Research Article
BibTex RIS Cite

Kavitasyon İşleminin Denim Kumaşların Termal Konfor Özelliklerine Etkisi

Year 2023, Volume: 28 Issue: 1, 77 - 88, 30.04.2023
https://doi.org/10.17482/uumfd.1195270

Abstract

Ultrasonik işlem yada kavitasyon, kumaş yüzeyine zarar verilmeden kirlerin uzaklaştırılmasını sağlayan bir proses olarak tanımlanmaktadır. Literatürde denim kumaşların ultrasonik yıkama işlemleri ile ilgili çalışmalar bulunmaktadır ancak kavitasyon işleminin denim kumaşların ısıl konforuna etkisi ile ilgili herhangi bir çalışma bulunmamaktadır. Bu amaçla denim kumaşlara ultrasonik homojenizatör test cihazında 15, 30 ve 45 dakika olmak üzere üç farklı zamanda ve 8khz ve 16khz olmak üzere iki farklı frekansta işlem uygulanmıştır. Uygulanan kavitasyon işleminin hava geçirgenliği, ısıl iletkenlik ve ısıl soğurma değerlerini azalttığı gözlemlenmiştir. Diğer yandan kavitasyon işlemi yüzeydeki kir, yağ gibi maddeleri temizleyerek su buharı geçirgenlik değerini artırmıştır. Uygulanan kavitasyon işleminin terin dış yüzeye hızlı bir şekilde atılmasını sağlayarak konfor sağladığı, kumaştan daha az ısı iletimi sağladığı ve kavitasyon işleminden sonra denim kumaşın daha sıcak hissedildiği sonucuna varılabilir.

