ÇELİK CÜRUFLARININ YOL DOLGU MALZEMESİ OLARAK KULLANIMINDA DRENAJ PERFORMANSININ SAYISAL ANALİZİ
Year 2023,
Volume: 28 Issue: 2, 537 - 550, 31.08.2023
Ayşegül Bayın Sarıahmetoğlu
,
Bilal Korkmaz
,
Mustafa Hatipoğlu
,
Aslı Yalçın Dayıoğlu
Abstract
Bu çalışmada, Amerikan Karayolları Müdürlüğü FHWA (Federal Highway Administration) tarafından geliştirilmiş bir yazılım olan DRIP (Drenage Requirement in Pavements) aracılığıyla, demir çelik endüstrisi atık malzemesi olarak ortaya çıkan çelik cüruflarının hidrolik iletkenliğinin drenaj süresi ve karayolu temel tabakasının kalınlığı üzerindeki etkisi incelenmiştir. Analizlerde üçü elektrik ark fırını (EAF), bir tanesi pota fırını (PF) cürufu olmak üzere dört farklı tesisten elde edilmiş çelik cürufu (SS), ayrıca drenaj performansının karşılaştırması ve kontrol amacıyla bir adet tabii zemin malzemesi kullanılmıştır. Drenaj yüzdesi (U), temel tabakası kalınlığı (H) ve hidrolik iletkenlik (k)’in drenaj süresi üzerindeki etkisi incelenmiş olup analizler sonucunda ince dane içeriğinin ve hidrolik iletkenliğin, özellikle drenaj süresini, drenajın %40’ı tamamlandıktan sonra önemli ölçüde etkilediği görülmüştür. Ayrıca, temel kalınlığının arttırılması, drenaj süresinde ciddi bir azalmaya neden olmaktadır. Kontrol malzemesi ile farklı tesislerden elde edilmiş çelik cürufu malzemesinin performansları karşılaştırıldığında, özellikle elektrik ark fırını çelik cürufu malzemelerinin drenaj özelliklerinin yol dolgusu malzemesi olarak kullanımında tatmin edici sonuçlar verdiği gözlemlenmiştir.
Supporting Institution
İstanbul Teknik Üniversitesi BAP Birimi
Project Number
MGA-2017-40933
References
- 1. Aiban, S. A. (2006). Utilization of Steel Slag Aggregate for Road Bases. Journal of Testing and Evaluation, ASTM, Vol 34, No. 1: 65–75. doi: 10.1520/JTE12683.
- 2. ASTM D1883-16 (2016). Standard test method for California Bearing Ratio (CBR) of laboratory-compacted soils. ASTM International, West Conshohocken.
- 3. ASTM-D1557-12 (2012). Standard Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort. ASTM, West Conshohocken, Pennsylvania, USA.
- 4. ASTM-D698 (2012) Standard practice for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, West Conshohocken, PA.
- 5. Aydilek, A., Haider, I., Cetin, A., Kaya, Z., ve Hatipoglu, M. (2015). Development of Design Guidelines for Proper Selection of Graded Aggregate Base in Maryland State Highways. MD-15-SP109B4G-1.
Maryland State Highway Administration, Baltimore, MD.
- 6. Barber, E. S., ve Sawyer, C. L. (1952). Highway subdrainage. Public Roads, 26(12), 251-268.
- 7. Casagrande, A., ve Shannon, W. L. (1952). Base course drainage for airport pavements. Transactions of the American Society of Civil Engineers, 117(1), 792-814. doi:10.1061/TACEAT.0006654
- 8. Dayioglu, A. Y., ve Aydilek, A. H. (2017). Evaluation of mitigation techniques for the expansive behavior of steel slag. In Proc., Geotechnical Frontiers, 276, 360-368. doi:10.1061/9780784480434.039
- 9. Dayioglu, A. Y., Aydilek, A. H., ve Cetin, B. (2014). Preventing swelling and decreasing alkalinity of steel slags used in highway infrastructures. Transportation Research Record, 2401(1), 52-57.
doi:10.3141/2401-06
- 10. Deniz, D., Tutumluer, E., ve Popovics, J.S. (2009). Expansive characteristics of reclaimed asphalt pavement (RAP) used as base materials. Illinois Center for Transportation, University of Illinois at
Urbana Champaign, FHWA-ICT-09-055.
