Research Article
BibTex RIS Cite

Effect of Projection Welding Process Parameters on the Joining Performance of S355MC Klevis Brackets

Year 2023, Volume: 28 Issue: 3, 991 - 1008, 27.12.2023
https://doi.org/10.17482/uumfd.1329959

Abstract

In this study, the improvement of the projection welding process was looked into. The projection welding process is used to make the clevis bracket, which is a piece of equipment used in the automotive industry to connect shock absorbers. The study also looked into how the parameters of the projection welding process affect the mechanical performance of the clevis bracket. In this context, samples were produced using nine different processes, rupture tests of these samples were made, and ANOVA analysis was applied according to the results obtained. As a result of the analysis, it was determined that the most influential parameter was 80% welding pressure, and the effect of welding tightening time was negligible. In addition, the macro- and micro-structures of the sections of the two most critical points of five different points made with projection welding were examined. It was observed that the thermal input increased with the welding time, and as a result, the dimensions of the heat-affected zone and fusion zone in the microstructure increased. However, the increase in welding pressure negatively affected the microstructure. In addition, it was observed that the average hardness values of the weld sections were affected by the change in this microstructure.

References

  • 1. Alizadeh-Sh, M., Marashi, S.P.H. ve Pouranvari, M. (2014) Microstructure–properties relationships in martensitic stainless steel resistance spot welds, Science and Technology of Welding and Joining, 19(7), 595–602. doi.org/10.1179/1362171814Y.0000000230
  • 2. Arı, A., Karagöz, T., Arslan, O., Bayram, A. (2023) AISI 1050 çeliği üzerine Inconel 718 lazer dolgu kaynağının morfolojisi, mikroyapısı ve mekanik karakterizasyonu. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(2), 613–630. doi.org/10.17482/UUMFD.1228584
  • 3. Ari, A., Bayram, A., Karahan, M. ve Karagöz, S. (2023) Evaluation of the mechanical properties of chopped carbon fibre reinforced polypropylene, polyethylene, polyamide 6, and polyamide 12 composites, Industria Textila, 74(2), 175–183. doi.org/10.35530/IT.074.02.202214
  • 4. Ari, A., Bayram, A., Karahan, M. ve Karagöz, S. (2022) Comparison of the mechanical properties of chopped glass, carbon, and aramid fiber reinforced polypropylene, Polymers and Polymer Composites, 30, 096739112210985. doi.org/10.1177/09673911221098570
  • 5. Aslanlar, S., Ogur, A., Ozsarac, U. ve Ilhan, E. (2008) Welding time effect on mechanical properties of automotive sheets in electrical resistance spot welding, Materials and Design, 29(7), 1427–1431. doi.org/10.1016/j.matdes.2007.09.004
  • 6. Bayraktar, E., Kaplan, D., Devillers, L. ve Chevalier, J.P. (2007) Grain growth mechanism during the welding of interstitial free (IF) steels, Journal of Materials Processing Technology, 189(1–3), 114–125. https://doi.org/10.1016/j.jmatprotec.2007.01.012
  • 7. Bi, Y., Dong, J., Yang, Y., Luo, Z., Su, J. ve Zhang, Y. (2023) Microstructure and joint performance during resistance projection welding of sensor support, Materials Letters, 335, 133797. doi.org/10.1016/J.MATLET.2022.133797
  • 8. Chakraborty, G., Pal, T.K. ve Shome, M. (2014) Microstructure development in resistance spot welded galvannealed IF steel sheet, Materials Science and Technology, 27(1), 382–386. doi.org/10.1179/026708310X12701095964603
  • 9. Chen, L., Guo, Z., Zhang, C., Li, Y., Jia, Y. ve Liu, G. (2021) Experiments and numerical simulations on joint formation and material flow during resistance upset welding of WC-10Co and B318 steel, Journal of Materials Processing Technology, 296, 117164. doi.org/10.1016/j.jmatprotec.2021.117164
  • 10. Das, T., Panda, S.K., Arora, K.S. ve Paul, J. (2023) Investigation of the microstructure and mechanical behaviour of resistance spot-welded CR210 steel joints using graphene as an interlayer, Materials Chemistry and Physics, 302(March), 127693. doi.org/10.1016/j.matchemphys.2023.127693
  • 11. Eftekharimilani, P., van der Aa, E.M., Hermans, M.J.M. ve Richardson, I.M. (2017) Microstructural characterisation of double pulse resistance spot welded advanced high strength steel, Science and Technology of Welding and Joining, 22(7), 545–554. doi.org/10.1080/13621718.2016.1274848