References

  • 1. Alambeta Measuring Device: Users’ Guide Version 2.3, Sensora Instrument Liberec, Company Brochure.
  • 2. ASTM Test Method D 1777. Standard Test Method for Thickness of Textile Materials.
  • 3. Arikan, A., Karadag, T., Avci, M. E., Karlik, O. (2018) The Use of Ultrasonic Washing Technology in Denim Fabrics, International Journal of Scientific and Technological Research, 4, 10, 455-461.
  • 4. Bandelin HD2200 Homogenizator Manual.
  • 5. Ciukas, R., Abramavičiūtė J. (2010) Investigation of the Air Permeability of Socks Knitted from Yarns with Peculiar Properties, FIBRES & TEXTILES in Eastern Europe, 18, 1, 84-88.
  • 6. EN ISO 9237. Determination of the Permeability of Fabrics to Air.
  • 7. Eyüpoğlu, Ş., Merdan, N. (2020) Investigation of the Effect of Enzymatic Treatment on Some Physical and Chemical Properties of Cotton Fabric, European Journal of Science and Technology, 18, 885-894. doi: https://doi.org/10.31590/ejosat.672653
  • 8. Fraj, A.B., Jaouachi, B. (2021) Effects of ozone treatment on denim garment properties, Coloration Technology, 137, 678-688. doi: https://doi.org/10.1111/cote.12568
  • 9. Frydrych I, Dziworska G, Bilska J. (2002) Comparative Analysis of the Thermal Insulation Properties of Fabrics Made of Natural and Man-Made Cellulose Fibres, FIBRES & TEXTILES in Eastern Europe, October/December, 40-44.
  • 10. Havlova, M. (2020) Air permeability, water vapour permeability and selected structural parameters of woven fabrics, Fibres and Textiles, 1, 12-18.
  • 11. Ivanovska , A., Reljic , M., Kostic , M., Asanovic, K., Mangovska, B. (2021) Air Permeability and Water Vapor Resistance of Differently Finished Cotton and Cotton/Elastane Single Jersey Knitted Fabrics, Journal of Natural Fibers, 1-13. doi: https://doi.org/10.1080/15440478.2021.1875383
  • 12. Khajavi, R., Novinrad, B., Kiumarsi, A. (2007) The effect of ultrasonic on the denim fabric worn out process, Pakistan journal of biological sciences: PJBS, 10(4), 645-648. doi: https://doi.org/10.3923/pjbs.2007.645.648
  • 13. Lee S., Obendorf S.K. (2012) Statistical modelling of water vapour transport through woven fabrics, Textile Research Journal, 82(3), 211-219. doi: https://doi.org/10.1177/0040517511433145
  • 14. Mason, T. J. (1988). Theory. Applications and uses of ultrasound in chemistry. Sonochemistry. doi: https://doi.org/ 10.1016/0041-624X(89)90051-6
  • 15. Morton, W.E, Hearle, J.W.S. (2008). Physical Properties of Textile Fibres, Woodhead Publishing, England.
  • 16. Muthu, S. Sustainability in Denim, Woodhead Publishing, USA, 2017
  • 17. Oğulata, R.T. (2006) Air Permeability of Woven Fabrics, JTATM, 5, 2, 1-10.
  • 18. Polipowski M., Wiecek P., Wiecek B., Pinar A. (2017) Analysis of the effect of chanel parameters between filaments and single fabric parameters on air permeability, water vapour resistance and thermal resistance, Fibres Textiles in Eastern Europe, 25(5), 79-86. doi: https://doi.org/ 10.5604/01.3001.0010.4632
  • 19. Sun, D., Guo, Q., Liu, X. (2010) Investigation into dyeing acceleration efficiency of ultrasound energy, Ultrasonics, 50, 4–5, 441-446. doi: https://doi.org/10.1016/j.ultras.2009.07.002
  • 20. Taştan Özkan, E., Kaplangiray B. (2020) Effect of Loop Length On Thermal Comfort Properties of Mesh Knitted Fabrics, Textile and Engineer, 27 (120): 243-251. doi: 10.7216/ 1300759920202712004.
  • 21. Ticha, M.B., Meksi, N. (2021) Exploitation of Ultrasonic Waves to Develop and Model a Sustainable Process for Washing Denim Fabrics, Journal of Natural Fibers, 1-18. doi: https://doi.org/10.1080/15440478.2021.2002758
  • 22. TS EN ISO 11092, 2014. Textile-Determination of Physiological Properties-Measurement of Thermal Resistance and Resistance to Water Vapor in Stable Conditions (hot plate test protected against mist), Turkish Standards Institute, Ankara.
  • 23. Uzun, M. (2013) Effect of Ultrasonic Laundering on Thermophysiological Properties of Knitted Fabrics, Fibers and Polymers, 14, 10, 1714-1721. doi: https://doi.org/10.1007/s12221-013-1714-y
  • 24. Uzun, M. (2013) Ultrasonic Washing Effect on Thermo Physiological Properties of Natural Based Fabrics, Journal of Engineered Fibers and Fabrics, 2013, 8,1, 39-51. doi: https://doi.org/10.1177/155892501300800105
  • 25. Yıldırım, N., Üstündağ, S., Örtlek, H.G. (2014) The Effects of Washing Treatments on Physical Properties of Denim Fabrics, Textile and Engineer, 21, 95, 16-29. doi:10.7216/130075992014219503.

EFFECT OF CAVITATION PROCESS ON THERMAL COMFORT PROPERTIES OF DENIM FABRICS

Year 2023, Volume: 28 Issue: 1, 77 - 88, 30.04.2023
https://doi.org/10.17482/uumfd.1195270

Abstract

The process, which is defined as ultrasonic treatment or cavitation, ensures that the dirt is removed from the surfaces without damaging the fabric surface. There are studies on the ultrasonic washing processes of denim fabrics in the literature, but there is no study on the effect of the cavitation process on the thermal comfort of denim fabrics. For this purpose, denim fabrics were treated at three different times, 15, 30, and 45 minutes, and at two different frequencies 8khz and 16khz in the ultrasonic homogenizer test device. It was observed that the applied cavitation process reduces the air permeability, thermal conductivity, and thermal absorptivity values. On the other hand, the cavitation process increased the water vapour permeability value by cleaning the materials such as dirt and oil on the surface. It can be concluded that the applied cavitation process provides comfort by enabling quick throwing of the sweat to the outer surface, provides less heat conduction from the fabric, and the denim fabric felt warmer after the cavitation process.

