental aspects. Energy Storage, 3(4), e238. doi: https://doi.org/10.1002/est2.238
- 64. Trigui, A., Karkri, M. ve Krupa, I. (2014) Thermal conductivity and latent heat thermal energy storage properties of LDPE/wax as a shape-stabilized composite phase change material. Energy Conversion and Management, 77, 586-596. doi: https://doi.org/10.1016/j.enconman.2013.09.034
- 65. Trigui, A., Karkri, M., Boudaya, C., Candau, Y., Ibos, L. ve Fois, M. (2014) Experimental investigation of a composite phase change material: Thermal-energy storage and release. Journal of Composite Materials, 48(1), 49-62. doi: https://doi.org/10.1177/0021998312468185
- 66. United Nations Framework Convention on Climate Change (UNFCCC), (2015). Adoption of the Paris Agreement, Twenty-first session, Paris, L.9/Rev.1. Erişim adresi: https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (Erişim Tarihi: 13.05.2021)
- 67. Vakhshouri, A. R. (2020) Paraffin as phase change material. Paraffin Overview, 1-23. doi: 10.5772/intechopen.90487
- 68. Verma, S. K. ve Tiwari, A. K. (2015) Progress of nanofluid application in solar collectors: a review. Energy Conversion and Management, 100, 324-346. doi: https://doi.org/10.1016/j.enconman.2015.04.071
- 69. Wu, Y., Zhang, X., Xu, X., Lin, X. ve Liu, L. (2020) A review on the effect of external fields on solidification, melting and heat transfer enhancement of phase change materials. Journal of Energy Storage, 31, 101567. doi: https://doi.org/10.1016/j.est.2020.101567
- 70. Yadav, A., Verma, A., Kumar, A., Dashmana, H., Kumar, A., Bhatnagar, P. K., & Jain, V. K. (2021). Recent Advances on Enhanced Thermal Conduction in Phase Change Materials using Carbon Nanomaterials. Journal of Energy Storage, 43, 103173. doi: https://doi.org/10.1016/j.est.2021.103173
- 71. Zhang, Z. ve Fang, X. (2006) Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energy Conversion and Management, 47(3), 303-310. doi: https://doi.org/10.1016/j.enconman.2005.03.004
- 72. Zou, D., Ma, X., Liu, X., Zheng, P., & Hu, Y. (2018). Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery. International Journal of Heat and Mass Transfer, 120, 33-41. doi: doi.org/10.1016/j.ijheatmasstransfer.2017.12.024
A Review on Phase Change Materials Produced from Polymer-Nano Material Additive Paraffin Wax in Thermal Energy Storage
Year 2022,
Volume: 27 Issue: 2, 877 - 896, 31.08.2022
Çağrı Önder Özdemir
,
Hasret Akgün
,
Aysun Özkan
,
Zerrin Günkaya
,
Mufide Banar
Abstract
The use of latent heat storage system using phase change materials (PCM) is an efficient way of storing thermal energy. These materials store energy in the form of latent heat at constant temperature during phase transition and release the same stored energy. Paraffin is one of the important organic PCMs used with methods such as shape stabilization and encapsulation. Due to many limitations affecting the thermal performance of the material, such as the high economic cost of any technical grade paraffin, fluid leakage during the phase transition procedure, low thermal conductivity and low surface area, in order to improve the desired physical properties and thermal performance in latent heat storage, it is important to develop composite phase change materials obtained with paraffin wax. This review paper summarizes studies on phase change materials obtained using paraffin wax, and recommendations on the use of plastic, wax and nanomaterial wastes, which are excessive in the environment, in composite phase change materials are presented within the framework of global climate change mitigation strategies.
