Research Article
BibTex RIS Cite

Numerical investigation of the effect of inter-vehicle distance on fuel consumption between two light commercial vehicle in convoy

Year 2024, Volume: 29 Issue: 1, 37 - 50, 22.04.2024
https://doi.org/10.17482/uumfd.1332741

Abstract

Energy production and consumption in the world are one of the most important problems of today. Energy consumption in vehicles is also one of the main focuses of the automotive industry. Energy consumption can be reduced by convoy driving, which is inevitably caused by the increase in the number of vehicles. In this study, the drag and lift coefficients of the light commercial vehicle model are numerically determined for two vehicles at different inter-vehicle distances and isolated vehicle. The numerical simulations are conducted in a wind tunnel designed with the exact dimensions of a isolated light commercial vehicle, with a 2.6% blockage ratio, and a wind speed of 90 km/h, using the realizable k-ε turbulence model. As a result, as the inter-vehicle distance increased, the average drag and lift coefficients of the two vehicles increased. In the absence of inter-vehicle distance in convoy driving, the fuel consumption of the lead vehicle decreased by 26%, while the rear vehicle increased by 4% compared to isolated vehicle.

References

  • 1. A. Al Alam, A. Gattami, K.H. Johansson, An experimental study on the fuel reduction potential of heavy duty vehicle platooning, IEEE Conf. Intell. Transp. Syst. Proceedings, ITSC. (2010) 306–311. https://doi.org/10.1109/ITSC.2010.5625054.
  • 2. Armagan, A., Onur, Y., Habib, U., 2015. Aerodynamic Analysis of a Passenger Car at Yaw Angle and Two-Vehicle Platoon. J. Fluids Eng. Trans. ASME 137, 1–10. https://doi.org/10.1115/1.4030869
  • 3. C. Bonnet, H. Fritz, Fuel consumption reduction in a platoon: Experimental results with two electronically coupled trucks at close spacing, SAE Tech. Pap. (2000). https://doi.org/10.4271/2000-01-3056.
  • 4. Cerutti, J. J., G. Cafiero, and G. Iuso. 2021. “Aerodynamic Drag Reduction by Means of Platooning Configurations of Light Commercial Vehicles: A Flow Field Analysis.” International Journal of Heat and Fluid Flow 90. https://doi.org/10.1016/j.ijheatfluidflow.2021.108823.
  • 5. Ebrahim, H., Dominy, R., 2020. Wake and surface pressure analysis of vehicles in platoon. J. Wind Eng. Ind. Aerodyn. 201, 104144. https://doi.org/10.1016/j.jweia.2020.104144
  • 6. F. Browand, J. Mcarthur, C. Radovich, UC Berkeley Research Reports Title Fuel Saving Achieved in the Field Test of Two Tandem Trucks, (2004). https://escholarship.org/uc/item/29v570mm.
  • 7. He, Y., Gao, W., Deng, Z., Feng, Y., 2022. On aerodynamic drag reduction of road vehicles in platoon. Int. J. Veh. Syst. Model. Test. 16, 1. https://doi.org/10.1504/ijvsmt.2022.10051896
  • 8. Luo, J., Mi, K., Tan, D., Zhang, Z., Li, M., Qing, J., Huang, H., 2022. Investigation of the Aerodynamic Characteristics of Platoon Vehicles Based on Ahmed Body. Shock Vib. 2022. https://doi.org/10.1155/2022/3269604
  • 9. M. Zabat, N. Stabile, S. Frascaroli, F. Browand, Drag forces experienced by 2, 3 and 4-vehicle platoons at close spacings, SAE Tech. Pap. (1995). https://doi.org/10.4271/950632.
  • 10. Meile, W. ., Brenn, G. ., Reppenhagen, A. ., Lechner, B. ., Fuchs, A. . 2021. Experiments and Numerical Simulations on the Aerodynamics of the Ahmed Body. CFD Letters.
  • 11. P. Hong, B. Marcu, F. Browand, A. Tucker, Drag forces experienced by two, full-scale vehicles at close spacing, SAE Tech. Pap. (1998). https://doi.org/10.4271/980396.
  • 12. R. Gnatowska, M. Sosnowski, The influence of distance between vehicles in platoon on aerodynamic parameters, EPJ Web Conf. 180 (2018) 1–5. https://doi.org/10.1051/epjconf/201818002030.
  • 13. R.M. Pagliarella, S. Watkins, A. Tempia, Aerodynamic performance of vehicles in platoons: The influence of backlight angles, SAE Tech. Pap. 2007 (2007). https://doi.org/10.4271/2007-01-1547.
  • 14. S.T. Kaluva, A. Pathak, A. Ongel, Aerodynamic drag analysis of autonomous electric vehicle platoons, Energies. 13 (2020). https://doi.org/10.3390/en13154028.
  • 15. S. Watkins, G. Vino, The effect of vehicle spacing on the aerodynamics of a representative car shape, J. Wind Eng. Ind. Aerodyn. 96 (2008) 1232–1239. https://doi.org/10.1016/j.jweia.2007.06.042.
  • 16. Törnell, J., Sebben, S., Elofsson, P., 2021. Experimental investigation of a two-truck platoon considering inter-vehicle distance, lateral offset and yaw. J. Wind Eng. Ind. Aerodyn. 213. https://doi.org/10.1016/j.jweia.2021.104596