References

  • 1. Alambeta Measuring Device: Users’ Guide Version 2.3, Sensora Instrument Liberec, Company Brochure.
  • 2. ASTM Test Method D 1777. Standard Test Method for Thickness of Textile Materials.
  • 3. Arikan, A., Karadag, T., Avci, M. E., Karlik, O. (2018) The Use of Ultrasonic Washing Technology in Denim Fabrics, International Journal of Scientific and Technological Research, 4, 10, 455-461.
  • 4. Bandelin HD2200 Homogenizator Manual.
  • 5. Ciukas, R., Abramavičiūtė J. (2010) Investigation of the Air Permeability of Socks Knitted from Yarns with Peculiar Properties, FIBRES & TEXTILES in Eastern Europe, 18, 1, 84-88.
  • 6. EN ISO 9237. Determination of the Permeability of Fabrics to Air.
  • 7. Eyüpoğlu, Ş., Merdan, N. (2020) Investigation of the Effect of Enzymatic Treatment on Some Physical and Chemical Properties of Cotton Fabric, European Journal of Science and Technology, 18, 885-894. doi: https://doi.org/10.31590/ejosat.672653
  • 8. Fraj, A.B., Jaouachi, B. (2021) Effects of ozone treatment on denim garment properties, Coloration Technology, 137, 678-688. doi: https://doi.org/10.1111/cote.12568
  • 9. Frydrych I, Dziworska G, Bilska J. (2002) Comparative Analysis of the Thermal Insulation Properties of Fabrics Made of Natural and Man-Made Cellulose Fibres, FIBRES & TEXTILES in Eastern Europe, October/December, 40-44.
  • 10. Havlova, M. (2020) Air permeability, water vapour permeability and selected structural parameters of woven fabrics, Fibres and Textiles, 1, 12-18.
  • 11. Ivanovska , A., Reljic , M., Kostic , M., Asanovic, K., Mangovska, B. (2021) Air Permeability and Water Vapor Resistance of Differently Finished Cotton and Cotton/Elastane Single Jersey Knitted Fabrics, Journal of Natural Fibers, 1-13. doi: https://doi.org/10.1080/15440478.2021.1875383
  • 12. Khajavi, R., Novinrad, B., Kiumarsi, A. (2007) The effect of ultrasonic on the denim fabric worn out process, Pakistan journal of biological sciences: PJBS, 10(4), 645-648. doi: https://doi.org/10.3923/pjbs.2007.645.648
  • 13. Lee S., Obendorf S.K. (2012) Statistical modelling of water vapour transport through woven fabrics, Textile Research Journal, 82(3), 211-219. doi: https://doi.org/10.1177/0040517511433145
  • 14. Mason, T. J. (1988). Theory. Applications and uses of ultrasound in chemistry. Sonochemistry. doi: https://doi.org/ 10.1016/0041-624X(89)90051-6
  • 15. Morton, W.E, Hearle, J.W.S. (2008). Physical Properties of Textile Fibres, Woodhead Publishing, England.
  • 16. Muthu, S. Sustainability in Denim, Woodhead Publishing, USA, 2017
  • 17. Oğulata, R.T. (2006) Air Permeability of Woven Fabrics, JTATM, 5, 2, 1-10.
  • 18. Polipowski M., Wiecek P., Wiecek B., Pinar A. (2017) Analysis of the effect of chanel parameters between filaments and single fabric parameters on air permeability, water vapour resistance and thermal resistance, Fibres Textiles in Eastern Europe, 25(5), 79-86. doi: https://doi.org/ 10.5604/01.3001.0010.4632
  • 19. Sun, D., Guo, Q., Liu, X. (2010) Investigation into dyeing acceleration efficiency of ultrasound energy, Ultrasonics, 50, 4–5, 441-446. doi: https://doi.org/10.1016/j.ultras.2009.07.002
  • 20. Taştan Özkan, E., Kaplangiray B. (2020) Effect of Loop Length On Thermal Comfort Properties of Mesh Knitted Fabrics, Textile and Engineer, 27 (120): 243-251. doi: 10.7216/ 1300759920202712004.
  • 21. Ticha, M.B., Meksi, N. (2021) Exploitation of Ultrasonic Waves to Develop and Model a Sustainable Process for Washing Denim Fabrics, Journal of Natural Fibers, 1-18. doi: https://doi.org/10.1080/15440478.2021.2002758
  • 22. TS EN ISO 11092, 2014. Textile-Determination of Physiological Properties-Measurement of Thermal Resistance and Resistance to Water Vapor in Stable Conditions (hot plate test protected against mist), Turkish Standards Institute, Ankara.
  • 23. Uzun, M. (2013) Effect of Ultrasonic Laundering on Thermophysiological Properties of Knitted Fabrics, Fibers and Polymers, 14, 10, 1714-1721. doi: https://doi.org/10.1007/s12221-013-1714-y
  • 24. Uzun, M. (2013) Ultrasonic Washing Effect on Thermo Physiological Properties of Natural Based Fabrics, Journal of Engineered Fibers and Fabrics, 2013, 8,1, 39-51. doi: https://doi.org/10.1177/155892501300800105
  • 25. Yıldırım, N., Üstündağ, S., Örtlek, H.G. (2014) The Effects of Washing Treatments on Physical Properties of Denim Fabrics, Textile and Engineer, 21, 95, 16-29. doi:10.7216/130075992014219503.
There are 25 citations in total.