References
- 1. Abdelrazeq, H.W. (2016). Heat absorbers based on recycled polyethylene and paraffın wax for energy storage. Master’s Thesis, Qatar University, College of Arts and Sciences. doi: http://hdl.handle.net/10576/5098
- 2. Abdelrazeq, H., Sobolčiak, P., Al-Ali Al-Maadeed, M., Ouederni, M ve Krupa, I. (2019) Recycled polyethylene/paraffin wax/expanded graphite based heat absorbers for thermal energy storage: an artificial aging study. Molecules, 24(7): 1217. doi: https://doi.org/10.3390/molecules24071217
- 3. Abdou, S. M., Elnahas, H. H., El-Zahed, H., ve Abdeldaym, A. (2016) Thermal behavior of gamma-irradiated low-density polyethylene/paraffin wax blend. Radiation Effects and Defects in Solids, 171(5-6), 503-510. doi: https://doi.org/10.1080/10420150.2016.1213729
- 4. Alkan C., Kaya K., Sarı A. (2009). Preparation, Thermal Properties and Thermal Reliability of Form-Stable Paraffin/Polypropylene Composite for Thermal Energy Storage , 17(4), 254–258. doi:10.1007/s10924-009-0146-7
- 5. AlMaadeed, M. A., Labidi, S., Krupa, I. ve Karkri, M. (2015a) Effect of expanded graphite on the phase change materials of high density polyethylene/wax blends. Thermochimica Acta, 600, 35-44. doi: https://doi.org/10.1016/j.tca.2014.11.023
- 6. AlMaadeed, M. A., Labidi, S., Krupa, I. ve Ouederni, M. (2015b) Effect of waste wax and chain structure on the mechanical and physical properties of polyethylene. Arabian Journal of Chemistry, 8(3), 388-399. doi: https://doi.org/10.1016/j.arabjc.2014.01.006
- 7. Al Ghossein, R. M., Hossain, M. S., & Khodadadi, J. M. (2017). Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based silver nanostructure-enhanced phase change materials for thermal energy storage. International Journal of Heat and Mass Transfer, 107, 697-711. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.059
- 8. Aqel, A., Abou El-Nour, K. M., Ammar, R. A. ve Al-Warthan, A. (2012) Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arabian Journal of Chemistry, 5(1), 1-23. doi: https://doi.org/10.1016/j.arabjc.2010.08.022
- 9. Arasu, A., Sasmito, A., & Mujumdar, A. (2012). Thermal performance enhancement of paraffin wax with Al2O3 and CuO nanoparticles–a numerical study. Frontiers in Heat and Mass Transfer (FHMT), 2(4). doi: http://dx.doi.org/10.5098/hmt.v2.4.3005
- 10. Arena, U., Mastellone, M.L., Camino, G. ve Boccaleri, E. (2006) An innovative process for mass production of multi-wall carbon nanotubes by means of low-cost pyrolysis of polyolefins. Polymer Degradation and Stability, 91: 763-768. doi: https://doi.org/10.1016/j.polymdegradstab.2005.05.029
- 11. Arnaiz, N., Gomez-Rico, M.F., Gullon, I.M. ve Font, R. (2013) Production of carbon nanotubes from polyethylene pyrolysis gas and effect of temperature. Industrial and Engineering Chemistry Research, 52: 14847-14854. doi: https://doi.org/10.1021/ie401688n
- 12. Arshad, A., Jabbal, M., & Yan, Y. (2020). Thermophysical characteristics and application of metallic-oxide based mono and hybrid nanocomposite phase change materials for thermal management systems. Applied Thermal Engineering, 181, 115999. doi: https://doi.org/10.1016/j.applthermaleng.2020.115999
- 13. Aydın, A.A. (2010). The Synthesis and Thermal Properties of Novel Organic Phase Change Materials. Doktora Tezi, İstanbul Teknik Üniversitesi, İstanbul
- 14. Cárdenas, B. ve León, N. (2013) High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques. Renewable and Sustainable Energy Reviews, 27, 724-737. doi: https://doi.org/10.1016/j.rser.2013.07.028
- 15. Chaichan, M. T., & Kazem, H. A. (2018). Single slope solar distillator productivity improvement using phase change material and Al2O3 nanoparticle. Solar Energy, 164, 370-381. doi: https://doi.org/10.1016/j.solener.2018.02.049
