Research Article
BibTex RIS Cite

3D Baskılı Sürekli Karbon Fiber / Polipropilen Kafes Çekirdekli Kompozit Sandviç Yapının Mekanik Özellikleri

Year 2024, Volume: 29 Issue: 3, 863 - 880, 24.12.2024
https://doi.org/10.17482/uumfd.1497273

Abstract

3Boyutlu üretim teknikleriyle fonksiyonel parçaların üretimi üzerine ilgi çekici çalışmalar ortaya konmaya başlamıştır. Başlangıçta sadece termoplastik filamentler kullanılmasına rağmen gelişen teknolojiler sayesinde elyaf takviyeli kompozit parçalar da üretilebilmektedir. Bu çalışmada, 3Boyutlu baskılama ile üretilmiş sürekli karbon elyaf takviyeli (CFR) kompozit sandviç panellerin yarı statik ve dinamik yüklemeler altındaki mekanik performansı deneysel olarak incelenmiştir. Sandviç paneller, CFR kompozit yüzey levhaları arasında prizmatik kafes çekirdek olacak şekilde tasarlanmıştır. Sandviç yapıları üretmek için sürekli CFR termoplastik (polipropilen (PP)) monofilament kompozitler (CCTMC) kullanılmıştır. CCTMC sandviç yapıları, özel olarak tasarlanmış bir kalıp içeren laboratuvar ölçekli bir termoplastik ekstrüder sistemi ile üretilmiştir. Sandviçlerin yüzey levhaları, aynı CCTMC'ler kullanılarak üç katman halinde [0°/90°/0°] istifleme sırasına göre sıcak sıkıştırma kalıbında üretilmiştir. Geliştirilen sandviç paneller tamamen geri dönüştürülebilir ve ultra hafiftir ve piramit şeklindeki kafes tipi kafes çekirdekleri sandviç yapının çekirdeği olarak yerleştirilmiştir. Test sonuçları; test numunelerinin basınç testinde 270 kN maksimum kuvvetine ve 3 nokta eğilme testinde de 240 kN maksimum kuvvetine dayanabildiğini göstermiş ve yapıdaki deformasyonun mono kompozit elemanın burkulma sınırına ulaşmasıyla meydana geldiğini ortaya koymuştur. Dinamik 3 nokta eğilme testinde, malzemenin deformasyon hızına bağımlılığı nedeniyle tepe kuvvet değeri yaklaşık 2 kat artarak 450 kN değerine ulaşmıştır.