- 11. Diotti, A., Cominoli, L., Galvin, A. P., Sorlini, S., ve Plizzari, G. (2021). Sustainable Recycling of Electric Arc Furnace Steel Slag as Aggregate in Concrete: Effects on the Environmental and Technical
Performance. Sustainability (Switzerland), 13(521). doi:10.3390/su13020521
- 12. Firat, S., Dikmen, S., Yilmaz, G. ve Khatib, J. M., (2020). Characteristics of engineered waste materials used for road subbase layers. KSCE J. Civ.Eng. 24 (9): 2643–2656. doi:10.1007/s12205-020-2242-0
- 13. Grubeša, I. N., ve Barišić, I. (2016). Environmental Impact Analysis of Heavy Metal Concentrations in Waste Materials Used in Road Construction. Elektronički Časopis Građevinskog Fakulteta Osijek,
13, 23–29. doi:10.13167/2016.13.3
- 14. Haider, I., Cetin, B., Kaya, Z., Hatipoglu, M., Cetin, A., ve Ahmet, H. A. (2014b). Evaluation of the Mechanical Performance of Recycled Concrete Aggregates Used in Highway Base Layers. Geo-Congress,
234 GSP, 3686–3694. doi:10.1061/9780784413272.357
- 15. Haider, I., Kaya, Z., Cetin, A., Hatipoglu, M., Cetin, B., ve Aydilek, A. H. (2014a). Drainage and mechanical behavior of highway base materials. Journal of Irrigation and Drainage Engineering, 140(6),
04014012. doi:10.1061/(ASCE)IR.1943-4774.0000708
- 16. Hatipoglu, M., Cetin, B., ve Aydilek, A. H. (2020). Effects of fines content on hydraulic and mechanical performance of unbound granular base aggregates. Journal of Transportation Engineering, Part
B: Pavements, 146(1), 04019036. doi:10.1061/JPEODX.0000141
- 17. Kamon, M., Nontananandh, S., ve Katsumi, T. (1993). Utilization of stainless-steel slag by cement hardening. Soils and Foundations, 33(3), 118-129. doi.org/10.3208/sandf1972.33.3_118
- 18. Karadağ, H., Fırat, S., ve Işık, N. S. (2020). Çelikhane Cürufunun Yol Temel ve Alttemel Malzemesi Olarak Kullanılması. Politeknik Dergisi, 23(3), 799–812. doi:10.2339/politeknik.612190
- 19. KTŞ, T.C. Karayolları Genel Müdürlüğü (2013). Karayolları Teknik Şartnamesi, 2013.
- 20. Maharaj, C., White, D., Maharaj, R., ve Morin, C. (2017). Re-Use of Steel Slag as an Aggregate to Asphaltic Road Pavement Surface. Cogent Engineering, 4(1), 1416889. doi:10.1080/23311916.2017.1416889
- 21. Mathur S., Soni S. K., ve Murty A. (1999). Utilization of Industrial Wastes in Low-Volume Roads. Transportation research record 1652, 246–256. doi:10.3141/1652-31
- 22. Mijic, Z., Hatipoglu, M., Dayioglu, A. Y. ve Aydilek, A. H. (2023). Numerical Analysis of Hydraulic Conductivity Effect on the Utilization of Recycled Asphalt Pavement in Highway Design, in Geo-Congress
2023: Soil Improvement, Geoenvironmental, and Sustainability, GSP 339, 612-622. doi:10.1061/9780784484661.064
- 23. Morata, M., ve Saborido, C. (2017). Recycled Aggregates with Enhanced Performance for Railways Track Bed and Form Layers. Journal of Sustainable Metallurgy, 3(2), 322–335. doi:10.1007/s40831-
016-0095-z
- 24. Moulton, L. K. (1980). Highway subdrainage design. Federal Highway Administration Report No. FHWA-TS-80-224.
