Research Article
BibTex RIS Cite

THE EFFECT OF DIFFERENT DIELECTRIC MATERIALS ON RADIATION FEATURES OF SLOTTED PATCH ANTENNAS FOR 6G COMMUNICATION SYSTEMS

Year 2024, Volume: 29 Issue: 1, 263 - 278, 22.04.2024
https://doi.org/10.17482/uumfd.1275351

Abstract

In this study, patch antenna structures with rhombic shaped slots have been investigated for 6G communication systems. Four different dielectric materials, such as arlon, polyamide, polyimide, and silicon, have been selected for antennas with the same design procedure. In this way, the effects of slots on frequency responses for different dielectric substrates have been searched. The slots are parametrically analyzed in terms of edge size and location, and the designs are completed for values with the lowest return loss levels. The amount of return loss reduction in slotted antennas is 38% and 42% for arlon and polyamide, respectively, while the reduction is 28% and 8% for polyimide and silicon, respectively. In addition, bandwidth increases in slotted antennas vary according to the dielectric substrate material. The bandwidth increases have been 0.05 GHz, 0.426 GHz, 0.839 GHz, and 0.475 GHz for arlon, polyamide, polyimide, and silicon substrates, respectively. With these results, the study will give an insight to the researchers who will design antennas in 6G bands in terms of the effects of materials on antenna characteristics and will give inspiration for new designs.