References

  • Abd-Elaziem, W., Khedr ,M., Abd-Elaziem, A.E., Allah, M. M. A., Mousa, A.A., Yehia, H.M., … & El-Baky, M.A.A. (2023) Particle- reinforced polymer matrix composites (PMC) fabricated by 3D printing. Journal of Inorganic and Organometallic Polymers and Materials, 33(12), 3732-3749. https://doi.org/10.1007/s10904-023-02819-1
  • Balıkoğlu, F., Demircioğlu, T. K., Diler, E. A., & Ataş, A. (2022). Strain rate effect on the tensile properties of plain weave aramid, carbon, and glass fabric reinforced monolithic and hybrid composites. International Journal of Materials Research, 113(6), 587-598. https://doi.org/10.1515/ijmr-2021-8386
  • Caminero, M. A., Chacón, J. M., García-Moreno, I., & Rodríguez, G. P. (2018). Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Composites Part B: Engineering, 148, 93-103. https://doi.org/10.1016/j.compositesb.2018.04.054.
  • Çantı, E. and Aydın, M. (2018). Effects of micro particle reinforcement on mechanical properties of 3D printed parts. Rapid Prototyping Journal, 24(1), 171-176. https://doi.org/10.1108/RPJ-06-2016-0095
  • Dong, K., Liu, L., Huang, X., & Xiao, X. (2020). 3D printing of continuous fiber reinforced diamond cellular structural composites and tensile properties. Composite Structures, 250, 112610. https://doi.org/10.1016/j.compstruct.2020.112610.
  • Finnegan, K., Kooistra, G., Wadley, H. N., & Deshpande, V. S. (2007). The compressive response of carbon fiber composite pyramidal truss sandwich cores. International Journal of Materials Research, 98(12), 1264-1272. https://doi.org/10.3139/146.101594.
  • Güçlü, H., Türkoğlu, İ. K., & Can, Y. (2020). Finite-element analysis of EPP foam core/self-reinforced PP sandwich structures. Emerging Materials Research, 9(4), 1250-1257. https://doi.org/10.1680/jemmr.19.00194.
  • Heidari-Rarani, M., Rafiee-Afarani, M., & Zahedi, A. M. (2019). Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Composites Part B: Engineering, 175, 107147. https://doi.org/10.1016/j.compositesb.2019.107147.
  • Hou, Z., Tian, X., Zhang, J., & Li, D. (2018). 3D printed continuous fibre reinforced composite corrugated structure. Composite Structures, 184, 1005-1010. https://doi.org/10.1016/j.compstruct.2017.10.080.
  • Kabir, S. F., Mathur, K., & Seyam, A. F. M. (2021). Maximizing the performance of 3d printed fiber-reinforced composites. Journal of Composites Science, 5(5), 136. https://doi.org/10.3390/jcs5050136.
  • Kousiatza, C., Tzetzis, D., & Karalekas, D. (2019). In-situ characterization of 3D printed continuous fiber reinforced composites: A methodological study using fiber Bragg grating sensors. Composites Science and Technology, 174, 134-141. https://doi.org/10.1016/j.compscitech.2019.02.008.
  • Li, Q., Gao, Y., & Ruan, F. (2023). The effect of temperature on the tensile properties and failure mechanisms of two-dimensional braided composites. Science and Engineering of Composite Materials, 30(1), 20220191. https://doi.org/10.1515/secm-2022-0191.
  • Li, S., Wang, K., Zhu, W., Peng, Y., Ahzi, S., & Chinesta, F. (2022). Contributions of interfaces on the mechanical behavior of 3D printed continuous fiber reinforced composites. Construction and Building Materials, 340, 127842. https://doi.org/10.1016/j.conbuildmat.2022.127842.
  • Mohammadizadeh, M., Imeri, A., Fidan, I., & Elkelany, M. J. C. P. B. E. (2019). 3D printed fiber reinforced polymer composites-Structural analysis. Composites Part B: Engineering, 175, 107112. https://doi.org/10.1016/j.compositesb.2019.107112.
  • Parveez, B., Kittur, M. I., Badruddin, I. A., Kamangar, S., Hussien, M., & Umarfarooq, M. A. (2022). Scientific advancements in composite materials for aircraft applications: a review. Polymers, 14(22), 5007. https://doi.org/10.3390/polym14225007.
  • Quan, C., Han, B., Hou, Z., Zhang, Q., Tian, X., & Lu, T. J. (2020). 3d printed continuous fiber reinforced composite auxetic honeycomb structures. Composites Part B: Engineering, 187, 107858. https://doi.org/10.1016/j.compositesb.2020.107858.
  • Rubino, F., Nisticò, A., Tucci, F., & Carlone, P. (2020). Marine application of fiber reinforced composites: a review. Journal of Marine Science and Engineering, 8(1), 26. https://doi.org/10.3390/jmse8010026.
  • Sarvestani, H. Y., Akbarzadeh, A. H., Mirbolghasemi, A., & Hermenean, K. (2018). 3D printed meta-sandwich structures: Failure mechanism, energy absorption and multi-hit capability. Materials & Design, 160, 179-193. https://doi.org/10.1016/j.matdes.2018.08.061.