- 25. Mymrin, V. A., Ponte, H. A., Ponte, M. J. J. S., ve Maul, A. M. (2005). Structure formation of slag-soil construction materials. Materials and Structures, 38, 107-113. doi:10.1007/BF02480582
- 26. Pamukcu, S., ve Tuncan, A. (1993). Laboratory characterization of cement-stabilized iron-rich slag for reuse in transportation facilities. Transportation research record, 1424, 25-33.
- 27. Rohde, L., W. Peres Núñez, ve J. Augusto Pereira Ceratti (2003). Electric arc furnace steel slag: base material for low-volume roads. Transportation research record, 1819, 201-207. doi:10.3141/1819b-2
- 28. TÇÜD, T.C. Çevre ve Şehircilik Bakanlığı, (2015). Demir Çelik Cüruf Raporu. Türkiye Çelik Üreticileri Derneği. 2015.
- 29. Teo, P. Ter, Zakaria, S. K., Salleh, S. Z., Taib, M. A. A., Sharif, N. M., Seman, A. A.,Mohamed, J. J., Yusoff, M., Yusoff, A. H., Mohamad, M., Masri, M. N., ve Mamat, S. (2020).Assessment of Electric Arc Furnace
(EAO) Steel Slag Waste’s Recycling Options into Value Added Green Products: A Review. Metals, 10, 1–21. doi:10.3390/met10101347
- 30. Wang, G., Chen, X., Dong, Q., Yuan, J., ve Hong, Q. (2020). Mechanical performance study of pervious concrete using steel slag aggregate through laboratory tests and numerical simulation. Journal of Cleaner Production, 262, 121208. doi: 10.1016/j.jclepro.2020.121208
- 31. World Steel Association. (2022). World Steel in Figures. World Steel Association, 3–30.
- 32. Yildirim, I. Z., ve Prezzi, M. (2022). Subgrade stabilization mixtures with EAF steel slag: an experimental study followed by field implementation. International Journal of Pavement Engineering, 23(6),
1754-1767. doi:10.1080/10298436.2020.1823389
Numerical Analysis of the Drainage Performance of Steel Slags Used In Embankment Fills
Year 2023,
Volume: 28 Issue: 2, 537 - 550, 31.08.2023
Ayşegül Bayın Sarıahmetoğlu
,
Bilal Korkmaz
,
Mustafa Hatipoğlu
,
Aslı Yalçın Dayıoğlu
Abstract
In this study, the effect of hydraulic conductivity of steel slag, a by-product of steel industry, on the drainage time and the thickness of the highway foundation layer was investigated via DRIP (Drainage Requirement in Pavements) software developed by Federal Highway Administration (FHWA). Three electric arc furnace (EAF) and one ladle slag (LS) from four different facilities along with a control soil were used in the analyses to compare their drainage performance as an embankment material. Analyzes were performed on steel slag and natural aggregate materials to investigate the effect of drainage percentage (U), base layer thickness (H) and hydraulic conductivity (k) on drainage time. The results show that the fines content and hydraulic conductivity significantly affect the drainage time, especially after 40% of the drainage. In addition, increasing the thickness of the foundation causes a serious reduction in the drainage time. When the performances of the control material and the steel slag obtained from different facilities were compared, it was seen that the drainage properties of especially the electric arc furnace steel slag materials yielded satisfactory results in case used as an embankment fill material
Project Number
MGA-2017-40933
References
- 1. Aiban, S. A. (2006). Utilization of Steel Slag Aggregate for Road Bases. Journal of Testing and Evaluation, ASTM, Vol 34, No. 1: 65–75. doi: 10.1520/JTE12683.