  • 12. Goodarzi, M., Marashi, S.P.H. ve Pouranvari, M. (2009) Dependence of overload performance on weld attributes for resistance spot welded galvanized low carbon steel, Journal of Materials Processing Technology, 209(9), 4379–4384. doi.org/10.1016/J.JMATPROTEC.2008.11.017
  • 13. Han, G., Ha, S., Marimuthu, K.P., Murugan, S.P., Park, Y. ve Lee, H. (2021) Estimation of shear fracture load in resistance projection welded sheets with dissimilar strength and thickness, Engineering Failure Analysis, 120, 105042. doi.org/10.1016/j.engfailanal.2020.105042
  • 14. Huin, T., Dancette, S., Fabrègue, D. ve Dupuy, T. (2016) Investigation of the failure of advanced high strength steels heterogeneous spot welds, Metals, 6(5), 111. doi.org/10.3390/met6050111
  • 15. Kurt, M., Bagci, E. ve Kaynak, Y. (2009) Application of Taguchi methods in the optimization of cutting parameters for surface finish and hole diameter accuracy in dry drilling processes, International Journal of Advanced Manufacturing Technology, 40(5–6), 458–469. doi.org/10.1007/S00170-007-1368-2/METRICS
  • 16. Li, M., Tao, W., Zhang, J., Wang, Y. ve Yang, S. (2022) Hybrid resistance-laser spot welding of aluminum to steel dissimilar materials: Microstructure and mechanical properties, Materials and Design, 221, 111022. doi.org/10.1016/j.matdes.2022.111022
  • 17. Nielsen, C.V., Zhang, W., Martins, P.A.F. ve Bay, N. (2015) 3D numerical simulation of projection welding of square nuts to sheets, Journal of Materials Processing Technology, 215(1), 171–180. doi.org/10.1016/j.jmatprotec.2014.08.017
  • 18. Paramonov, S.S., Bulychev, V.V., Maksimov, N. N. ve Ponomarev, A.I. (2021) Improvement of zinc coated steel stamped part and steel nut projection welding process, Materials Today: Proceedings, 38(4), 1470–1473. doi.org/10.1016/J.MATPR.2020.08.129
  • 19. Pouranvari, M. ve Marashi, S. P. H. (2010) Key factors influencing mechanical performance of dual phase steel resistance spot welds, Science and Technology of Welding and Joining, 15(2), 149–155. doi.org/10.1179/136217109X12590746472535
  • 20. Ramazani, A., Mukherjee, K., Abdurakhmanov, A., Abbasi, M. ve Prahl, U. (2015) Characterization of microstructure and mechanical properties of resistance spot welded DP600 steel, Metals, 5(3), 1704–1716. doi.org/10.3390/MET5031704
  • 21. Salimi Beni, S., Atapour, M., Salmani, M. R. ve Ashiri, R. (2019) Resistance Spot Welding Metallurgy of Thin Sheets of Zinc-Coated Interstitial-Free Steel, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 50, 2218-2234. doi.org/10.1007/s11661-019-05146-8
  • 22. Sharifitabar, M., Halvaee, A. ve Khorshahian, S. (2011) Microstructure and mechanical properties of resistance upset butt welded 304 austenitic stainless steel joints, Materials and Design, 32(7), 3854–3864. doi.org/10.1016/j.matdes.2011.03.007
  • 23. Shirmohammadi, D., Movahedi, M. ve Pouranvari, M. (2017) Resistance spot welding of martensitic stainless steel: Effect of initial base metal microstructure on weld microstructure and mechanical performance, Materials Science and Engineering: A, 703, 154–161. doi.org/10.1016/j.msea.2017.07.067
  • 24. Singh Bharaj, A., kewati, A., Shukla, S., Gedam, S., Kukde, R. ve Verulkar, S. (2023) Study of resistant spot welding and its effect on the metallurgical and mechanical properties _ a review, Materials Today: Proceedings, (xxxx). doi.org/10.1016/j.matpr.2023.04.650
  • 25. Soomro, I.A., Pedapati, S.R. ve Awang, M. (2021) Double pulse resistance spot welding of dual phase steel: Parametric study on microstructure, failure mode and low dynamic tensile shear properties, Materials, 14(4), 1–19. doi.org/10.3390/ma14040802
  • 26. Sun, Y. ve Hao, M. (2012) Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd:YAG laser, Optics and Lasers in Engineering, 50(7), 985–995. doi.org/10.1016/j.optlaseng.2012.01.018
  • 27. Yaşar, H., Çavdar, K., Şahin, U. O., Çavdar, F. Y. (2019). Değişik kaynak elektrotları kullanılarak yapılan direnç nokta kaynaklı aısı 304 paslanmaz çelik sacların kaynak izi görüntüsü ve kaynak parametrelerinin mekanik özelliklere etkisi, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), 499-516. doi.org/10.17482/uumfd.50547
  • 28. Yuan, X., Li, C., Chen, J., Li, X., Liang, X. ve Pan, X. (2017) Resistance spot welding of dissimilar DP600 and DC54D steels, Journal of Materials Processing Technology, 239, 31–41. doi.org/10.1016/j.jmatprotec.2016.08.012