  • Sharma, K., & Srinivas, G. (2020). Flying smart: Smart materials used in aviation industry. Materials Today: Proceedings, 27, 244-250. https://doi.org/10.1016/j.matpr.2019.10.115.
  • Stephen, C., Shivamurthy, B., Mourad, A. H. I., & Selvam, R. (2021). High-velocity impact behavior of hybrid fiber-reinforced epoxy composites. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(9), 431. https://doi.org/10.1007/s40430-021-03139-6
  • Sugiyama, K., Matsuzaki, R., Ueda, M., Todoroki, A., & Hirano, Y. (2018). 3D printing of composite sandwich structures using continuous carbon fiber and fiber tension. Composites Part A: Applied Science and Manufacturing, 113, 114-121. https://doi.org/10.1016/j.compositesa.2018.07.029.
  • Tian ,X., Todoroki, A., Liu, T., Wu, L., Hou, Z., Ueda, M., … & Lu, B. (2022). 3D printing of continuous fiber reinforced polymer composites: development, application, and prospective. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 1(1) 100016. https://doi.org/10.1016/j.cjmeam.2022.100016
  • Ueda, M., Kishimoto, S., Yamawaki, M., Matsuzaki, R., Todoroki, A., Hirano, Y., & Le Duigou, A. (2020). 3D compaction printing of a continuous carbon fiber reinforced thermoplastic. Composites Part A: Applied Science and Manufacturing, 137, 105985. https://doi.org/10.1016/j.compositesa.2020.105985.
  • Vinayagar, K., Muthusamy, C., Nagaraj, G., & Sridhar, R. (2020). Review on Crashworthiness Studies of Foam Filled Thin Walled Structures. International Advanced Research Journal in Science, Engineering and Technology, 7, 60-69. https://doi.org 10.17148/IARJSET.2020.7608.
  • Wan, Y., & Takahashi, J. (2021). Development of carbon fiber-reinforced thermoplastics for mass-produced automotive applications in japan. Journal of Composites Science, 5(3), 86. https://doi.org/10.3390/jcs5030086
  • Wang, Z., Luan, C., Liao, G., Yao, X., & Fu, J. (2019). Mechanical and self-monitoring behaviors of 3D printing smart continuous carbon fiber-thermoplastic lattice truss sandwich structure. Composites Part B: Engineering, 176, 107215. https://doi.org/10.1016/j.compositesb.2019.107215.
  • Wang, Z., Wang, X., Liu, K., Zhang, J., & Lu, Z. (2021). Crashworthiness index of honeycomb sandwich structures under low-speed oblique impact. International Journal of Mechanical Sciences, 208, 106683. https://doi.org/10.1016/j.ijmecsci.2021.106683.
  • Wickramasinghe, S., Do, T., & Tran, P. (2020). FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments. Polymers, 12(7), 1529. https://doi.org/10.3390/polym12071529.
  • Yang, C., Tian, X., Liu, T., Cao, Y., & Li, D. (2017). 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance. Rapid Prototyping Journal, 23(1), 209-215. https://doi.org/10.1108/RPJ-08-2015-0098.
  • Yang, G., Park, M., & Park, S. J. (2019). Recent progresses of fabrication and characterization of fibers-reinforced composites: A review. Composites Communications, 14, 34-42. https://doi.org/10.1016/j.coco.2019.05.004
  • Yang, M., Lai, M., & Liu, S. (2021). 3D printing path planning algorithm for thin walled and complex devices. Science and Engineering of Composite Materials, 28(1), 327-334. https://doi.org/10.1515/secm-2021-0032.
  • Zakaria, M. R., Akil, H. M., Kudus, M. H. A., Ullah, F., Javed, F., & Nosbi, N. (2019). Hybrid carbon fiber-carbon nanotubes reinforced polymer composites: A review. Composites Part B: Engineering, 176, 107313. https://doi.org/10.1016/j.compositesb.2019.107313.
  • Zeng, C., Liu, L., Bian, W., Leng, J., & Liu, Y. (2021). Compression behavior and energy absorption of 3D printed continuous fiber reinforced composite honeycomb structures with shape memory effects. Additive Manufacturing, 38, 101842. https://doi.org/10.1016/j.addma.2021.101842.
  • Zhang, G., Ma, L., Wang, B., & Wu, L. (2012). Mechanical behaviour of CFRP sandwich structures with tetrahedral lattice truss cores. Composites Part B: Engineering, 43(2), 471-476. https://doi.org/10.1016/j.compositesb.2011.11.017.
  • Zhang, H., Huang, T., Jiang, Q., He, L., Bismarck, A., & Hu, Q. (2021). Recent progress of 3D printed continuous fiber reinforced polymer composites based on fused deposition modeling: a review. Journal of Materials Science, 56(23), 12999-13022. https://doi.org/10.1007/s10853-021-06111-w.
  • Zhao, H., Liu, X., Zhao, W., Wang, G., & Liu, B. (2019, June). An overview of research on FDM 3D printing process of continuous fiber reinforced composites. In Journal of Physics: Conference Series (Vol. 1213, No. 5, p. 052037). IOP Publishing. https://doi.org 10.1088/1742-6596/1213/5/052037.

