Kesir dereceli hesaplamalar doğrusal olmayan sistemlerin dinamiklerini analiz etmekte kullanılan ve daha kesin sonuçlar elde edilmesini sağlayan etkili bir yöntemdir. Bu çalışmada, öncelikle 4 boyutlu Pang sistemi tanıtılmış ve hiperkaotik yapısını gösteren dinamik analizleri verilmiştir. Daha sonra sistemin kesir dereceli hesaplamaları yapılarak farklı kesir dereceleri için sahip olduğu dinamikler incelenmiştir. Bu kapsamda, Lyapunov üstelleri ve faz-uzayı gösteriminden elde edilen sonuçlara göre, Pang sistemi farklı kesir derecelerinde periyodik, kaotik ve hiperkaotik davranışlar sergilemektedir. Çalışmanın sonunda elde edilen sonuçlar, sistemin 3,52 kesir derecesi için hiperkaotik yapıda olduğunu göstermiştir. Elde edilen bu sonuç, tamsayı dereceli modele göre kesir dereceli yapı ile daha kesin sonuçlara ulaşıldığını doğrulamıştır. Çalışmanın ilerleyen kısmında, elde edilen kesir dereceli sistemin adaptif senkronizasyonu gerçekleştirilmiştir. Üç farklı durum incelenerek her durumda senkronizasyonun sağlandığı gösterilmiştir.
Fractional calculus is an effective method used to analyze the dynamics of nonlinear systems and provide more precise results. In this study, firstly, the 4-dimensional Pang system is introduced and its dynamic analyses demonstrating the hyperchaotic structure are given. Then, fractional-order calculations of the system are presented and the dynamics of the system for different fraction orders are investigated. At this point, according to the results obtained from Lyapunov exponents and phase-space representation, the Pang system exhibits periodic, chaotic, and hyperchaotic behaviors in different fractional orders. The results obtained at the end of this study present that the system is hyperchaotic for the fractional order of 3.52 and it is also confirmed that more accurate results are obtained than the integer-order analysis. In the next part of the study, adaptive synchronization of the fractional-order system is performed. Three different cases are examined and it is demonstrated that synchronization is achieved in all cases.
Primary Language | English |
---|---|
Subjects | Electronics |
Journal Section | Research Articles |
Authors | |
Early Pub Date | March 28, 2024 |
Publication Date | April 22, 2024 |
Submission Date | August 9, 2023 |
Acceptance Date | January 9, 2024 |
Published in Issue | Year 2024 Volume: 29 Issue: 1 |
Announcements:
30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.