Research Article
BibTex RIS Cite

Endüstriyel Tesiste Çalışanların Termal Konfor Analizi: Bolu İli Saha Çalışması

Year 2024, Volume: 29 Issue: 3, 699 - 712, 24.12.2024
https://doi.org/10.17482/uumfd.1511981

Abstract

Endüstriyel tesislerde termal konfor, işçi verimliliği ve sağlık açısından kritik öneme sahiptir. Optimal termal konfor sağlanması, HVAC sistemlerinin etkin kullanımını gerektirir. Bu bağlamda, çalışma ortamında uygun termal koşulların sağlanması için sürekli izleme ve iyileştirme önemlidir. Bu çalışmada Bolu ilinde bulunan bir tesisin mevcut ortam koşulları ölçüm ve anket yardımı ile işçiler açısından değerlendirilmiştir. Ölçümler yaz, kış ve bahar dönemleri olmak üzere ayrı ayrı ele alınmış ve yaş, cinsiyet, kıyafet durumu ve aktivite durumları dikkate alınarak değerlendirmeler yapılmıştır. PMV, PPD değerleri hesaplanmış ve bu değerler yapılan anket sonuçları ile kıyaslanarak mevcut ısıl konfor koşulları ortaya konulmuştur. Sonuç olarak kıyafet durumunun optimum çalışma sıcaklığında 0,9 ºC ile 2,2 ºC arasında değişime neden olabileceği görülmüştür.