PROJEKSİYON KAYNAĞIN PROSES PARAMETRELERİNİN S355MC KLEVİS BRAKETİN BAĞLANTI PERFORMANSINA ETKİSİ

Year 2023, Volume: 28 Issue: 3, 991 - 1008, 27.12.2023
https://doi.org/10.17482/uumfd.1329959

Abstract

Bu çalışma kapsamında, otomotiv sektöründe kullanılan amortisörün bağlantı ekipmanlarından biri olan klevis braketin üretiminde rol oynayan projeksiyon kaynak prosesinin iyileştirilmesi ve projeksiyon kaynak parametrelerinin klevis braketin mekanik performansını nasıl etkilediği araştırılmıştır. Bu kapsamda, 9 farklı proses kullanılarak numuneler üretilmiş ve bu numunelerin kopma testleri yapılmış ve elde edilen sonuçlara göre ANOVA analizi uygulanmıştır. Analiz sonucunda, en etkili parametrenin %80 oranında kaynak basıncı olduğu ve kaynak sıkma süresinin etkisinin ihmal edilebilecek düzeyde olduğu belirlenmiştir. Ayrıca, projeksiyon kaynağıyla yapılan 5 farklı noktanın en kritik 2 noktasının kesitlerinin makro ve mikro yapısı incelenmiştir. Kaynak süresinin artmasıyla birlikte ısıl girdinin arttığı ve bunun sonucunda mikro yapıdaki ısı tesirli alanların ve füzyon bölgesinin boyutlarının arttığı gözlemlenmiştir. Bununla birlikte, kaynak basıncının artması mikro yapıyı olumsuz yönde etkilemiştir. Ayrıca, kaynak kesitlerinin ortalama sertlik değerlerinin, bu mikro yapıdaki değişimden etkilendiği gözlenmiştir.

