Research Article
BibTex RIS Cite

KARBONDİOKSİT TUTUCU OLARAK KULLANILAN KARBON NANOTÜPLER İÇİN EN UYGUN MODİFİKASYON TÜRÜNÜN BELİRLENMESİ

Year 2023, Volume: 28 Issue: 1, 153 - 162, 30.04.2023
https://doi.org/10.17482/uumfd.1140090

Abstract

İklim değişikliğinin en önemli sebeplerinden birisi olan karbondioksit (CO2) emisyonlarının birincil kaynağı, enerji üretiminde kullanılan fosil yakıtlardır. Yanma sonrası oluşan CO2 emisyonlarını azaltmak için, adsorpsiyon prosesinin ve bu proseste özellikle karbon bazlı adsorbanların kullanımının oldukça etkili olduğu kanıtlanmıştır. Bunlardan birisi olan karbon nanotüplerin, adsorpsiyon kapasitesini artırmak için farklı modifikasyonları kullanılmaktadır. Ancak, en uygun modifikasyon türüne karar verirken sadece adsorpsiyon kapasitesi yeterli olmamakta, pek çok teknik kriterin yanında maliyetler de gündeme gelmektedir. Bu nedenle bu çalışmada, çok duvarlı karbon nanotüplerin polietilenimin (PEI), tetraetilenpentamin (TEPA), 3-aminopropiltrieoksilan (APTS) ve pürin takviyeli PEI olmak üzere dört farklı modifikasyonu ele alınmış ve en uygun modifikasyon türünü belirlemek için de çok kriterli karar verme (MCDM) teknikleri kullanılmıştır. Ele alınan kriterler (ön işlem maliyeti, modifikasyon malzemesi maliyeti, enerji ihtiyacı, adsorpsiyon kapasitesi, toplam döngü, adsorpsiyon kapasitesinin düşmesi, desorpsiyon sıcaklığı ve desorpsiyon süresi) SMART (Simple Multi-Attribute Rating Technique) ve CRITIC (Criteria Importance Through Intercritera Correlation) yöntemleri ile ağırlıklandırılmıştır. Modifikasyon alternatifleri, her iki yöntemden elde edilen ağırlıklandırma sonuçlarıyla COPRAS (Complex Proportional Assessment) yöntemi kullanılarak karşılaştırılmıştır. Çalışma sonucunda, dört farklı karbon nanotüp modifikasyonu içinden en uygun seçeneğin pürin takviyeli PEI olduğu belirlenmiştir.