- 16. Chaudhry, A. U., Lonkar, S. P., Chudhary, R. G., Mabrouk, A. ve Abdala, A. A. (2020) Thermal, electrical, and mechanical properties of highly filled HDPE/graphite nanoplatelets composites. Materials Today: Proceedings, 29, 704-708. doi: https://doi.org/10.1016/j.matpr.2020.04.168
- 17. Chen, L., Zou, R., Xia, W., Liu, Z., Shang, Y., Zhu, J., ... & Cao, A. (2012). Electro-and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges. ACS nano, 6(12), 10884-10892. doi: https://doi.org/10.1021/nn304310n
- 18. Coetzee, D., Venkataraman, M., Militky, J., & Petru, M. (2020). Influence of nanoparticles on thermal and electrical conductivity of composites. Polymers, 12(4), 742. doi: https://doi.org/10.3390/polym12040742
- 19. Ebrahimi, A., & Dadvand, A. (2015). Simulation of melting of a nano-enhanced phase change material (NePCM) in a square cavity with two heat source–sink pairs. Alexandria engineering journal, 54(4), 1003-
1017. doi: https://doi.org/10.1016/j.aej.2015.09.007
- 20. Elnahas, H. H., Abdou, S. M., El-Zahed, H. ve Abdeldaym, A. (2018) Structural, morphological and mechanical properties of gamma irradiated low density polyethylene/paraffin wax blends. Radiation Physics and Chemistry, 151, 217-224. doi: https://doi.org/10.1016/j.radphyschem.2018.06.030
- 21. Fang, G., Tang, F. ve Cao, L. (2014) Preparation, thermal properties and applications of shape-stabilized thermal energy storage materials. Renewable and Sustainable Energy Reviews, 40, 237-259. doi: https://doi.org/10.1016/j.rser.2014.07.179
- 22. Farid, M. M., Khudhair, A. M., Razack, S. A. K. ve Al-Hallaj, S. (2004) A review on phase change energy storage: materials and applications. Energy Conversion And Management, 45(9-10), 1597-1615. doi: https://doi.org/10.1016/j.enconman.2003.09.015
- 23. Freeman, T. B., Messenger, M. A., Troxler, C. J., Nawaz, K., Rodriguez, R. M., & Boetcher, S. K. (2021). Fused filament fabrication of novel phase-change material functional composites. Additive Manufacturing, 39, 101839. doi: https://doi.org/10.1016/j.addma.2021.101839
- 24. George, M., Pandey, A. K., Abd Rahim, N., Tyagi, V. V., Shahabuddin, S. ve Saidur, R. (2020) A novel polyaniline (PANI)/paraffin wax nano composite phase change material: Superior transition heat storage capacity, thermal conductivity and thermal reliability. Solar Energy, 204, 448-458. doi: https://doi.org/10.1016/j.solener.2020.04.087
- 25. Han, Z. ve Fina, A. (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Progress in Polymer Science, 36(7), 914-944. doi: https://doi.org/10.1016/j.progpolymsci.2010.11.004
- 26. Harmen, Y., Chhiti, Y., Alaoui, F. E. M. H., Bentiss, F., Elkhouakhi, M., Deshayes, L., ... & Bensitel, M. (2020, June). Storage efficiency of paraffin-LDPE-MWCNT phase change material for industrial building applications. In 2020 5th International Conference on Renewable Energies for Developing Countries (REDEC) (pp. 1-6). IEEE. doi: 10.1109/REDEC49234.2020.9163856
- 27. Hu, D., Han, L., Zhou, W., Li, P., Huang, Y., Yang, Z., & Jia, X. (2022). Flexible phase change composite based on loading paraffin into cross-linked CNT/SBS network for thermal management and thermal storage. Chemical Engineering Journal, 437, 135056. doi: https://doi.org/10.1016/j.cej.2022.135056
- 28. Intergovernmental Panel on Climate Change (IPCC), (2018). Global Warming of 1.5 °C, Special Report of the Intergovernmental Panel on Climate Change. Erişim adresi: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_SPM_version_report_LR.pdf (Erişim Tarihi: 07.05.2021)