- 2. ASTM D1883-16 (2016). Standard test method for California Bearing Ratio (CBR) of laboratory-compacted soils. ASTM International, West Conshohocken.
- 3. ASTM-D1557-12 (2012). Standard Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort. ASTM, West Conshohocken, Pennsylvania, USA.
- 4. ASTM-D698 (2012) Standard practice for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, West Conshohocken, PA.
- 5. Aydilek, A., Haider, I., Cetin, A., Kaya, Z., ve Hatipoglu, M. (2015). Development of Design Guidelines for Proper Selection of Graded Aggregate Base in Maryland State Highways. MD-15-SP109B4G-1.
Maryland State Highway Administration, Baltimore, MD.
- 6. Barber, E. S., ve Sawyer, C. L. (1952). Highway subdrainage. Public Roads, 26(12), 251-268.
- 7. Casagrande, A., ve Shannon, W. L. (1952). Base course drainage for airport pavements. Transactions of the American Society of Civil Engineers, 117(1), 792-814. doi:10.1061/TACEAT.0006654
- 8. Dayioglu, A. Y., ve Aydilek, A. H. (2017). Evaluation of mitigation techniques for the expansive behavior of steel slag. In Proc., Geotechnical Frontiers, 276, 360-368. doi:10.1061/9780784480434.039
- 9. Dayioglu, A. Y., Aydilek, A. H., ve Cetin, B. (2014). Preventing swelling and decreasing alkalinity of steel slags used in highway infrastructures. Transportation Research Record, 2401(1), 52-57.
doi:10.3141/2401-06
- 10. Deniz, D., Tutumluer, E., ve Popovics, J.S. (2009). Expansive characteristics of reclaimed asphalt pavement (RAP) used as base materials. Illinois Center for Transportation, University of Illinois at
Urbana Champaign, FHWA-ICT-09-055.
- 11. Diotti, A., Cominoli, L., Galvin, A. P., Sorlini, S., ve Plizzari, G. (2021). Sustainable Recycling of Electric Arc Furnace Steel Slag as Aggregate in Concrete: Effects on the Environmental and Technical
Performance. Sustainability (Switzerland), 13(521). doi:10.3390/su13020521
- 12. Firat, S., Dikmen, S., Yilmaz, G. ve Khatib, J. M., (2020). Characteristics of engineered waste materials used for road subbase layers. KSCE J. Civ.Eng. 24 (9): 2643–2656. doi:10.1007/s12205-020-2242-0
- 13. Grubeša, I. N., ve Barišić, I. (2016). Environmental Impact Analysis of Heavy Metal Concentrations in Waste Materials Used in Road Construction. Elektronički Časopis Građevinskog Fakulteta Osijek,
13, 23–29. doi:10.13167/2016.13.3
- 14. Haider, I., Cetin, B., Kaya, Z., Hatipoglu, M., Cetin, A., ve Ahmet, H. A. (2014b). Evaluation of the Mechanical Performance of Recycled Concrete Aggregates Used in Highway Base Layers. Geo-Congress,
234 GSP, 3686–3694. doi:10.1061/9780784413272.357
- 15. Haider, I., Kaya, Z., Cetin, A., Hatipoglu, M., Cetin, B., ve Aydilek, A. H. (2014a). Drainage and mechanical behavior of highway base materials. Journal of Irrigation and Drainage Engineering, 140(6),
04014012. doi:10.1061/(ASCE)IR.1943-4774.0000708
- 16. Hatipoglu, M., Cetin, B., ve Aydilek, A. H. (2020). Effects of fines content on hydraulic and mechanical performance of unbound granular base aggregates. Journal of Transportation Engineering, Part
B: Pavements, 146(1), 04019036. doi:10.1061/JPEODX.0000141
- 17. Kamon, M., Nontananandh, S., ve Katsumi, T. (1993). Utilization of stainless-steel slag by cement hardening. Soils and Foundations, 33(3), 118-129. doi.org/10.3208/sandf1972.33.3_118
- 18. Karadağ, H., Fırat, S., ve Işık, N. S. (2020). Çelikhane Cürufunun Yol Temel ve Alttemel Malzemesi Olarak Kullanılması. Politeknik Dergisi, 23(3), 799–812. doi:10.2339/politeknik.612190
- 19. KTŞ, T.C. Karayolları Genel Müdürlüğü (2013). Karayolları Teknik Şartnamesi, 2013.