References

  • 1. Ahmed, R., Liu, G., Yousaf, B., Abbas, Q., Ullah, H. ve Ali, M.U. (2020) Recent advances in carbon-based renewable adsorbent for selective carbon dioxide capture and separation-A review, Journal of Cleaner Production, 242, 118409. doi: https://doi.org/10.1016/j.jclepro.2019.118409
  • 2. Babu, D.J., Bruns, M. ve Schneider, J.J.(2017) Unprecedented CO2 uptake in vertically aligned carbon nanotubes, Carbon, 125, 327-335. doi: https://doi.org/10.1016/j.carbon.2017.09.047
  • 3. Bahamon, D. ve Vega, L.F. (2016) Systematic evaluation of materials for post combustion CO2 capture in a Temperature Swing Adsorption process, Chemical Engineering Journal, 284, 438-447. doi: https://doi.org/10.1016/j.cej.2015.08.098
  • 4. Deng, M. ve Park, H.G. (2019) Spacer-assisted amine-coiled carbon nanotubes for CO2 capture, Langmuir, 35(13), 4453-4459. doi: https://doi.org/10.1021/acs.langmuir.8b03980
  • 5. Du, Y., Du, Z., Zou, W., Li, H., Mi, J. ve Zhang, C. (2013) Carbon dioxide adsorbent based on rich amines loaded nano-silica, Journal of Colloid and Interface Science, 409, 123. doi: https://doi.org/10.1016/j.jcis.2013.07.071
  • 6. Hu, X.E., Liu, L., Luo, X., Xiao, G., Shiko, E., Zhang, R., Fan, X., Zhou, Y., Liu. Y., Zeng, Z. ve Li, C. (2020) A review of N-functionalized solid adsorbents for post-combustion CO2 capture, Applied Energy, 260, 114244. doi: https://doi.org/10.1016/j.apenergy.2019.114244
  • 7. Hussin, F. ve Aroua, M.K. (2020) Recent trends in the development of adsorption technologies for carbon dioxide capture: A brief literature and patent reviews (2014–2018), Journal of Cleaner Production, 253, 119707. doi: https://doi.org/10.1016/j.jclepro.2019.119707
  • 8. Irani, M., Jacobson, A.T., Gasem, K.A. ve Fan, M. (2017) Modified carbon nanotubes/tetraethylenepentamine for CO2 capture, Fuel, 206, 10-18. doi: https://doi.org/10.1016/j.fuel.2017.05.087
  • 9. Khraisheh, M., Mukherjee, S., Kumar, A., Al Momani, F., Walker, G. ve Zaworotko, M.J. (2020) An overview on trace CO2 removal by advanced physisorbent materials, Journal of Environmental Management, 255, 109874. doi: https://doi.org/10.1016/j.jenvman.2019.109874
  • 10. Kısa, A.C.G. (2021) TR83 bölgesinde yenilenebilir enerji kaynaklarının CRITIC tabanlı gri ilişkisel analiz yaklaşımı ile değerlendirilmesi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(4), 542-548. doi: 10.5505/pajes.2021.99389
  • 11. Lee, M.S., Lee, S.Y. ve Park, S.J. (2015) Preparation and characterization of multi-walled carbon nanotubes impregnated with polyethyleneimine for carbon dioxide capture, International Journal of Hydrogen Energy, 40(8), 3415-3421. doi: https://doi.org/10.1016/j.ijhydene.2014.12.104
  • 12. Lin, Y., Yan, Q.J., Kong, C.L. ve Chen, L. (2013) Polyethyleneimine Incorporated Metalorganic Frameworks Adsorbent for Highly Selective CO2 Capture, Scientific Reports, 3, 1895. doi: 10.1038/srep01859
  • 13. Modak, A, ve Jana, S. (2019) Advancement in porous adsorbents for post-combustion CO2 capture, Microporous and Mesoporous Materials, 276, 107-132. doi: https://doi.org/10.1016/j.micromeso.2018.09.018
  • 14. Odu, G.O. (2019) Weighting Methods for Multi-Criteria Decision Making Technique, Journal of Applied Science and Environmental Management, 23(8), 1449-1457. doi: 10.4314/jasem.v23i8.7
  • 15. Oschatz, M. ve Antonietti M. (2018) A search for selectivity to enable CO2 capture with porous adsorbents, Energy & Environmental Science, 11(1), 57-70. doi: 10.1039/C7EE02110K
  • 16. Sanz, R., Calleja, G., Arencibia, A. ve Sanz-Pérez, E.S. (2013) Development of High Efficiency Adsorbents for CO2 Capture based on a Double-Functionalization Method of Grafting and Impregnation, Journal of Material Chemistry A, 1, 1956−1962. doi: https://doi.org/10.1039/C2TA01343F
  • 17. Singh, G., Lee, J., Karakoti, A., Bahadur, R., Yi, J., Zhao, D., AlBahiyl, K. ve Vinu, A. (2020) Emerging trends in porous materials for CO2 capture and conversion, Chemical Society Reviews, 49(13), 4360-4404. doi: https://doi.org/10.1039/D0CS00075B
  • 18. Su, F., Lu, C. ve Chen, H.S. (2011) Adsorption, desorption, and thermodynamic studies of CO2 with high-amine-loaded multiwalled carbon nanotubes, Langmuir, 27(13), 8090-8098. doi: https://doi.org/10.1021/la201745y
  • 19. Tian, Z., Huang, J., Zhang, X., Shao, G., He, Q., Cao, S. ve Yuan, S. (2018) Ultramicroporous N-doped carbon from polycondensed framework precursor for CO2 adsorption, Microporous Mesoporous Materials, 257, 19-26. doi: https://doi.org/10.1016/j.micromeso.2017.08.012
  • 20. Ticaret Bakanlığı. “Yeşil Mütabakat Eylem Planı 2021”. https://ticaret.gov.tr/haberler/yesilmutabakat- eylem-plani-yayimlandi (Erişim Tarihi: 01.10.2021).
  • 21. Tome, L.C. ve Marrucho, I.M. (2016) Ionic liquid-based materials: A platform to design engineered CO2 separation membranes, Chemical Society Reviews, 45(10), 2785-2824.
  • 22. Yay, B. ve Gizli, N. (2019) A review on silica aerogels for CO2 capture applications. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(7), 907-913. doi: https://doi.org/10.1039/C5CS00510H
  • 23. Zou, L., Sun, Y., Che, S., Yang, X., Wang, X., Bosch, M., Wang, Q., Li, H., Smith, M., Yuan, S., Perry, Z. ve Zhou, H.C. (2017) Porous organic polymers for post‐combustion carbon capture, Advanced Materials, 29(37), 1700229. doi: https://doi.org/10.1002/adma.201700229