References

  • Arif, M., Katafygiotou, M., Mazroei, A., Kaushik, A., and Elsarrag, E. (2016). Impact of indoor environmental quality on occupant well-being and comfort: A review of the literature. International Journal of Sustainable Built Environment, 5(1), 1-11. dx.doi.org/10.1016/j.ijsbe.2016.03.006.
  • Aritan, A.E. Investigation of thermal comfort conditions in a travertine processing plant by using thermal comfort indices. Int. J. Environ. Sci. Technol. 16, 5285–5288 (2019). doi: 10.1007/s13762-019-02378-4.
  • ASHRAE-55 Standard, A. S. H. R. A. E. (1992). Thermal environmental conditions for human occupancy. ANSI/ASHRAE, 55, 5.
  • Caner, İ. (2020). Optimization of Heating and Cooling Load in Hospitals in Terms of Thermal Comfort and Energy Efficiency, PhD Thesis, Balikesir University, Institute of science, Balikesir.
  • Özbağ, Ş. (2024). Thermal Comfort Analysıs For Heavy Manufacturing Environments in Industrial Facilities, Msc Thesis, Balikesir University, Institute of science, Balikesir.
  • de Melo Pinto, N., de Paula Xavier, A. A., and Hatakeyama, K. (2015). Thermal comfort in industrial environment: conditions and parameters. Procedia Manufacturing, 3, 4999-5006. doi: 10.1016/j.promfg.2015.07.662.
  • Enescu, D. (2017). A review of thermal comfort models and indicators for indoor environments. Renewable and Sustainable Energy Reviews, 79, 1353-1379. doi: 10.1016/j.rser.2017.05.175.
  • Akan, A. E., and Ünal, F. (2021). An application to error and uncertainty analysis in industrial type dryer experiments. Turkish Journal of Engineering, 5(2), 75-80.
  • Ünal, F. (2021). Energy and exergy analysis of an industrial corn dryer operated by two different fuels. International Journal of Exergy, 34(4), 475-491. doi: 10.1504/IJEX.2021.114095.
  • Eskin N. and Aker T., (2019) Binalarda Isıl Konfor Hesaplama Yöntemleri Ve Kullanıcı Değerlendirmesi ile Karşılaştırılması, 14. Ulusal Tesisat Mühendisliği Kongresi, İzmir, 17-20 Nisan 2019, s. 1053-1059.
  • Fanger, P. O., and Toftum, J. (2002). Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy and buildings, 34(6), 533-536. doi: 10.1016/S0378-7788(02)00003-8.
  • ISO 7730, (1995). Ergonomics of the thermal environment-assessment of the influence of the thermal environment using subjective judgement scales. ISO: Geneva, Switzerland.
  • Kekäläinen, P., Niemelä, R., Tuomainen, M., Kemppilä, S., Palonen, J., Riuttala, H., and Reijula, K. (2010). Effect of reduced summer indoor temperature on symptoms, perceived work environment and productivity in office work: An intervention study. Intelligent Buildings International, 2(4), 251-266. doi: 10.3763/inbi.2010.0051.
  • Kumar, S., Mathur, A., Singh, M. K., and Rana, K. B. (2021). Adaptive thermal comfort study of workers in a mini-industrial unit during summer and winter season in a tropical country, India. Building and Environment, 197, 107874, doi.org/10.1016/j.buildenv.2021.107874.
  • Lan, L., Wargocki, P., Wyon, D. P., and Lian, Z. (2011). Effects of thermal discomfort in an office on perceived air quality, SBS symptoms, physiological responses, and human performance. Indoor air, 21(5), 376-390, doi:10.1111/j.1600-0668.2011.00714.x.
  • Langevin, J., Gurian, P. L., and Wen, J. (2015). Tracking the human-building interaction: A longitudinal field study of occupant behavior in air-conditioned offices. Journal of Environmental Psychology, 42, 94-115. doi: 10.1016/j.jenvp.2015.01.007.
  • Langevin, J., Wen, J., and Gurian, P. L. (2013). Modeling thermal comfort holistically: Bayesian estimation of thermal sensation, acceptability, and preference distributions for office building occupants. Building and Environment, 69, 206-226. doi: 10.1016/j.buildenv.2013.07.017.
  • Omidvar, A., and Kim, J. (2020). Modification of sweat evaporative heat loss in the PMV/PPD model to improve thermal comfort prediction in warm climates. Building and Environment, 176, 106868, doi.org/10.1016/j.buildenv.2020.106868.
  • Wu, Q., Liu, J., Zhang, L., Zhang, J., and Jiang, L. (2020). Study on thermal sensation and thermal comfort in environment with moderate temperature ramps. Building and Environment, 171, 106640. doi.org/10.1016/j.buildenv.2019.106640.
  • Wyon, D. P., Andersen, I. B., and Lundqvist, G. R. (1979). The effects of moderate heat stress on mental performance. Scandinavian journal of work, environment & health, 352-361.
  • Yao, R., Li, B., and Liu, J. (2009). A theoretical adaptive model of thermal comfort–Adaptive Predicted Mean Vote (aPMV). Building and environment, 44(10), 2089-2096. doi: 10.1016/j.buildenv.2009.02.014.
  • Zhang, S., Cheng, Y., Oladokun, M. O., Wu, Y., and Lin, Z. (2020). Improving predicted mean vote with inversely determined metabolic rate. Sustainable Cities and Society, 53, 101870, doi: 10.1016/j.scs.2019.101870.
  • Kon, O., and Caner, İ. (2023). Calculations of internal heat gain from occupants affecting the energy consumption of airport buildings. International Journal of Sustainable Aviation, 9(4), 279-292. doi: 10.1504/IJSA.2023.134331.

THERMAL COMFORT ANALYSIS OF WORKERS IN AN INDUSTRIAL FACILITY: A FIELD STUDY IN BOLU PROVINCE

Year 2024, Volume: 29 Issue: 3, 699 - 712, 24.12.2024
https://doi.org/10.17482/uumfd.1511981

Abstract

Thermal comfort in industrial facilities has critical importance in terms of worker productivity and health. Providing optimal thermal comfort requires effective use of HVAC systems. In this context, continuous monitoring and improvement are important to ensure appropriate thermal conditions in the working environment. In this study, the current environmental conditions of a facility located in Bolu province were evaluated in terms of workers with the help of measurements and surveys. The measurements were taken separately for summer, winter and spring periods and the evaluations were made by taking into account age, gender, clothing status and activity status. PMV and PPD values were calculated and these values were compared with the survey results and the current thermal comfort conditions were revealed. As a result, it was seen that the clothing status could cause a change between 0.9 ºC and 2.2 ºC in the optimum working temperature.