Details

Primary Language English
Subjects Wearable Materials
Journal Section Research Articles
Authors

Esra Tastan 0000-0001-8950-6048

Binnaz Meriç Kaplangiray 0000-0002-1296-9092

Publication Date April 30, 2023
Submission Date October 27, 2022
Acceptance Date March 29, 2023
Published in Issue Year 2023 Volume: 28 Issue: 1

Cite

APA Tastan, E., & Meriç Kaplangiray, B. (2023). EFFECT OF CAVITATION PROCESS ON THERMAL COMFORT PROPERTIES OF DENIM FABRICS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(1), 77-88. https://doi.org/10.17482/uumfd.1195270
AMA Tastan E, Meriç Kaplangiray B. EFFECT OF CAVITATION PROCESS ON THERMAL COMFORT PROPERTIES OF DENIM FABRICS. UUJFE. April 2023;28(1):77-88. doi:10.17482/uumfd.1195270
Chicago Tastan, Esra, and Binnaz Meriç Kaplangiray. “EFFECT OF CAVITATION PROCESS ON THERMAL COMFORT PROPERTIES OF DENIM FABRICS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28, no. 1 (April 2023): 77-88. https://doi.org/10.17482/uumfd.1195270.
EndNote Tastan E, Meriç Kaplangiray B (April 1, 2023) EFFECT OF CAVITATION PROCESS ON THERMAL COMFORT PROPERTIES OF DENIM FABRICS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28 1 77–88.
IEEE E. Tastan and B. Meriç Kaplangiray, “EFFECT OF CAVITATION PROCESS ON THERMAL COMFORT PROPERTIES OF DENIM FABRICS”, UUJFE, vol. 28, no. 1, pp. 77–88, 2023, doi: 10.17482/uumfd.1195270.
ISNAD Tastan, Esra - Meriç Kaplangiray, Binnaz. “EFFECT OF CAVITATION PROCESS ON THERMAL COMFORT PROPERTIES OF DENIM FABRICS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28/1 (April 2023), 77-88. https://doi.org/10.17482/uumfd.1195270.
JAMA Tastan E, Meriç Kaplangiray B. EFFECT OF CAVITATION PROCESS ON THERMAL COMFORT PROPERTIES OF DENIM FABRICS. UUJFE. 2023;28:77–88.
MLA Tastan, Esra and Binnaz Meriç Kaplangiray. “EFFECT OF CAVITATION PROCESS ON THERMAL COMFORT PROPERTIES OF DENIM FABRICS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 28, no. 1, 2023, pp. 77-88, doi:10.17482/uumfd.1195270.
Vancouver Tastan E, Meriç Kaplangiray B. EFFECT OF CAVITATION PROCESS ON THERMAL COMFORT PROPERTIES OF DENIM FABRICS. UUJFE. 2023;28(1):77-88.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.