References

  • 1. Alizadeh-Sh, M., Marashi, S.P.H. ve Pouranvari, M. (2014) Microstructure–properties relationships in martensitic stainless steel resistance spot welds, Science and Technology of Welding and Joining, 19(7), 595–602. doi.org/10.1179/1362171814Y.0000000230
  • 2. Arı, A., Karagöz, T., Arslan, O., Bayram, A. (2023) AISI 1050 çeliği üzerine Inconel 718 lazer dolgu kaynağının morfolojisi, mikroyapısı ve mekanik karakterizasyonu. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(2), 613–630. doi.org/10.17482/UUMFD.1228584
  • 3. Ari, A., Bayram, A., Karahan, M. ve Karagöz, S. (2023) Evaluation of the mechanical properties of chopped carbon fibre reinforced polypropylene, polyethylene, polyamide 6, and polyamide 12 composites, Industria Textila, 74(2), 175–183. doi.org/10.35530/IT.074.02.202214
  • 4. Ari, A., Bayram, A., Karahan, M. ve Karagöz, S. (2022) Comparison of the mechanical properties of chopped glass, carbon, and aramid fiber reinforced polypropylene, Polymers and Polymer Composites, 30, 096739112210985. doi.org/10.1177/09673911221098570
  • 5. Aslanlar, S., Ogur, A., Ozsarac, U. ve Ilhan, E. (2008) Welding time effect on mechanical properties of automotive sheets in electrical resistance spot welding, Materials and Design, 29(7), 1427–1431. doi.org/10.1016/j.matdes.2007.09.004
  • 6. Bayraktar, E., Kaplan, D., Devillers, L. ve Chevalier, J.P. (2007) Grain growth mechanism during the welding of interstitial free (IF) steels, Journal of Materials Processing Technology, 189(1–3), 114–125. https://doi.org/10.1016/j.jmatprotec.2007.01.012
  • 7. Bi, Y., Dong, J., Yang, Y., Luo, Z., Su, J. ve Zhang, Y. (2023) Microstructure and joint performance during resistance projection welding of sensor support, Materials Letters, 335, 133797. doi.org/10.1016/J.MATLET.2022.133797
  • 8. Chakraborty, G., Pal, T.K. ve Shome, M. (2014) Microstructure development in resistance spot welded galvannealed IF steel sheet, Materials Science and Technology, 27(1), 382–386. doi.org/10.1179/026708310X12701095964603
  • 9. Chen, L., Guo, Z., Zhang, C., Li, Y., Jia, Y. ve Liu, G. (2021) Experiments and numerical simulations on joint formation and material flow during resistance upset welding of WC-10Co and B318 steel, Journal of Materials Processing Technology, 296, 117164. doi.org/10.1016/j.jmatprotec.2021.117164
  • 10. Das, T., Panda, S.K., Arora, K.S. ve Paul, J. (2023) Investigation of the microstructure and mechanical behaviour of resistance spot-welded CR210 steel joints using graphene as an interlayer, Materials Chemistry and Physics, 302(March), 127693. doi.org/10.1016/j.matchemphys.2023.127693
  • 11. Eftekharimilani, P., van der Aa, E.M., Hermans, M.J.M. ve Richardson, I.M. (2017) Microstructural characterisation of double pulse resistance spot welded advanced high strength steel, Science and Technology of Welding and Joining, 22(7), 545–554. doi.org/10.1080/13621718.2016.1274848
  • 12. Goodarzi, M., Marashi, S.P.H. ve Pouranvari, M. (2009) Dependence of overload performance on weld attributes for resistance spot welded galvanized low carbon steel, Journal of Materials Processing Technology, 209(9), 4379–4384. doi.org/10.1016/J.JMATPROTEC.2008.11.017
  • 13. Han, G., Ha, S., Marimuthu, K.P., Murugan, S.P., Park, Y. ve Lee, H. (2021) Estimation of shear fracture load in resistance projection welded sheets with dissimilar strength and thickness, Engineering Failure Analysis, 120, 105042. doi.org/10.1016/j.engfailanal.2020.105042
  • 14. Huin, T., Dancette, S., Fabrègue, D. ve Dupuy, T. (2016) Investigation of the failure of advanced high strength steels heterogeneous spot welds, Metals, 6(5), 111. doi.org/10.3390/met6050111