- 29. JianShe, H., Chao, Y., Xu, Z., Jiao, Z., & JinXing, D. (2019). Structure and thermal properties of expanded graphite/paraffin composite phase change material. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(1), 86-93. doi: https://doi.org/10.1080/15567036.2018.1496199
- 30. Karaipekli, A., Biçer, A., Sarı, A., & Tyagi, V. V. (2017). Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy conversion and management, 134, 373-381. doi: https://doi.org/10.1016/j.enconman.2016.12.053
- 31. Katekar, V. P. ve Deshmukh, S. S. (2020) A review of the use of phase change materials on performance of solar stills. Journal of Energy Storage, 30, 101398. doi: https://doi.org/10.1016/j.est.2020.101398
- 32. Khudhair, A. M. ve Farid, M. M. (2004) A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Conversion and Management, 45(2), 263-275. doi: https://doi.org/10.1016/S0196-8904(03)00131-6
- 33. Krupa, I., Miková, G. ve Luyt, A. S. (2007) Phase change materials based on low-density polyethylene/paraffin wax blends. European Polymer Journal, 43(11), 4695-4705. doi: https://doi.org/10.1016/j.eurpolymj.2007.08.022
- 34. Krupa, I., Nógellová, Z., Špitalský, Z., Malíková, M., Sobolčiak, P., Abdelrazeq, H. W., ... ve Al-Maadeed, M. A. S. (2015) Positive influence of expanded graphite on the physical behavior of phase change materials based on linear low-density polyethylene and paraffin wax. Thermochimica Acta, 614, 218-225. doi: https://doi.org/10.1016/j.tca.2015.06.028
- 35. Krupa, I. ve Luyt, A. S. (2000) Thermal properties of uncross-linked and cross-linked LLDPE/wax blends. Polymer Degradation and Stability, 70(1), 111-117. doi: https://doi.org/10.1016/S0141-3910(00)00097-5
- 36. Krupa, I. ve Luyt, A. S. (2001) Thermal and mechanical properties of extruded LLDPE/wax blends. Polymer Degradation and Stability 73(1), 157-161. doi: https://doi.org/10.1016/S0141-3910(01)00082-9
- 37. Kumar, P. M., Anandkumar, R., Sudarvizhi, D., Mylsamy, K. ve Nithish, M. (2020) Experimental and theoretical investigations on thermal conductivity of the paraffin wax using CuO nanoparticles. Materials Today: Proceedings, 22, 1987-1993. doi: https://doi.org/10.1016/j.matpr.2020.03.164
- 38. Lachheb, M., Karkri, M., Albouchi, F., Mzali, F. ve Nasrallah, S. B. (2014) Thermophysical properties estimation of paraffin/graphite composite phase change material using an inverse method. Energy Conversion and Management, 82, 229-237. doi: https://doi.org/10.1016/j.enconman.2014.03.021
- 39. Li, J., Xue, P., Ding, W., Han, J., & Sun, G. (2009). Micro-encapsulated paraffin/high-density polyethylene/wood flour composite as form-stable phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 93(10), 1761-1767. doi: https://doi.org/10.1016/j.solmat.2009.06.007
- 40. Li, Y., Li, J., Deng, Y., Guan, W., Wang, X., & Qian, T. (2016). Preparation of paraffin/porous TiO2 foams with enhanced thermal conductivity as PCM, by covering the TiO2 surface with a carbon layer. Applied energy, 171, 37-45. doi: https://doi.org/10.1016/j.apenergy.2016.03.010
- 41. Lin, S. C. ve Al-Kayiem, H. H. (2016) Evaluation of copper nanoparticles–Paraffin wax compositions for solar thermal energy storage. Solar Energy, 132, 267-278. doi: https://doi.org/10.1016/j.solener.2016.03.004
- 42. Lin, J., Ouyang, Y., Chen, L., Wen, K., Li, Y., Mu, H., ... & Long, J. (2022). Enhancing the solar absorption capacity of expanded graphite-paraffin wax composite phase change materials by introducing carbon
nanotubes additives. Surfaces and Interfaces, 30, 101871. doi: https://doi.org/10.1016/j.surfin.2022.101871