MECHANICAL PROPERTIES OF 3D PRINTED CONTINUOUS CARBON FIBER/ POLYPROPYLENE LATTICE CORE COMPOSITE SANDWICH STRUCTURE

Year 2024, Volume: 29 Issue: 3, 863 - 880, 24.12.2024
https://doi.org/10.17482/uumfd.1497273

Abstract

The production of functional parts with 3D manufacturing techniques has started to disclose fascinating studies. Although only thermoplastic filaments were initially used, fiber-reinforced composite parts can be produced using developing techniques. This study investigated the quasi-static and dynamic mechanical performance of 3D printed continuous Carbon Fiber Reinforced (CFR) composite sandwich panels. Sandwich panels were designed with a prismatic lattice core between CFR composite facesheets. Continuous CFR Thermoplastic (Polypropylene (PP)) Monofilament Composites (CCTMC) were used to produce sandwich structures. CCTMC sandwiches were produced with a laboratory-scale production system, including thermoplastic extruder and mold designed specifically. Facesheets of sandwiches were manufactured in a hot compression mold as [0°/90°/0°] stacking sequence as three-layers using the same CCTMCs. The sandwich panels were fully recyclable and ultra-lightweight, and pyramidal-shaped trusstype lattice cores were placed as the core of the structure. Test results showed test specimens had stand ~270 kN peak force in the compression test and ~240 kN peak force in 3-point bending, and the deformation in the structure occurred when the mono composite element reached the buckling limit. In the dynamic 3- point bending, the peak force value increased approximately 2 times and reached 450 kN due to the strainrate dependence of the material.

Supporting Institution

The authors would like to present their thanks to the Scientific and Technological Research Council of Turkey (TÜBİTAK) for their support through Project Number 118M571.

Thanks

The authors also would like to thank Pega Automotive /Turkey for their support for compression and tensile experiments.