Determination Of the Most Appropriate Modification Type for Carbon Nanotubes Used for Carbon Dioxide Capture

Year 2023, Volume: 28 Issue: 1, 153 - 162, 30.04.2023
https://doi.org/10.17482/uumfd.1140090

Abstract

The primary source of carbon dioxide (CO2) emissions, one of the most important causes of climate change, is fossil fuels used in energy production. Adsorption and especially the use of carbonbased adsorbents have proven to be very effective in reducing CO2 emissions after combustion. Different modifications of carbon nanotubes used for this purpose are used to increase the adsorption capacity. However, when deciding on the most suitable modification type, the adsorption capacity alone is not sufficient, besides many technical criteria, costs also become an issue. Therefore, in this study, four different modifications of multi-walled carbon nanotubes such as polyethyleneimine (PEI), tetraethylenepentamine (TEPA), 3-aminopropyltrieoxylane (APTS), and purine-enhanced PEI were discussed and multi-criteria decision making (MCDM) techniques were used to determine the most appropriate modification type. Considered criteria (pretreatment cost, modification material cost, energy requirement, adsorption capacity, total cycle, decrease in adsorption capacity, desorption temperature, and desorption time) were weighted with SMART (Simple Multi-Attribute Rating Technique) and CRITIC (Criteria Importance Through Intercriteria Correlation) methods. The modification alternatives were compared with the weighting results obtained from both methods using the COPRAS (Complex Proportional Assessment) method. As a result of the study, it was determined that the most suitable option among four different carbon nanotube modifications was PEI supplemented with purine.