References

  • 1. Giordani, M., Polese, M., Mezzavilla, M., Rangan, S., Zorzi, M. (2020) Toward 6G Networks: Use Cases and Technologies. IEEE Communications Magazine, 58(3), 55-61. doi: 10.1109/MCOM.001.1900411
  • 2. Yang, P., Xiao, Y., Xiao, M., Li, S. (2019) 6G Wireless Communications: Vision and Potential Techniques. IEEE Network, 33(4), 70-75. doi: 10.1109/MNET.2019.1800418
  • 3. You, X., Wang, CX., Huang, J. et al. (2021) Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci. China Inf. Sci. 64, 110301. https://doi.org/10.1007/s11432-020-2955-6
  • 4. Chowdhury, M. Z., Shahjalal, M., Ahmed, S., Jang, Y. M. (2020) 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions. IEEE Open Journal of the Communications Society, 1, 957-975. doi:10.48550/arXiv.1909.11315
  • 5. Alsharif, M. H., Kelechi, A. H., Albreem, M. A., Chaudhry, S. A., Zia, M. S., Kim, S. (2020) Sixth generation (6G) wireless networks: Vision, research activities, challenges and potential solutions. Symmetry, 12(4), 676. https://doi.org/10.3390/sym12040676
  • 6. Strinati, E. C., Peeters, M., Neve, C. R., Gomony, M. D., Cathelin, A., Boldi, M. R., Belot, D. (2022) The Hardware Foundation of 6G: The NEW-6G Approach. IEEE Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), pp. 423-428. doi: 10.1109/EuCNC/6GSummit54941.2022.9815700
  • 7. Foysal, M. F., Mahmud, S., Baki, A. K. M. (2021) A novel high gain array antenna design for autonomous vehicles of 6g wireless systems. IEEE International Conference on Green Energy, Computing and Sustainable Technology (GECOST), 1-5. doi: 10.1109/GECOST52368.2021.9538677
  • 8. Ilahi, F., Dutta, S., Hasan, M. M., Rumpa, S. A., Baki, A. K. M. (2021) Development of a Novel UWB Antenna for 6G-IoT Based Smart Grid Device Monitoring System. IEEE International Conference on Green Energy, Computing and Sustainable Technology (GECOST), 1-5. doi: 10.1109/GECOST52368.2021.9538785
  • 9. Singhal, S. (2019) Ultrawideband elliptical microstrip antenna for terahertz applications. Microwave and Optical Technology Letters, 61(10), 2366-2373. https://doi.org/10.1002/mop.31910
  • 10. Chung, M. A., Chuang, B. R. (2021) Design a Broadband U-Shaped Microstrip Patch Antenna on Silicon-Based Technology for 6G Terahertz (THz) Future Cellular Communication Applications. 10th International Conference on Internet of Everything, Microwave Engineering, Communication and Networks (IEMECON), 1-5. doi: 10.1109/IEMECON53809.2021.9689167
  • 11. Bala, R., Marwaha, A. (2016) Characterization of graphene for performance enhancement of patch antenna in THz region. Optik, 127(4), 2089-2093. https://doi.org/10.1016/j.ijleo.2015.11.029
  • 12. Azizi, M. K., Ksiksi, M. A., Ajlani, H., Gharsallah, A. (2017) Terahertz graphene-based reconfigurable patch antenna. Progress In Electromagnetics Research Letters, 71, 69-76. http://dx.doi.org/10.2528/PIERL17081402
  • 13. Anand, S., Kumar, D. S., Wu, R. J., Chavali, M. (2014) Graphene nanoribbon based terahertz antenna on polyimide substrate. Optik, 125(19), 5546-5549. https://doi.org/10.1016/j.ijleo.2014.06.085
  • 14. Dashti, M., Carey, J. D. (2018) Graphene microstrip patch ultrawide band antennas for THz communications. Advanced Functional Materials, 28(11), 1705925. https://doi.org/10.1002/adfm.201705925
  • 15. Khan, M. A. K., Shaem, T. A., Alim, M. A. (2020) Graphene patch antennas with different substrate shapes and materials. Optik, 202, 163700. https://doi.org/10.1016/j.ijleo.2019.163700
  • 16. Efazat, S. S., Basiri, R., & Makki, S. V. A. D. (2019) The gain enhancement of a graphene loaded reconfigurable antenna with non-uniform metasurface in terahertz band. Optik, 183, 1179-1190. https://doi.org/10.1016/j.ijleo.2019.02.034
  • 17. Khan, M. A. K., Shaem, T. A., Alim, M. A. (2019) Analysis of graphene based miniaturized terahertz patch antennas for single band and dual band operation. Optik, 194, 163012. https://doi.org/10.1016/j.ijleo.2019.163012
  • 18. Computer Simulation Technology (CST) Microwave Studio, Ver. 2016, Framingham, MA, USA, 2016.
  • 19. Balanis, A. (2005) Antenna Theory, John Wiley&Sons, Hoboken, New Jersey.
  • 20. Stutzmann, W. L., Thiele, G. A. (1998) Antenna Theory and Design, John Wiley&Sons, Hoboken, New Jersey.
  • 21. Munir, A., Petrus, G., & Nusantara, H. (2013). Multiple slots technique for bandwidth enhancement of microstrip rectangular patch antenna. IEEE International Conference on QiR, 150-154.
  • 22. Ng, W. H., Lim, E. H., Bong, F. L., & Chung, B. K. (2018). Folded patch antenna with tunable inductive slots and stubs for UHF tag design. IEEE Transactions on Antennas and Propagation, 66(6), 2799-2806.
  • 23. Rahman, M. M., Islam, M. S., Wong, H. Y., Alam, T., & Islam, M. T. (2019). Performance analysis of a defected ground-structured antenna loaded with stub-slot for 5G communication. Sensors, 19(11), 2634.
  • 24. Ahmed, A. K. and S.M. Juma, S. M. (2006). Cavity Model Analysis of Rectangular Microstrip Antenna. IEEE Trans..
  • 25. Roy, A. A., Môm, J. M., Kureve D. T. (2013). Effect of dielectric constant on the design of rectangular microstrip antenna. IEEE International Conference on Emerging & Sustainable Technologies for Power & ICT in a Developing Society (NIGERCON), 111-115.
  • 26. Goswami, K. (2012). Study of Microstrip Slotted Antenna for Bandwidth Enhancement. Global Journal of Researches in Engineering Electrical and Electronics Engineering, 12(9).