References

  • Abd-Elaziem, W., Khedr ,M., Abd-Elaziem, A.E., Allah, M. M. A., Mousa, A.A., Yehia, H.M., … & El-Baky, M.A.A. (2023) Particle- reinforced polymer matrix composites (PMC) fabricated by 3D printing. Journal of Inorganic and Organometallic Polymers and Materials, 33(12), 3732-3749. https://doi.org/10.1007/s10904-023-02819-1
  • Balıkoğlu, F., Demircioğlu, T. K., Diler, E. A., & Ataş, A. (2022). Strain rate effect on the tensile properties of plain weave aramid, carbon, and glass fabric reinforced monolithic and hybrid composites. International Journal of Materials Research, 113(6), 587-598. https://doi.org/10.1515/ijmr-2021-8386
  • Caminero, M. A., Chacón, J. M., García-Moreno, I., & Rodríguez, G. P. (2018). Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Composites Part B: Engineering, 148, 93-103. https://doi.org/10.1016/j.compositesb.2018.04.054.
  • Çantı, E. and Aydın, M. (2018). Effects of micro particle reinforcement on mechanical properties of 3D printed parts. Rapid Prototyping Journal, 24(1), 171-176. https://doi.org/10.1108/RPJ-06-2016-0095
  • Dong, K., Liu, L., Huang, X., & Xiao, X. (2020). 3D printing of continuous fiber reinforced diamond cellular structural composites and tensile properties. Composite Structures, 250, 112610. https://doi.org/10.1016/j.compstruct.2020.112610.
  • Finnegan, K., Kooistra, G., Wadley, H. N., & Deshpande, V. S. (2007). The compressive response of carbon fiber composite pyramidal truss sandwich cores. International Journal of Materials Research, 98(12), 1264-1272. https://doi.org/10.3139/146.101594.
  • Güçlü, H., Türkoğlu, İ. K., & Can, Y. (2020). Finite-element analysis of EPP foam core/self-reinforced PP sandwich structures. Emerging Materials Research, 9(4), 1250-1257. https://doi.org/10.1680/jemmr.19.00194.
  • Heidari-Rarani, M., Rafiee-Afarani, M., & Zahedi, A. M. (2019). Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Composites Part B: Engineering, 175, 107147. https://doi.org/10.1016/j.compositesb.2019.107147.
  • Hou, Z., Tian, X., Zhang, J., & Li, D. (2018). 3D printed continuous fibre reinforced composite corrugated structure. Composite Structures, 184, 1005-1010. https://doi.org/10.1016/j.compstruct.2017.10.080.
  • Kabir, S. F., Mathur, K., & Seyam, A. F. M. (2021). Maximizing the performance of 3d printed fiber-reinforced composites. Journal of Composites Science, 5(5), 136. https://doi.org/10.3390/jcs5050136.
  • Kousiatza, C., Tzetzis, D., & Karalekas, D. (2019). In-situ characterization of 3D printed continuous fiber reinforced composites: A methodological study using fiber Bragg grating sensors. Composites Science and Technology, 174, 134-141. https://doi.org/10.1016/j.compscitech.2019.02.008.
  • Li, Q., Gao, Y., & Ruan, F. (2023). The effect of temperature on the tensile properties and failure mechanisms of two-dimensional braided composites. Science and Engineering of Composite Materials, 30(1), 20220191. https://doi.org/10.1515/secm-2022-0191.
  • Li, S., Wang, K., Zhu, W., Peng, Y., Ahzi, S., & Chinesta, F. (2022). Contributions of interfaces on the mechanical behavior of 3D printed continuous fiber reinforced composites. Construction and Building Materials, 340, 127842. https://doi.org/10.1016/j.conbuildmat.2022.127842.
  • Mohammadizadeh, M., Imeri, A., Fidan, I., & Elkelany, M. J. C. P. B. E. (2019). 3D printed fiber reinforced polymer composites-Structural analysis. Composites Part B: Engineering, 175, 107112. https://doi.org/10.1016/j.compositesb.2019.107112.
  • Parveez, B., Kittur, M. I., Badruddin, I. A., Kamangar, S., Hussien, M., & Umarfarooq, M. A. (2022). Scientific advancements in composite materials for aircraft applications: a review. Polymers, 14(22), 5007. https://doi.org/10.3390/polym14225007.
  • Quan, C., Han, B., Hou, Z., Zhang, Q., Tian, X., & Lu, T. J. (2020). 3d printed continuous fiber reinforced composite auxetic honeycomb structures. Composites Part B: Engineering, 187, 107858. https://doi.org/10.1016/j.compositesb.2020.107858.
  • Rubino, F., Nisticò, A., Tucci, F., & Carlone, P. (2020). Marine application of fiber reinforced composites: a review. Journal of Marine Science and Engineering, 8(1), 26. https://doi.org/10.3390/jmse8010026.
  • Sarvestani, H. Y., Akbarzadeh, A. H., Mirbolghasemi, A., & Hermenean, K. (2018). 3D printed meta-sandwich structures: Failure mechanism, energy absorption and multi-hit capability. Materials & Design, 160, 179-193. https://doi.org/10.1016/j.matdes.2018.08.061.
  • Sharma, K., & Srinivas, G. (2020). Flying smart: Smart materials used in aviation industry. Materials Today: Proceedings, 27, 244-250. https://doi.org/10.1016/j.matpr.2019.10.115.