References

  • 1. Ahmed, R., Liu, G., Yousaf, B., Abbas, Q., Ullah, H. ve Ali, M.U. (2020) Recent advances in carbon-based renewable adsorbent for selective carbon dioxide capture and separation-A review, Journal of Cleaner Production, 242, 118409. doi: https://doi.org/10.1016/j.jclepro.2019.118409
  • 2. Babu, D.J., Bruns, M. ve Schneider, J.J.(2017) Unprecedented CO2 uptake in vertically aligned carbon nanotubes, Carbon, 125, 327-335. doi: https://doi.org/10.1016/j.carbon.2017.09.047
  • 3. Bahamon, D. ve Vega, L.F. (2016) Systematic evaluation of materials for post combustion CO2 capture in a Temperature Swing Adsorption process, Chemical Engineering Journal, 284, 438-447. doi: https://doi.org/10.1016/j.cej.2015.08.098
  • 4. Deng, M. ve Park, H.G. (2019) Spacer-assisted amine-coiled carbon nanotubes for CO2 capture, Langmuir, 35(13), 4453-4459. doi: https://doi.org/10.1021/acs.langmuir.8b03980
  • 5. Du, Y., Du, Z., Zou, W., Li, H., Mi, J. ve Zhang, C. (2013) Carbon dioxide adsorbent based on rich amines loaded nano-silica, Journal of Colloid and Interface Science, 409, 123. doi: https://doi.org/10.1016/j.jcis.2013.07.071
  • 6. Hu, X.E., Liu, L., Luo, X., Xiao, G., Shiko, E., Zhang, R., Fan, X., Zhou, Y., Liu. Y., Zeng, Z. ve Li, C. (2020) A review of N-functionalized solid adsorbents for post-combustion CO2 capture, Applied Energy, 260, 114244. doi: https://doi.org/10.1016/j.apenergy.2019.114244
  • 7. Hussin, F. ve Aroua, M.K. (2020) Recent trends in the development of adsorption technologies for carbon dioxide capture: A brief literature and patent reviews (2014–2018), Journal of Cleaner Production, 253, 119707. doi: https://doi.org/10.1016/j.jclepro.2019.119707
  • 8. Irani, M., Jacobson, A.T., Gasem, K.A. ve Fan, M. (2017) Modified carbon nanotubes/tetraethylenepentamine for CO2 capture, Fuel, 206, 10-18. doi: https://doi.org/10.1016/j.fuel.2017.05.087
  • 9. Khraisheh, M., Mukherjee, S., Kumar, A., Al Momani, F., Walker, G. ve Zaworotko, M.J. (2020) An overview on trace CO2 removal by advanced physisorbent materials, Journal of Environmental Management, 255, 109874. doi: https://doi.org/10.1016/j.jenvman.2019.109874
  • 10. Kısa, A.C.G. (2021) TR83 bölgesinde yenilenebilir enerji kaynaklarının CRITIC tabanlı gri ilişkisel analiz yaklaşımı ile değerlendirilmesi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(4), 542-548. doi: 10.5505/pajes.2021.99389
  • 11. Lee, M.S., Lee, S.Y. ve Park, S.J. (2015) Preparation and characterization of multi-walled carbon nanotubes impregnated with polyethyleneimine for carbon dioxide capture, International Journal of Hydrogen Energy, 40(8), 3415-3421. doi: https://doi.org/10.1016/j.ijhydene.2014.12.104
  • 12. Lin, Y., Yan, Q.J., Kong, C.L. ve Chen, L. (2013) Polyethyleneimine Incorporated Metalorganic Frameworks Adsorbent for Highly Selective CO2 Capture, Scientific Reports, 3, 1895. doi: 10.1038/srep01859
  • 13. Modak, A, ve Jana, S. (2019) Advancement in porous adsorbents for post-combustion CO2 capture, Microporous and Mesoporous Materials, 276, 107-132. doi: https://doi.org/10.1016/j.micromeso.2018.09.018
  • 14. Odu, G.O. (2019) Weighting Methods for Multi-Criteria Decision Making Technique, Journal of Applied Science and Environmental Management, 23(8), 1449-1457. doi: 10.4314/jasem.v23i8.7
  • 15. Oschatz, M. ve Antonietti M. (2018) A search for selectivity to enable CO2 capture with porous adsorbents, Energy & Environmental Science, 11(1), 57-70. doi: 10.1039/C7EE02110K
  • 16. Sanz, R., Calleja, G., Arencibia, A. ve Sanz-Pérez, E.S. (2013) Development of High Efficiency Adsorbents for CO2 Capture based on a Double-Functionalization Method of Grafting and Impregnation, Journal of Material Chemistry A, 1, 1956−1962. doi: https://doi.org/10.1039/C2TA01343F
  • 17. Singh, G., Lee, J., Karakoti, A., Bahadur, R., Yi, J., Zhao, D., AlBahiyl, K. ve Vinu, A. (2020) Emerging trends in porous materials for CO2 capture and conversion, Chemical Society Reviews, 49(13), 4360-4404. doi: https://doi.org/10.1039/D0CS00075B
  • 18. Su, F., Lu, C. ve Chen, H.S. (2011) Adsorption, desorption, and thermodynamic studies of CO2 with high-amine-loaded multiwalled carbon nanotubes, Langmuir, 27(13), 8090-8098. doi: https://doi.org/10.1021/la201745y
  • 19. Tian, Z., Huang, J., Zhang, X., Shao, G., He, Q., Cao, S. ve Yuan, S. (2018) Ultramicroporous N-doped carbon from polycondensed framework precursor for CO2 adsorption, Microporous Mesoporous Materials, 257, 19-26. doi: https://doi.org/10.1016/j.micromeso.2017.08.012
  • 20. Ticaret Bakanlığı. “Yeşil Mütabakat Eylem Planı 2021”. https://ticaret.gov.tr/haberler/yesilmutabakat- eylem-plani-yayimlandi (Erişim Tarihi: 01.10.2021).
  • 21. Tome, L.C. ve Marrucho, I.M. (2016) Ionic liquid-based materials: A platform to design engineered CO2 separation membranes, Chemical Society Reviews, 45(10), 2785-2824.
  • 22. Yay, B. ve Gizli, N. (2019) A review on silica aerogels for CO2 capture applications. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(7), 907-913. doi: https://doi.org/10.1039/C5CS00510H
  • 23. Zou, L., Sun, Y., Che, S., Yang, X., Wang, X., Bosch, M., Wang, Q., Li, H., Smith, M., Yuan, S., Perry, Z. ve Zhou, H.C. (2017) Porous organic polymers for post‐combustion carbon capture, Advanced Materials, 29(37), 1700229. doi: https://doi.org/10.1002/adma.201700229
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Ece Yapıcı 0000-0002-7502-4862

