Alzheimer's disease is a complex brain disease and is also the most common form of dementia that leads to impaired social and intellectual abilities. The disease only manifests itself with a simple forgetfulness, as the disease progresses, the patient forgets the recent events, cannot recognize his family members and close environment, and becomes in need of care in the last stage. Early detection is therefore crucial for medical intervention to prevent brain injury and prolong everyday functioning. In this study is aimed to detection of Alzheimer’s disease from EEG signals using the multitaper and ensemble learning methods. The dataset comprises of 24 healthy people and 24 Alzheimer's patients' EEG signals. 49 features were extracted by calculating the power spectral density (PSD) of the frequencies of the EEG signals between 1-49 Hz using the multitaper method. Then, the performances of AdaboostM1, Total Boost, Gentle Boost, Logit Boost, Robust Boost, and Bagging ensemble learning algorithms were compared. As a result of experiments, the Logit Boost algorithm has the highest performance. The algorithm has achieved a promising performance of 93.04% accuracy, 93.09% f1-score, 92.75% sensitivity, 93.43% precision, and 93.33% specificity.
Alzheimer hastalığı karmaşık bir beyin hastalığıdır, aynı zamanda sosyal ve entelektüel yeteneklerde bozulmaya yol açan demansın en yaygın şeklidir. Hastalık sadece basit bir unutkanlıkla kendini gösterir, hastalık ilerledikçe hasta son olayları unutur, ailesini ve yakın çevresini tanıyamaz, son aşamada bakıma muhtaç hale gelir. Bu nedenle erken teşhis, beyin hasarını azaltmak ve günlük işleyişi daha uzun süre korumak için tıbbi müdahalede önemli bir rol oynamaktadır. Bu çalışmada, multitaper ve topluluk öğrenme yöntemleri kullanılarak, EEG sinyallerinden Alzheimer hastalığının tespitinin yapılması amaçlanmıştır. Veriseti 24 sağlıklı bireyden ve 24 Alzheimer hastasından kaydedilen EEG sinyallerinden oluşmaktadır. EEG sinyallerinin 1-49 Hz arasındaki frekanslarının güç spektral yoğunluğu (PSD) multitaper yöntemi kullanılarak hesaplanarak, 49 öznitelik çıkarıldı. Daha sonra AdaboostM1, Total Boost, Gentle Boost, Logit Boost, Robust Boost ve Bagging topluluk öğrenme algoritmalarının performansları karşılaştırıldı. Deneyler sonucunda, Logit Boost algoritması en yüksek performansa sahipti. Algoritma, %93,04 doğruluk, %93,09 f1-skor, %92,75 duyarlılık, %93,43 kesinlik ve %93,33 özgüllük ile umut verici bir performans elde etti.
Primary Language | English |
---|---|
Subjects | Artificial Intelligence |
Journal Section | Research Articles |
Authors | |
Publication Date | April 30, 2023 |
Submission Date | July 8, 2022 |
Acceptance Date | February 28, 2023 |
Published in Issue | Year 2023 Volume: 28 Issue: 1 |
Announcements:
30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.