- 20. Maharaj, C., White, D., Maharaj, R., ve Morin, C. (2017). Re-Use of Steel Slag as an Aggregate to Asphaltic Road Pavement Surface. Cogent Engineering, 4(1), 1416889. doi:10.1080/23311916.2017.1416889
- 21. Mathur S., Soni S. K., ve Murty A. (1999). Utilization of Industrial Wastes in Low-Volume Roads. Transportation research record 1652, 246–256. doi:10.3141/1652-31
- 22. Mijic, Z., Hatipoglu, M., Dayioglu, A. Y. ve Aydilek, A. H. (2023). Numerical Analysis of Hydraulic Conductivity Effect on the Utilization of Recycled Asphalt Pavement in Highway Design, in Geo-Congress
2023: Soil Improvement, Geoenvironmental, and Sustainability, GSP 339, 612-622. doi:10.1061/9780784484661.064
- 23. Morata, M., ve Saborido, C. (2017). Recycled Aggregates with Enhanced Performance for Railways Track Bed and Form Layers. Journal of Sustainable Metallurgy, 3(2), 322–335. doi:10.1007/s40831-
016-0095-z
- 24. Moulton, L. K. (1980). Highway subdrainage design. Federal Highway Administration Report No. FHWA-TS-80-224.
- 25. Mymrin, V. A., Ponte, H. A., Ponte, M. J. J. S., ve Maul, A. M. (2005). Structure formation of slag-soil construction materials. Materials and Structures, 38, 107-113. doi:10.1007/BF02480582
- 26. Pamukcu, S., ve Tuncan, A. (1993). Laboratory characterization of cement-stabilized iron-rich slag for reuse in transportation facilities. Transportation research record, 1424, 25-33.
- 27. Rohde, L., W. Peres Núñez, ve J. Augusto Pereira Ceratti (2003). Electric arc furnace steel slag: base material for low-volume roads. Transportation research record, 1819, 201-207. doi:10.3141/1819b-2
- 28. TÇÜD, T.C. Çevre ve Şehircilik Bakanlığı, (2015). Demir Çelik Cüruf Raporu. Türkiye Çelik Üreticileri Derneği. 2015.
- 29. Teo, P. Ter, Zakaria, S. K., Salleh, S. Z., Taib, M. A. A., Sharif, N. M., Seman, A. A.,Mohamed, J. J., Yusoff, M., Yusoff, A. H., Mohamad, M., Masri, M. N., ve Mamat, S. (2020).Assessment of Electric Arc Furnace
(EAO) Steel Slag Waste’s Recycling Options into Value Added Green Products: A Review. Metals, 10, 1–21. doi:10.3390/met10101347
- 30. Wang, G., Chen, X., Dong, Q., Yuan, J., ve Hong, Q. (2020). Mechanical performance study of pervious concrete using steel slag aggregate through laboratory tests and numerical simulation. Journal of Cleaner Production, 262, 121208. doi: 10.1016/j.jclepro.2020.121208
- 31. World Steel Association. (2022). World Steel in Figures. World Steel Association, 3–30.
- 32. Yildirim, I. Z., ve Prezzi, M. (2022). Subgrade stabilization mixtures with EAF steel slag: an experimental study followed by field implementation. International Journal of Pavement Engineering, 23(6),
1754-1767. doi:10.1080/10298436.2020.1823389