Hasret Akgün 0000-0002-2232-0713

Aysun Özkan 0000-0003-1036-7570

Zerrin Günkaya 0000-0002-7553-9129

Mufide Banar 0000-0003-2795-6208

Publication Date April 30, 2023
Submission Date July 4, 2022
Acceptance Date March 13, 2023
Published in Issue Year 2023 Volume: 28 Issue: 1

Cite

APA Yapıcı, E., Akgün, H., Özkan, A., Günkaya, Z., et al. (2023). KARBONDİOKSİT TUTUCU OLARAK KULLANILAN KARBON NANOTÜPLER İÇİN EN UYGUN MODİFİKASYON TÜRÜNÜN BELİRLENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(1), 153-162. https://doi.org/10.17482/uumfd.1140090
AMA Yapıcı E, Akgün H, Özkan A, Günkaya Z, Banar M. KARBONDİOKSİT TUTUCU OLARAK KULLANILAN KARBON NANOTÜPLER İÇİN EN UYGUN MODİFİKASYON TÜRÜNÜN BELİRLENMESİ. UUJFE. April 2023;28(1):153-162. doi:10.17482/uumfd.1140090
Chicago Yapıcı, Ece, Hasret Akgün, Aysun Özkan, Zerrin Günkaya, and Mufide Banar. “KARBONDİOKSİT TUTUCU OLARAK KULLANILAN KARBON NANOTÜPLER İÇİN EN UYGUN MODİFİKASYON TÜRÜNÜN BELİRLENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28, no. 1 (April 2023): 153-62. https://doi.org/10.17482/uumfd.1140090.
EndNote Yapıcı E, Akgün H, Özkan A, Günkaya Z, Banar M (April 1, 2023) KARBONDİOKSİT TUTUCU OLARAK KULLANILAN KARBON NANOTÜPLER İÇİN EN UYGUN MODİFİKASYON TÜRÜNÜN BELİRLENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28 1 153–162.
IEEE E. Yapıcı, H. Akgün, A. Özkan, Z. Günkaya, and M. Banar, “KARBONDİOKSİT TUTUCU OLARAK KULLANILAN KARBON NANOTÜPLER İÇİN EN UYGUN MODİFİKASYON TÜRÜNÜN BELİRLENMESİ”, UUJFE, vol. 28, no. 1, pp. 153–162, 2023, doi: 10.17482/uumfd.1140090.
ISNAD Yapıcı, Ece et al. “KARBONDİOKSİT TUTUCU OLARAK KULLANILAN KARBON NANOTÜPLER İÇİN EN UYGUN MODİFİKASYON TÜRÜNÜN BELİRLENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28/1 (April 2023), 153-162. https://doi.org/10.17482/uumfd.1140090.
JAMA Yapıcı E, Akgün H, Özkan A, Günkaya Z, Banar M. KARBONDİOKSİT TUTUCU OLARAK KULLANILAN KARBON NANOTÜPLER İÇİN EN UYGUN MODİFİKASYON TÜRÜNÜN BELİRLENMESİ. UUJFE. 2023;28:153–162.
MLA Yapıcı, Ece et al. “KARBONDİOKSİT TUTUCU OLARAK KULLANILAN KARBON NANOTÜPLER İÇİN EN UYGUN MODİFİKASYON TÜRÜNÜN BELİRLENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 28, no. 1, 2023, pp. 153-62, doi:10.17482/uumfd.1140090.
Vancouver Yapıcı E, Akgün H, Özkan A, Günkaya Z, Banar M. KARBONDİOKSİT TUTUCU OLARAK KULLANILAN KARBON NANOTÜPLER İÇİN EN UYGUN MODİFİKASYON TÜRÜNÜN BELİRLENMESİ. UUJFE. 2023;28(1):153-62.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.