  • 15. Kurt, M., Bagci, E. ve Kaynak, Y. (2009) Application of Taguchi methods in the optimization of cutting parameters for surface finish and hole diameter accuracy in dry drilling processes, International Journal of Advanced Manufacturing Technology, 40(5–6), 458–469. doi.org/10.1007/S00170-007-1368-2/METRICS
  • 16. Li, M., Tao, W., Zhang, J., Wang, Y. ve Yang, S. (2022) Hybrid resistance-laser spot welding of aluminum to steel dissimilar materials: Microstructure and mechanical properties, Materials and Design, 221, 111022. doi.org/10.1016/j.matdes.2022.111022
  • 17. Nielsen, C.V., Zhang, W., Martins, P.A.F. ve Bay, N. (2015) 3D numerical simulation of projection welding of square nuts to sheets, Journal of Materials Processing Technology, 215(1), 171–180. doi.org/10.1016/j.jmatprotec.2014.08.017
  • 18. Paramonov, S.S., Bulychev, V.V., Maksimov, N. N. ve Ponomarev, A.I. (2021) Improvement of zinc coated steel stamped part and steel nut projection welding process, Materials Today: Proceedings, 38(4), 1470–1473. doi.org/10.1016/J.MATPR.2020.08.129
  • 19. Pouranvari, M. ve Marashi, S. P. H. (2010) Key factors influencing mechanical performance of dual phase steel resistance spot welds, Science and Technology of Welding and Joining, 15(2), 149–155. doi.org/10.1179/136217109X12590746472535
  • 20. Ramazani, A., Mukherjee, K., Abdurakhmanov, A., Abbasi, M. ve Prahl, U. (2015) Characterization of microstructure and mechanical properties of resistance spot welded DP600 steel, Metals, 5(3), 1704–1716. doi.org/10.3390/MET5031704
  • 21. Salimi Beni, S., Atapour, M., Salmani, M. R. ve Ashiri, R. (2019) Resistance Spot Welding Metallurgy of Thin Sheets of Zinc-Coated Interstitial-Free Steel, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 50, 2218-2234. doi.org/10.1007/s11661-019-05146-8
  • 22. Sharifitabar, M., Halvaee, A. ve Khorshahian, S. (2011) Microstructure and mechanical properties of resistance upset butt welded 304 austenitic stainless steel joints, Materials and Design, 32(7), 3854–3864. doi.org/10.1016/j.matdes.2011.03.007
  • 23. Shirmohammadi, D., Movahedi, M. ve Pouranvari, M. (2017) Resistance spot welding of martensitic stainless steel: Effect of initial base metal microstructure on weld microstructure and mechanical performance, Materials Science and Engineering: A, 703, 154–161. doi.org/10.1016/j.msea.2017.07.067
  • 24. Singh Bharaj, A., kewati, A., Shukla, S., Gedam, S., Kukde, R. ve Verulkar, S. (2023) Study of resistant spot welding and its effect on the metallurgical and mechanical properties _ a review, Materials Today: Proceedings, (xxxx). doi.org/10.1016/j.matpr.2023.04.650
  • 25. Soomro, I.A., Pedapati, S.R. ve Awang, M. (2021) Double pulse resistance spot welding of dual phase steel: Parametric study on microstructure, failure mode and low dynamic tensile shear properties, Materials, 14(4), 1–19. doi.org/10.3390/ma14040802
  • 26. Sun, Y. ve Hao, M. (2012) Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd:YAG laser, Optics and Lasers in Engineering, 50(7), 985–995. doi.org/10.1016/j.optlaseng.2012.01.018
  • 27. Yaşar, H., Çavdar, K., Şahin, U. O., Çavdar, F. Y. (2019). Değişik kaynak elektrotları kullanılarak yapılan direnç nokta kaynaklı aısı 304 paslanmaz çelik sacların kaynak izi görüntüsü ve kaynak parametrelerinin mekanik özelliklere etkisi, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), 499-516. doi.org/10.17482/uumfd.50547
  • 28. Yuan, X., Li, C., Chen, J., Li, X., Liang, X. ve Pan, X. (2017) Resistance spot welding of dissimilar DP600 and DC54D steels, Journal of Materials Processing Technology, 239, 31–41. doi.org/10.1016/j.jmatprotec.2016.08.012
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Materials Engineering (Other)
Journal Section Research Articles
Authors