6G Haberleşme Sistemleri İçin Yarıklı Yama Antenlerde Farklı Dielektrik Malzemelerin Yayılma Karakteristiklerine Etkisi

Year 2024, Volume: 29 Issue: 1, 263 - 278, 22.04.2024
https://doi.org/10.17482/uumfd.1275351

Abstract

Bu çalışmada 6G haberleşme sistemleri için eşkenar dörtgen şekilli yarıklara sahip yama anten yapıları incelenmiştir. Aynı tasarım prosedürüne sahip antenlerde arlon, polyamit, polyimit ve silikon olmak üzere dört farklı dielektrik malzeme kullanılmıştır. Bu şekilde yarık etkilerinin farklı dielektrik tabanlarda frekans cevaplarına etkileri araştırılmıştır. Yarıklar, kenar boyutu ve konum olarak parametrik analizlere tabi tutulmuşlardır ve tasarımlar en az geri dönüş kaybına sahip değerler için tamamlanmıştır. Yarıklı antenlerde geri dönüş kaybı azalma miktarı arlon ve polyamit için sırasıyla %38 ve %42 olurken, polyimit ve silikon için sırasıyla %28 ve %8 olmuştur. Ek olarak yarıklı antenlerde bant genişliği kazançları dielektrik taban malzemesine göre değişkenlik göstermiş, bant genişliği artışları arlon, polyamit, polyimit ve silikon tabanlar için sırasıyla 0,050 GHz, 0,426 GHz, 0,839 GHz ve 0,475 GHz olmuştur. Bu sonuçlarla çalışma, 6G bantlarında anten tasarımı yapacak araştırmacılara malzemelerin anten karakteristikleri üzerindeki etkileri açısından fikir verecek ve yeni tasarımlar için ilham kaynağı olacaktır.