- 43. Ling, Z., Chen, J., Xu, T., Fang, X., Gao, X., & Zhang, Z. (2015). Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model. Energy Conversion and Management, 102, 202-208. doi: https://doi.org/10.1016/j.enconman.2014.11.040
- 44. López, S. Y. R., Rodrıguez, J. S. ve Sueyoshi, S. S. (2006) Low-temperature formation of alpha alumina powders via metal organic synthesis. AZo J. of Materials Online, 2. doi: 10.2240/azojomo0186
- 45. Magendran, S. S., Khan, F. S. A., Mubarak, N. M., Vaka, M., Walvekar, R., Khalid, M., ... ve Karri, R. R. (2019) Synthesis of organic phase change materials (PCM) for energy storage applications: A review. Nano-
Structures & Nano-Objects, 20, 100399. doi: https://doi.org/10.1016/j.nanoso.2019.100399
- 46. Mhike, W., Focke, W. W., Mofokeng, J. P. ve Luyt, A. S. (2012) Thermally conductive phase-change materials for energy storage based on low-density polyethylene, soft Fischer–Tropsch wax and graphite. Thermochimica Acta, 527, 75-82. doi: https://doi.org/10.1016/j.tca.2011.10.008
- 47. Mohamed, N. H., Soliman, F. S., El Maghraby, H. ve Moustfa, Y. M. (2017) Thermal conductivity enhancement of treated petroleum waxes, as phase change material, by α nano alumina: Energy storage. Renewable and Sustainable Energy Reviews, 70, 1052-1058. doi: https://doi.org/10.1016/j.rser.2016.12.009
- 48. Molefi, J. A., Luyt, A. S. ve Krupa, I. (2010) Comparison of LDPE, LLDPE and HDPE as matrices for phase change materials based on a soft Fischer–Tropsch paraffin wax. Thermochimica Acta, 500(1-2), 88-92. doi: https://doi.org/10.1016/j.tca.2010.01.002
- 49. Moon, H., Miljkovic, N. ve King, W. P. (2020) High power density thermal energy storage using additively manufactured heat exchangers and phase change material. International Journal of Heat and Mass Transfer, 153, 119591. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119591
- 50. Motawie, M., Hanafi, S. A., Elmelawy, M. S., Ahmed, S. M., Mansour, N. A., Darwish, M. S. ve Abulyazied, D. E. (2015) Wax co-cracking synergism of high density polyethylene to alternative fuels. Egyptian Journal of
Petroleum, 24(3), 353-361. doi: https://doi.org/10.1016/j.ejpe.2015.07.004
- 51. Mu, M., Basheer, P. A. M., Sha, W., Bai, Y. ve McNally, T. (2016) Shape stabilised phase change materials based on a high melt viscosity HDPE and paraffin waxes. Applied Energy, 162, 68-82. doi: https://doi.org/10.1016/j.apenergy.2015.10.030
- 52. Nazari, M. A., Maleki, A., Assad, M. E. H., Rosen, M. A., Haghighi, A., Sharabaty, H., & Chen, L. (2021). A review of nanomaterial incorporated phase change materials for solar thermal energy storage. Solar Energy, 228, 725-743. doi: https://doi.org/10.1016/j.solener.2021.08.051
- 53. Pradeep, N., Paramasivam, K., Rajesh, T., Purusothamanan, V. S. ve Iyahraja, S. (2021) Silver nanoparticles for enhanced thermal energy storage of phase change materials. Materials Today: Proceedings. doi: https://doi.org/10.1016/j.matpr.2020.02.671
- 54. Qu, Y., Wang, S., Tian, Y. ve Zhou, D. (2019) Comprehensive evaluation of Paraffin-HDPE shape stabilized PCM with hybrid carbon nano-additives. Applied Thermal Engineering, 163, 114404. doi: https://doi.org/10.1016/j.applthermaleng.2019.114404
- 55. Rathod, M. K. (2018) Thermal stability of phase change material. Phase Change Materials and Their Applications. doi: 10.5772/intechopen.75923
- 56. Ronca, S. (2017) Polyethylene. In Brydson's plastics materials. 247-278. Butterworth-Heinemann. doi: https://doi.org/10.1016/B978-0-323-35824-8.00010-4
- 57. Sciacovelli, A., Navarro, M. E., Jin, Y., Qiao, G., Zheng, L., Leng, G., ... ve Ding, Y. (2018). High density polyethylene (HDPE)—Graphite composite manufactured by extrusion: A novel way to fabricate phase change materials for thermal energy storage. Particuology, 40, 131-140. doi: https://doi.org/10.1016/j.partic.2017.11.011