KONVOY İKİ HAFİF TİCARİ TAŞITIN ARASINDAKİ MESAFENİN YAKIT TÜKETİMİNE ETKİSİNİN SAYISAL İNCELENMESİ

Year 2024, Volume: 29 Issue: 1, 37 - 50, 22.04.2024
https://doi.org/10.17482/uumfd.1332741

Abstract

Dünyada enerji eldesi ve tüketimi günümüzün en önemli sorunlarından biridir. Taşıtlarda enerji tüketimi de otomotiv endüstrisinin başlıca odaklandığı konulardandır. Taşıt sayısının artışının ister istemez sebep olduğu konvoy sürüşle enerji tüketimi azaltılabilir. Bu çalışmada, tek hafif ticari taşıt ve farklı taşıtlar arası mesafelerde konvoy iki taşıt için sürükleme ve kaldırma katsayıları sayısal olarak belirlenmiştir. Bu sayısal çalışma bire bir taşıt boyutlarında ve %2,6 blokaj oranında tasarlanan rüzgar tünelinde 90 km/sa hava giriş hızında Realizable k-ε türbülans modeli kullanılarak hesaplamalı akışkanlar dinamiği metodolojisi ile gerçekleştirilmiştir. Sonuç olarak taşıtlar arası mesafe arttıkça iki taşıtın ortalama sürükleme ve kaldırma katsayıları arttı. Konvoy sürüşte taşıtlar arasında mesafe olmaması durumunda tek taşıta göre öndeki taşıtın yakıt tüketimi %26 düşerken arkadaki taşıtın %4 artmıştır.

References

  • 1. A. Al Alam, A. Gattami, K.H. Johansson, An experimental study on the fuel reduction potential of heavy duty vehicle platooning, IEEE Conf. Intell. Transp. Syst. Proceedings, ITSC. (2010) 306–311. https://doi.org/10.1109/ITSC.2010.5625054.
  • 2. Armagan, A., Onur, Y., Habib, U., 2015. Aerodynamic Analysis of a Passenger Car at Yaw Angle and Two-Vehicle Platoon. J. Fluids Eng. Trans. ASME 137, 1–10. https://doi.org/10.1115/1.4030869
  • 3. C. Bonnet, H. Fritz, Fuel consumption reduction in a platoon: Experimental results with two electronically coupled trucks at close spacing, SAE Tech. Pap. (2000). https://doi.org/10.4271/2000-01-3056.
  • 4. Cerutti, J. J., G. Cafiero, and G. Iuso. 2021. “Aerodynamic Drag Reduction by Means of Platooning Configurations of Light Commercial Vehicles: A Flow Field Analysis.” International Journal of Heat and Fluid Flow 90. https://doi.org/10.1016/j.ijheatfluidflow.2021.108823.
  • 5. Ebrahim, H., Dominy, R., 2020. Wake and surface pressure analysis of vehicles in platoon. J. Wind Eng. Ind. Aerodyn. 201, 104144. https://doi.org/10.1016/j.jweia.2020.104144
  • 6. F. Browand, J. Mcarthur, C. Radovich, UC Berkeley Research Reports Title Fuel Saving Achieved in the Field Test of Two Tandem Trucks, (2004). https://escholarship.org/uc/item/29v570mm.
  • 7. He, Y., Gao, W., Deng, Z., Feng, Y., 2022. On aerodynamic drag reduction of road vehicles in platoon. Int. J. Veh. Syst. Model. Test. 16, 1. https://doi.org/10.1504/ijvsmt.2022.10051896
  • 8. Luo, J., Mi, K., Tan, D., Zhang, Z., Li, M., Qing, J., Huang, H., 2022. Investigation of the Aerodynamic Characteristics of Platoon Vehicles Based on Ahmed Body. Shock Vib. 2022. https://doi.org/10.1155/2022/3269604
  • 9. M. Zabat, N. Stabile, S. Frascaroli, F. Browand, Drag forces experienced by 2, 3 and 4-vehicle platoons at close spacings, SAE Tech. Pap. (1995). https://doi.org/10.4271/950632.
  • 10. Meile, W. ., Brenn, G. ., Reppenhagen, A. ., Lechner, B. ., Fuchs, A. . 2021. Experiments and Numerical Simulations on the Aerodynamics of the Ahmed Body. CFD Letters.
  • 11. P. Hong, B. Marcu, F. Browand, A. Tucker, Drag forces experienced by two, full-scale vehicles at close spacing, SAE Tech. Pap. (1998). https://doi.org/10.4271/980396.
  • 12. R. Gnatowska, M. Sosnowski, The influence of distance between vehicles in platoon on aerodynamic parameters, EPJ Web Conf. 180 (2018) 1–5. https://doi.org/10.1051/epjconf/201818002030.
  • 13. R.M. Pagliarella, S. Watkins, A. Tempia, Aerodynamic performance of vehicles in platoons: The influence of backlight angles, SAE Tech. Pap. 2007 (2007). https://doi.org/10.4271/2007-01-1547.
  • 14. S.T. Kaluva, A. Pathak, A. Ongel, Aerodynamic drag analysis of autonomous electric vehicle platoons, Energies. 13 (2020). https://doi.org/10.3390/en13154028.
  • 15. S. Watkins, G. Vino, The effect of vehicle spacing on the aerodynamics of a representative car shape, J. Wind Eng. Ind. Aerodyn. 96 (2008) 1232–1239. https://doi.org/10.1016/j.jweia.2007.06.042.
  • 16. Törnell, J., Sebben, S., Elofsson, P., 2021. Experimental investigation of a two-truck platoon considering inter-vehicle distance, lateral offset and yaw. J. Wind Eng. Ind. Aerodyn. 213. https://doi.org/10.1016/j.jweia.2021.104596
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Automotive Engineering (Other)
Journal Section Research Articles
Authors