References

  • 1. Giordani, M., Polese, M., Mezzavilla, M., Rangan, S., Zorzi, M. (2020) Toward 6G Networks: Use Cases and Technologies. IEEE Communications Magazine, 58(3), 55-61. doi: 10.1109/MCOM.001.1900411
  • 2. Yang, P., Xiao, Y., Xiao, M., Li, S. (2019) 6G Wireless Communications: Vision and Potential Techniques. IEEE Network, 33(4), 70-75. doi: 10.1109/MNET.2019.1800418
  • 3. You, X., Wang, CX., Huang, J. et al. (2021) Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci. China Inf. Sci. 64, 110301. https://doi.org/10.1007/s11432-020-2955-6
  • 4. Chowdhury, M. Z., Shahjalal, M., Ahmed, S., Jang, Y. M. (2020) 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions. IEEE Open Journal of the Communications Society, 1, 957-975. doi:10.48550/arXiv.1909.11315
  • 5. Alsharif, M. H., Kelechi, A. H., Albreem, M. A., Chaudhry, S. A., Zia, M. S., Kim, S. (2020) Sixth generation (6G) wireless networks: Vision, research activities, challenges and potential solutions. Symmetry, 12(4), 676. https://doi.org/10.3390/sym12040676
  • 6. Strinati, E. C., Peeters, M., Neve, C. R., Gomony, M. D., Cathelin, A., Boldi, M. R., Belot, D. (2022) The Hardware Foundation of 6G: The NEW-6G Approach. IEEE Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), pp. 423-428. doi: 10.1109/EuCNC/6GSummit54941.2022.9815700
  • 7. Foysal, M. F., Mahmud, S., Baki, A. K. M. (2021) A novel high gain array antenna design for autonomous vehicles of 6g wireless systems. IEEE International Conference on Green Energy, Computing and Sustainable Technology (GECOST), 1-5. doi: 10.1109/GECOST52368.2021.9538677
  • 8. Ilahi, F., Dutta, S., Hasan, M. M., Rumpa, S. A., Baki, A. K. M. (2021) Development of a Novel UWB Antenna for 6G-IoT Based Smart Grid Device Monitoring System. IEEE International Conference on Green Energy, Computing and Sustainable Technology (GECOST), 1-5. doi: 10.1109/GECOST52368.2021.9538785
  • 9. Singhal, S. (2019) Ultrawideband elliptical microstrip antenna for terahertz applications. Microwave and Optical Technology Letters, 61(10), 2366-2373. https://doi.org/10.1002/mop.31910
  • 10. Chung, M. A., Chuang, B. R. (2021) Design a Broadband U-Shaped Microstrip Patch Antenna on Silicon-Based Technology for 6G Terahertz (THz) Future Cellular Communication Applications. 10th International Conference on Internet of Everything, Microwave Engineering, Communication and Networks (IEMECON), 1-5. doi: 10.1109/IEMECON53809.2021.9689167
  • 11. Bala, R., Marwaha, A. (2016) Characterization of graphene for performance enhancement of patch antenna in THz region. Optik, 127(4), 2089-2093. https://doi.org/10.1016/j.ijleo.2015.11.029
  • 12. Azizi, M. K., Ksiksi, M. A., Ajlani, H., Gharsallah, A. (2017) Terahertz graphene-based reconfigurable patch antenna. Progress In Electromagnetics Research Letters, 71, 69-76. http://dx.doi.org/10.2528/PIERL17081402
  • 13. Anand, S., Kumar, D. S., Wu, R. J., Chavali, M. (2014) Graphene nanoribbon based terahertz antenna on polyimide substrate. Optik, 125(19), 5546-5549. https://doi.org/10.1016/j.ijleo.2014.06.085
  • 14. Dashti, M., Carey, J. D. (2018) Graphene microstrip patch ultrawide band antennas for THz communications. Advanced Functional Materials, 28(11), 1705925. https://doi.org/10.1002/adfm.201705925
  • 15. Khan, M. A. K., Shaem, T. A., Alim, M. A. (2020) Graphene patch antennas with different substrate shapes and materials. Optik, 202, 163700. https://doi.org/10.1016/j.ijleo.2019.163700
  • 16. Efazat, S. S., Basiri, R., & Makki, S. V. A. D. (2019) The gain enhancement of a graphene loaded reconfigurable antenna with non-uniform metasurface in terahertz band. Optik, 183, 1179-1190. https://doi.org/10.1016/j.ijleo.2019.02.034
  • 17. Khan, M. A. K., Shaem, T. A., Alim, M. A. (2019) Analysis of graphene based miniaturized terahertz patch antennas for single band and dual band operation. Optik, 194, 163012. https://doi.org/10.1016/j.ijleo.2019.163012
  • 18. Computer Simulation Technology (CST) Microwave Studio, Ver. 2016, Framingham, MA, USA, 2016.
  • 19. Balanis, A. (2005) Antenna Theory, John Wiley&Sons, Hoboken, New Jersey.
  • 20. Stutzmann, W. L., Thiele, G. A. (1998) Antenna Theory and Design, John Wiley&Sons, Hoboken, New Jersey.
  • 21. Munir, A., Petrus, G., & Nusantara, H. (2013). Multiple slots technique for bandwidth enhancement of microstrip rectangular patch antenna. IEEE International Conference on QiR, 150-154.
  • 22. Ng, W. H., Lim, E. H., Bong, F. L., & Chung, B. K. (2018). Folded patch antenna with tunable inductive slots and stubs for UHF tag design. IEEE Transactions on Antennas and Propagation, 66(6), 2799-2806.
  • 23. Rahman, M. M., Islam, M. S., Wong, H. Y., Alam, T., & Islam, M. T. (2019). Performance analysis of a defected ground-structured antenna loaded with stub-slot for 5G communication. Sensors, 19(11), 2634.
  • 24. Ahmed, A. K. and S.M. Juma, S. M. (2006). Cavity Model Analysis of Rectangular Microstrip Antenna. IEEE Trans..
  • 25. Roy, A. A., Môm, J. M., Kureve D. T. (2013). Effect of dielectric constant on the design of rectangular microstrip antenna. IEEE International Conference on Emerging & Sustainable Technologies for Power & ICT in a Developing Society (NIGERCON), 111-115.
  • 26. Goswami, K. (2012). Study of Microstrip Slotted Antenna for Bandwidth Enhancement. Global Journal of Researches in Engineering Electrical and Electronics Engineering, 12(9).
There are 26 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Barış Gürcan Hakanoğlu 0000-0002-5157-8414