- 58. Sharma, A., Tyagi, V. V., Chen, C. R. ve Buddhi, D. (2009) Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13(2), 318-345. doi: https://doi.org/10.1016/j.rser.2007.10.005
- 59. Sobolciak, P., Karkri, M., Al-Maadeed, M. A. ve Krupa, I. (2016) Thermal characterization of phase change materials based on linear low-density polyethylene, paraffin wax and expanded graphite. Renewable Energy, 88, 372-382. doi: https://doi.org/10.1016/j.renene.2015.11.056
- 60. Sotomayor, M. E., Krupa, I., Várez, A. ve Levenfeld, B. (2014) Thermal and mechanical characterization of injection moulded high density polyethylene/paraffin wax blends as phase change materials. Renewable Energy, 68, 140-145. doi: https://doi.org/10.1016/j.renene.2014.01.036
- 61. Telkes, M. ve Raymond, E. (1949) Storing solar heat in chemicals. Heat. Vent. 46. URL: https://www.osti.gov/biblio/5118227
- 62. Tong, X., Li, N., Zeng, M., & Wang, Q. (2019). Organic phase change materials confined in carbon-based materials for thermal properties enhancement: Recent advancement and challenges. Renewable and
Sustainable Energy Reviews, 108, 398-422. doi: https://doi.org/10.1016/j.rser.2019.03.031
- 63. Tony, M. A. (2021). Recent frontiers in solar energy storage via nanoparticles enhanced phase change materials: Succinct review on basics, applications, and their environmental aspects. Energy Storage, 3(4), e238. doi: https://doi.org/10.1002/est2.238
- 64. Trigui, A., Karkri, M. ve Krupa, I. (2014) Thermal conductivity and latent heat thermal energy storage properties of LDPE/wax as a shape-stabilized composite phase change material. Energy Conversion and Management, 77, 586-596. doi: https://doi.org/10.1016/j.enconman.2013.09.034
- 65. Trigui, A., Karkri, M., Boudaya, C., Candau, Y., Ibos, L. ve Fois, M. (2014) Experimental investigation of a composite phase change material: Thermal-energy storage and release. Journal of Composite Materials, 48(1), 49-62. doi: https://doi.org/10.1177/0021998312468185
- 66. United Nations Framework Convention on Climate Change (UNFCCC), (2015). Adoption of the Paris Agreement, Twenty-first session, Paris, L.9/Rev.1. Erişim adresi: https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (Erişim Tarihi: 13.05.2021)
- 67. Vakhshouri, A. R. (2020) Paraffin as phase change material. Paraffin Overview, 1-23. doi: 10.5772/intechopen.90487
- 68. Verma, S. K. ve Tiwari, A. K. (2015) Progress of nanofluid application in solar collectors: a review. Energy Conversion and Management, 100, 324-346. doi: https://doi.org/10.1016/j.enconman.2015.04.071
- 69. Wu, Y., Zhang, X., Xu, X., Lin, X. ve Liu, L. (2020) A review on the effect of external fields on solidification, melting and heat transfer enhancement of phase change materials. Journal of Energy Storage, 31, 101567. doi: https://doi.org/10.1016/j.est.2020.101567
- 70. Yadav, A., Verma, A., Kumar, A., Dashmana, H., Kumar, A., Bhatnagar, P. K., & Jain, V. K. (2021). Recent Advances on Enhanced Thermal Conduction in Phase Change Materials using Carbon Nanomaterials. Journal of Energy Storage, 43, 103173. doi: https://doi.org/10.1016/j.est.2021.103173
- 71. Zhang, Z. ve Fang, X. (2006) Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energy Conversion and Management, 47(3), 303-310. doi: https://doi.org/10.1016/j.enconman.2005.03.004
- 72. Zou, D., Ma, X., Liu, X., Zheng, P., & Hu, Y. (2018). Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery. International Journal of Heat and Mass Transfer, 120, 33-41. doi: doi.org/10.1016/j.ijheatmasstransfer.2017.12.024