Ulaş Cankan Çilingiroğlu 0009-0006-1358-158X

Muhammed Dönmez 0000-0002-9046-4989

Mehmet İhsan Karamangil 0000-0001-5965-0313

Early Pub Date March 28, 2024
Publication Date April 22, 2024
Submission Date July 25, 2023
Acceptance Date January 15, 2024
Published in Issue Year 2024 Volume: 29 Issue: 1

Cite

APA Çilingiroğlu, U. C., Dönmez, M., & Karamangil, M. İ. (2024). KONVOY İKİ HAFİF TİCARİ TAŞITIN ARASINDAKİ MESAFENİN YAKIT TÜKETİMİNE ETKİSİNİN SAYISAL İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 29(1), 37-50. https://doi.org/10.17482/uumfd.1332741
AMA Çilingiroğlu UC, Dönmez M, Karamangil Mİ. KONVOY İKİ HAFİF TİCARİ TAŞITIN ARASINDAKİ MESAFENİN YAKIT TÜKETİMİNE ETKİSİNİN SAYISAL İNCELENMESİ. UUJFE. April 2024;29(1):37-50. doi:10.17482/uumfd.1332741
Chicago Çilingiroğlu, Ulaş Cankan, Muhammed Dönmez, and Mehmet İhsan Karamangil. “KONVOY İKİ HAFİF TİCARİ TAŞITIN ARASINDAKİ MESAFENİN YAKIT TÜKETİMİNE ETKİSİNİN SAYISAL İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29, no. 1 (April 2024): 37-50. https://doi.org/10.17482/uumfd.1332741.
EndNote Çilingiroğlu UC, Dönmez M, Karamangil Mİ (April 1, 2024) KONVOY İKİ HAFİF TİCARİ TAŞITIN ARASINDAKİ MESAFENİN YAKIT TÜKETİMİNE ETKİSİNİN SAYISAL İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29 1 37–50.
IEEE U. C. Çilingiroğlu, M. Dönmez, and M. İ. Karamangil, “KONVOY İKİ HAFİF TİCARİ TAŞITIN ARASINDAKİ MESAFENİN YAKIT TÜKETİMİNE ETKİSİNİN SAYISAL İNCELENMESİ”, UUJFE, vol. 29, no. 1, pp. 37–50, 2024, doi: 10.17482/uumfd.1332741.
ISNAD Çilingiroğlu, Ulaş Cankan et al. “KONVOY İKİ HAFİF TİCARİ TAŞITIN ARASINDAKİ MESAFENİN YAKIT TÜKETİMİNE ETKİSİNİN SAYISAL İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29/1 (April 2024), 37-50. https://doi.org/10.17482/uumfd.1332741.
JAMA Çilingiroğlu UC, Dönmez M, Karamangil Mİ. KONVOY İKİ HAFİF TİCARİ TAŞITIN ARASINDAKİ MESAFENİN YAKIT TÜKETİMİNE ETKİSİNİN SAYISAL İNCELENMESİ. UUJFE. 2024;29:37–50.
MLA Çilingiroğlu, Ulaş Cankan et al. “KONVOY İKİ HAFİF TİCARİ TAŞITIN ARASINDAKİ MESAFENİN YAKIT TÜKETİMİNE ETKİSİNİN SAYISAL İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 29, no. 1, 2024, pp. 37-50, doi:10.17482/uumfd.1332741.
Vancouver Çilingiroğlu UC, Dönmez M, Karamangil Mİ. KONVOY İKİ HAFİF TİCARİ TAŞITIN ARASINDAKİ MESAFENİN YAKIT TÜKETİMİNE ETKİSİNİN SAYISAL İNCELENMESİ. UUJFE. 2024;29(1):37-50.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.