References

  • Arif, M., Katafygiotou, M., Mazroei, A., Kaushik, A., and Elsarrag, E. (2016). Impact of indoor environmental quality on occupant well-being and comfort: A review of the literature. International Journal of Sustainable Built Environment, 5(1), 1-11. dx.doi.org/10.1016/j.ijsbe.2016.03.006.
  • Aritan, A.E. Investigation of thermal comfort conditions in a travertine processing plant by using thermal comfort indices. Int. J. Environ. Sci. Technol. 16, 5285–5288 (2019). doi: 10.1007/s13762-019-02378-4.
  • ASHRAE-55 Standard, A. S. H. R. A. E. (1992). Thermal environmental conditions for human occupancy. ANSI/ASHRAE, 55, 5.
  • Caner, İ. (2020). Optimization of Heating and Cooling Load in Hospitals in Terms of Thermal Comfort and Energy Efficiency, PhD Thesis, Balikesir University, Institute of science, Balikesir.
  • Özbağ, Ş. (2024). Thermal Comfort Analysıs For Heavy Manufacturing Environments in Industrial Facilities, Msc Thesis, Balikesir University, Institute of science, Balikesir.
  • de Melo Pinto, N., de Paula Xavier, A. A., and Hatakeyama, K. (2015). Thermal comfort in industrial environment: conditions and parameters. Procedia Manufacturing, 3, 4999-5006. doi: 10.1016/j.promfg.2015.07.662.
  • Enescu, D. (2017). A review of thermal comfort models and indicators for indoor environments. Renewable and Sustainable Energy Reviews, 79, 1353-1379. doi: 10.1016/j.rser.2017.05.175.
  • Akan, A. E., and Ünal, F. (2021). An application to error and uncertainty analysis in industrial type dryer experiments. Turkish Journal of Engineering, 5(2), 75-80.
  • Ünal, F. (2021). Energy and exergy analysis of an industrial corn dryer operated by two different fuels. International Journal of Exergy, 34(4), 475-491. doi: 10.1504/IJEX.2021.114095.
  • Eskin N. and Aker T., (2019) Binalarda Isıl Konfor Hesaplama Yöntemleri Ve Kullanıcı Değerlendirmesi ile Karşılaştırılması, 14. Ulusal Tesisat Mühendisliği Kongresi, İzmir, 17-20 Nisan 2019, s. 1053-1059.
  • Fanger, P. O., and Toftum, J. (2002). Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy and buildings, 34(6), 533-536. doi: 10.1016/S0378-7788(02)00003-8.
  • ISO 7730, (1995). Ergonomics of the thermal environment-assessment of the influence of the thermal environment using subjective judgement scales. ISO: Geneva, Switzerland.
  • Kekäläinen, P., Niemelä, R., Tuomainen, M., Kemppilä, S., Palonen, J., Riuttala, H., and Reijula, K. (2010). Effect of reduced summer indoor temperature on symptoms, perceived work environment and productivity in office work: An intervention study. Intelligent Buildings International, 2(4), 251-266. doi: 10.3763/inbi.2010.0051.
  • Kumar, S., Mathur, A., Singh, M. K., and Rana, K. B. (2021). Adaptive thermal comfort study of workers in a mini-industrial unit during summer and winter season in a tropical country, India. Building and Environment, 197, 107874, doi.org/10.1016/j.buildenv.2021.107874.
  • Lan, L., Wargocki, P., Wyon, D. P., and Lian, Z. (2011). Effects of thermal discomfort in an office on perceived air quality, SBS symptoms, physiological responses, and human performance. Indoor air, 21(5), 376-390, doi:10.1111/j.1600-0668.2011.00714.x.
  • Langevin, J., Gurian, P. L., and Wen, J. (2015). Tracking the human-building interaction: A longitudinal field study of occupant behavior in air-conditioned offices. Journal of Environmental Psychology, 42, 94-115. doi: 10.1016/j.jenvp.2015.01.007.
  • Langevin, J., Wen, J., and Gurian, P. L. (2013). Modeling thermal comfort holistically: Bayesian estimation of thermal sensation, acceptability, and preference distributions for office building occupants. Building and Environment, 69, 206-226. doi: 10.1016/j.buildenv.2013.07.017.
  • Omidvar, A., and Kim, J. (2020). Modification of sweat evaporative heat loss in the PMV/PPD model to improve thermal comfort prediction in warm climates. Building and Environment, 176, 106868, doi.org/10.1016/j.buildenv.2020.106868.
  • Wu, Q., Liu, J., Zhang, L., Zhang, J., and Jiang, L. (2020). Study on thermal sensation and thermal comfort in environment with moderate temperature ramps. Building and Environment, 171, 106640. doi.org/10.1016/j.buildenv.2019.106640.
  • Wyon, D. P., Andersen, I. B., and Lundqvist, G. R. (1979). The effects of moderate heat stress on mental performance. Scandinavian journal of work, environment & health, 352-361.
  • Yao, R., Li, B., and Liu, J. (2009). A theoretical adaptive model of thermal comfort–Adaptive Predicted Mean Vote (aPMV). Building and environment, 44(10), 2089-2096. doi: 10.1016/j.buildenv.2009.02.014.
  • Zhang, S., Cheng, Y., Oladokun, M. O., Wu, Y., and Lin, Z. (2020). Improving predicted mean vote with inversely determined metabolic rate. Sustainable Cities and Society, 53, 101870, doi: 10.1016/j.scs.2019.101870.
  • Kon, O., and Caner, İ. (2023). Calculations of internal heat gain from occupants affecting the energy consumption of airport buildings. International Journal of Sustainable Aviation, 9(4), 279-292. doi: 10.1504/IJSA.2023.134331.
There are 23 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Articles
Authors