Ali Arı 0000-0003-2702-2982

Kübra Korkmaz 0009-0005-7165-9050

Berk Mühürdar 0009-0001-1144-338X

Ali Bayram 0000-0001-7311-8358

Early Pub Date December 25, 2023
Publication Date December 27, 2023
Submission Date July 19, 2023
Acceptance Date December 13, 2023
Published in Issue Year 2023 Volume: 28 Issue: 3

Cite

APA Arı, A., Korkmaz, K., Mühürdar, B., Bayram, A. (2023). PROJEKSİYON KAYNAĞIN PROSES PARAMETRELERİNİN S355MC KLEVİS BRAKETİN BAĞLANTI PERFORMANSINA ETKİSİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(3), 991-1008. https://doi.org/10.17482/uumfd.1329959
AMA Arı A, Korkmaz K, Mühürdar B, Bayram A. PROJEKSİYON KAYNAĞIN PROSES PARAMETRELERİNİN S355MC KLEVİS BRAKETİN BAĞLANTI PERFORMANSINA ETKİSİ. UUJFE. December 2023;28(3):991-1008. doi:10.17482/uumfd.1329959
Chicago Arı, Ali, Kübra Korkmaz, Berk Mühürdar, and Ali Bayram. “PROJEKSİYON KAYNAĞIN PROSES PARAMETRELERİNİN S355MC KLEVİS BRAKETİN BAĞLANTI PERFORMANSINA ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28, no. 3 (December 2023): 991-1008. https://doi.org/10.17482/uumfd.1329959.
EndNote Arı A, Korkmaz K, Mühürdar B, Bayram A (December 1, 2023) PROJEKSİYON KAYNAĞIN PROSES PARAMETRELERİNİN S355MC KLEVİS BRAKETİN BAĞLANTI PERFORMANSINA ETKİSİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28 3 991–1008.
IEEE A. Arı, K. Korkmaz, B. Mühürdar, and A. Bayram, “PROJEKSİYON KAYNAĞIN PROSES PARAMETRELERİNİN S355MC KLEVİS BRAKETİN BAĞLANTI PERFORMANSINA ETKİSİ”, UUJFE, vol. 28, no. 3, pp. 991–1008, 2023, doi: 10.17482/uumfd.1329959.
ISNAD Arı, Ali et al. “PROJEKSİYON KAYNAĞIN PROSES PARAMETRELERİNİN S355MC KLEVİS BRAKETİN BAĞLANTI PERFORMANSINA ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28/3 (December 2023), 991-1008. https://doi.org/10.17482/uumfd.1329959.
JAMA Arı A, Korkmaz K, Mühürdar B, Bayram A. PROJEKSİYON KAYNAĞIN PROSES PARAMETRELERİNİN S355MC KLEVİS BRAKETİN BAĞLANTI PERFORMANSINA ETKİSİ. UUJFE. 2023;28:991–1008.
MLA Arı, Ali et al. “PROJEKSİYON KAYNAĞIN PROSES PARAMETRELERİNİN S355MC KLEVİS BRAKETİN BAĞLANTI PERFORMANSINA ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 28, no. 3, 2023, pp. 991-1008, doi:10.17482/uumfd.1329959.
Vancouver Arı A, Korkmaz K, Mühürdar B, Bayram A. PROJEKSİYON KAYNAĞIN PROSES PARAMETRELERİNİN S355MC KLEVİS BRAKETİN BAĞLANTI PERFORMANSINA ETKİSİ. UUJFE. 2023;28(3):991-1008.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.