  • Stephen, C., Shivamurthy, B., Mourad, A. H. I., & Selvam, R. (2021). High-velocity impact behavior of hybrid fiber-reinforced epoxy composites. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(9), 431. https://doi.org/10.1007/s40430-021-03139-6
  • Sugiyama, K., Matsuzaki, R., Ueda, M., Todoroki, A., & Hirano, Y. (2018). 3D printing of composite sandwich structures using continuous carbon fiber and fiber tension. Composites Part A: Applied Science and Manufacturing, 113, 114-121. https://doi.org/10.1016/j.compositesa.2018.07.029.
  • Tian ,X., Todoroki, A., Liu, T., Wu, L., Hou, Z., Ueda, M., … & Lu, B. (2022). 3D printing of continuous fiber reinforced polymer composites: development, application, and prospective. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 1(1) 100016. https://doi.org/10.1016/j.cjmeam.2022.100016
  • Ueda, M., Kishimoto, S., Yamawaki, M., Matsuzaki, R., Todoroki, A., Hirano, Y., & Le Duigou, A. (2020). 3D compaction printing of a continuous carbon fiber reinforced thermoplastic. Composites Part A: Applied Science and Manufacturing, 137, 105985. https://doi.org/10.1016/j.compositesa.2020.105985.
  • Vinayagar, K., Muthusamy, C., Nagaraj, G., & Sridhar, R. (2020). Review on Crashworthiness Studies of Foam Filled Thin Walled Structures. International Advanced Research Journal in Science, Engineering and Technology, 7, 60-69. https://doi.org 10.17148/IARJSET.2020.7608.
  • Wan, Y., & Takahashi, J. (2021). Development of carbon fiber-reinforced thermoplastics for mass-produced automotive applications in japan. Journal of Composites Science, 5(3), 86. https://doi.org/10.3390/jcs5030086
  • Wang, Z., Luan, C., Liao, G., Yao, X., & Fu, J. (2019). Mechanical and self-monitoring behaviors of 3D printing smart continuous carbon fiber-thermoplastic lattice truss sandwich structure. Composites Part B: Engineering, 176, 107215. https://doi.org/10.1016/j.compositesb.2019.107215.
  • Wang, Z., Wang, X., Liu, K., Zhang, J., & Lu, Z. (2021). Crashworthiness index of honeycomb sandwich structures under low-speed oblique impact. International Journal of Mechanical Sciences, 208, 106683. https://doi.org/10.1016/j.ijmecsci.2021.106683.
  • Wickramasinghe, S., Do, T., & Tran, P. (2020). FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments. Polymers, 12(7), 1529. https://doi.org/10.3390/polym12071529.
  • Yang, C., Tian, X., Liu, T., Cao, Y., & Li, D. (2017). 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance. Rapid Prototyping Journal, 23(1), 209-215. https://doi.org/10.1108/RPJ-08-2015-0098.
  • Yang, G., Park, M., & Park, S. J. (2019). Recent progresses of fabrication and characterization of fibers-reinforced composites: A review. Composites Communications, 14, 34-42. https://doi.org/10.1016/j.coco.2019.05.004
  • Yang, M., Lai, M., & Liu, S. (2021). 3D printing path planning algorithm for thin walled and complex devices. Science and Engineering of Composite Materials, 28(1), 327-334. https://doi.org/10.1515/secm-2021-0032.
  • Zakaria, M. R., Akil, H. M., Kudus, M. H. A., Ullah, F., Javed, F., & Nosbi, N. (2019). Hybrid carbon fiber-carbon nanotubes reinforced polymer composites: A review. Composites Part B: Engineering, 176, 107313. https://doi.org/10.1016/j.compositesb.2019.107313.
  • Zeng, C., Liu, L., Bian, W., Leng, J., & Liu, Y. (2021). Compression behavior and energy absorption of 3D printed continuous fiber reinforced composite honeycomb structures with shape memory effects. Additive Manufacturing, 38, 101842. https://doi.org/10.1016/j.addma.2021.101842.
  • Zhang, G., Ma, L., Wang, B., & Wu, L. (2012). Mechanical behaviour of CFRP sandwich structures with tetrahedral lattice truss cores. Composites Part B: Engineering, 43(2), 471-476. https://doi.org/10.1016/j.compositesb.2011.11.017.
  • Zhang, H., Huang, T., Jiang, Q., He, L., Bismarck, A., & Hu, Q. (2021). Recent progress of 3D printed continuous fiber reinforced polymer composites based on fused deposition modeling: a review. Journal of Materials Science, 56(23), 12999-13022. https://doi.org/10.1007/s10853-021-06111-w.
  • Zhao, H., Liu, X., Zhao, W., Wang, G., & Liu, B. (2019, June). An overview of research on FDM 3D printing process of continuous fiber reinforced composites. In Journal of Physics: Conference Series (Vol. 1213, No. 5, p. 052037). IOP Publishing. https://doi.org 10.1088/1742-6596/1213/5/052037.
There are 36 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials, Automotive Engineering (Other)
Journal Section Research Articles
Authors