İsmail Caner 0000-0003-1232-649X

Şükran Özbağ 0009-0006-7569-618X

Nadir İlten 0000-0003-4009-5078

Early Pub Date December 18, 2024
Publication Date December 24, 2024
Submission Date July 7, 2024
Acceptance Date September 13, 2024
Published in Issue Year 2024 Volume: 29 Issue: 3

Cite

APA Caner, İ., Özbağ, Ş., & İlten, N. (2024). THERMAL COMFORT ANALYSIS OF WORKERS IN AN INDUSTRIAL FACILITY: A FIELD STUDY IN BOLU PROVINCE. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 29(3), 699-712. https://doi.org/10.17482/uumfd.1511981
AMA Caner İ, Özbağ Ş, İlten N. THERMAL COMFORT ANALYSIS OF WORKERS IN AN INDUSTRIAL FACILITY: A FIELD STUDY IN BOLU PROVINCE. UUJFE. December 2024;29(3):699-712. doi:10.17482/uumfd.1511981
Chicago Caner, İsmail, Şükran Özbağ, and Nadir İlten. “THERMAL COMFORT ANALYSIS OF WORKERS IN AN INDUSTRIAL FACILITY: A FIELD STUDY IN BOLU PROVINCE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29, no. 3 (December 2024): 699-712. https://doi.org/10.17482/uumfd.1511981.
EndNote Caner İ, Özbağ Ş, İlten N (December 1, 2024) THERMAL COMFORT ANALYSIS OF WORKERS IN AN INDUSTRIAL FACILITY: A FIELD STUDY IN BOLU PROVINCE. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29 3 699–712.
IEEE İ. Caner, Ş. Özbağ, and N. İlten, “THERMAL COMFORT ANALYSIS OF WORKERS IN AN INDUSTRIAL FACILITY: A FIELD STUDY IN BOLU PROVINCE”, UUJFE, vol. 29, no. 3, pp. 699–712, 2024, doi: 10.17482/uumfd.1511981.
ISNAD Caner, İsmail et al. “THERMAL COMFORT ANALYSIS OF WORKERS IN AN INDUSTRIAL FACILITY: A FIELD STUDY IN BOLU PROVINCE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29/3 (December 2024), 699-712. https://doi.org/10.17482/uumfd.1511981.
JAMA Caner İ, Özbağ Ş, İlten N. THERMAL COMFORT ANALYSIS OF WORKERS IN AN INDUSTRIAL FACILITY: A FIELD STUDY IN BOLU PROVINCE. UUJFE. 2024;29:699–712.
MLA Caner, İsmail et al. “THERMAL COMFORT ANALYSIS OF WORKERS IN AN INDUSTRIAL FACILITY: A FIELD STUDY IN BOLU PROVINCE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 29, no. 3, 2024, pp. 699-12, doi:10.17482/uumfd.1511981.
Vancouver Caner İ, Özbağ Ş, İlten N. THERMAL COMFORT ANALYSIS OF WORKERS IN AN INDUSTRIAL FACILITY: A FIELD STUDY IN BOLU PROVINCE. UUJFE. 2024;29(3):699-712.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.