Early Pub Date March 28, 2024
Publication Date April 22, 2024
Submission Date April 2, 2023
Acceptance Date March 18, 2024
Published in Issue Year 2024 Volume: 29 Issue: 1

Cite

APA Hakanoğlu, B. G. (2024). THE EFFECT OF DIFFERENT DIELECTRIC MATERIALS ON RADIATION FEATURES OF SLOTTED PATCH ANTENNAS FOR 6G COMMUNICATION SYSTEMS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 29(1), 263-278. https://doi.org/10.17482/uumfd.1275351
AMA Hakanoğlu BG. THE EFFECT OF DIFFERENT DIELECTRIC MATERIALS ON RADIATION FEATURES OF SLOTTED PATCH ANTENNAS FOR 6G COMMUNICATION SYSTEMS. UUJFE. April 2024;29(1):263-278. doi:10.17482/uumfd.1275351
Chicago Hakanoğlu, Barış Gürcan. “THE EFFECT OF DIFFERENT DIELECTRIC MATERIALS ON RADIATION FEATURES OF SLOTTED PATCH ANTENNAS FOR 6G COMMUNICATION SYSTEMS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29, no. 1 (April 2024): 263-78. https://doi.org/10.17482/uumfd.1275351.
EndNote Hakanoğlu BG (April 1, 2024) THE EFFECT OF DIFFERENT DIELECTRIC MATERIALS ON RADIATION FEATURES OF SLOTTED PATCH ANTENNAS FOR 6G COMMUNICATION SYSTEMS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29 1 263–278.
IEEE B. G. Hakanoğlu, “THE EFFECT OF DIFFERENT DIELECTRIC MATERIALS ON RADIATION FEATURES OF SLOTTED PATCH ANTENNAS FOR 6G COMMUNICATION SYSTEMS”, UUJFE, vol. 29, no. 1, pp. 263–278, 2024, doi: 10.17482/uumfd.1275351.
ISNAD Hakanoğlu, Barış Gürcan. “THE EFFECT OF DIFFERENT DIELECTRIC MATERIALS ON RADIATION FEATURES OF SLOTTED PATCH ANTENNAS FOR 6G COMMUNICATION SYSTEMS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29/1 (April 2024), 263-278. https://doi.org/10.17482/uumfd.1275351.
JAMA Hakanoğlu BG. THE EFFECT OF DIFFERENT DIELECTRIC MATERIALS ON RADIATION FEATURES OF SLOTTED PATCH ANTENNAS FOR 6G COMMUNICATION SYSTEMS. UUJFE. 2024;29:263–278.
MLA Hakanoğlu, Barış Gürcan. “THE EFFECT OF DIFFERENT DIELECTRIC MATERIALS ON RADIATION FEATURES OF SLOTTED PATCH ANTENNAS FOR 6G COMMUNICATION SYSTEMS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 29, no. 1, 2024, pp. 263-78, doi:10.17482/uumfd.1275351.
Vancouver Hakanoğlu BG. THE EFFECT OF DIFFERENT DIELECTRIC MATERIALS ON RADIATION FEATURES OF SLOTTED PATCH ANTENNAS FOR 6G COMMUNICATION SYSTEMS. UUJFE. 2024;29(1):263-78.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.