İbrahim Kürşad Türkoğlu 0000-0003-4627-4894

Tolgahan Bayram 0000-0002-1489-918X

Murat Yazıcı 0000-0002-8720-7594

Early Pub Date December 18, 2024
Publication Date December 24, 2024
Submission Date June 10, 2024
Acceptance Date October 17, 2024
Published in Issue Year 2024 Volume: 29 Issue: 3

Cite

APA Türkoğlu, İ. K., Bayram, T., & Yazıcı, M. (2024). MECHANICAL PROPERTIES OF 3D PRINTED CONTINUOUS CARBON FIBER/ POLYPROPYLENE LATTICE CORE COMPOSITE SANDWICH STRUCTURE. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 29(3), 863-880. https://doi.org/10.17482/uumfd.1497273
AMA Türkoğlu İK, Bayram T, Yazıcı M. MECHANICAL PROPERTIES OF 3D PRINTED CONTINUOUS CARBON FIBER/ POLYPROPYLENE LATTICE CORE COMPOSITE SANDWICH STRUCTURE. UUJFE. December 2024;29(3):863-880. doi:10.17482/uumfd.1497273
Chicago Türkoğlu, İbrahim Kürşad, Tolgahan Bayram, and Murat Yazıcı. “MECHANICAL PROPERTIES OF 3D PRINTED CONTINUOUS CARBON FIBER/ POLYPROPYLENE LATTICE CORE COMPOSITE SANDWICH STRUCTURE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29, no. 3 (December 2024): 863-80. https://doi.org/10.17482/uumfd.1497273.
EndNote Türkoğlu İK, Bayram T, Yazıcı M (December 1, 2024) MECHANICAL PROPERTIES OF 3D PRINTED CONTINUOUS CARBON FIBER/ POLYPROPYLENE LATTICE CORE COMPOSITE SANDWICH STRUCTURE. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29 3 863–880.
IEEE İ. K. Türkoğlu, T. Bayram, and M. Yazıcı, “MECHANICAL PROPERTIES OF 3D PRINTED CONTINUOUS CARBON FIBER/ POLYPROPYLENE LATTICE CORE COMPOSITE SANDWICH STRUCTURE”, UUJFE, vol. 29, no. 3, pp. 863–880, 2024, doi: 10.17482/uumfd.1497273.
ISNAD Türkoğlu, İbrahim Kürşad et al. “MECHANICAL PROPERTIES OF 3D PRINTED CONTINUOUS CARBON FIBER/ POLYPROPYLENE LATTICE CORE COMPOSITE SANDWICH STRUCTURE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29/3 (December 2024), 863-880. https://doi.org/10.17482/uumfd.1497273.
JAMA Türkoğlu İK, Bayram T, Yazıcı M. MECHANICAL PROPERTIES OF 3D PRINTED CONTINUOUS CARBON FIBER/ POLYPROPYLENE LATTICE CORE COMPOSITE SANDWICH STRUCTURE. UUJFE. 2024;29:863–880.
MLA Türkoğlu, İbrahim Kürşad et al. “MECHANICAL PROPERTIES OF 3D PRINTED CONTINUOUS CARBON FIBER/ POLYPROPYLENE LATTICE CORE COMPOSITE SANDWICH STRUCTURE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 29, no. 3, 2024, pp. 863-80, doi:10.17482/uumfd.1497273.
Vancouver Türkoğlu İK, Bayram T, Yazıcı M. MECHANICAL PROPERTIES OF 3D PRINTED CONTINUOUS CARBON FIBER/ POLYPROPYLENE LATTICE CORE COMPOSITE SANDWICH STRUCTURE. UUJFE. 2024;29(3):863-80.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.