Research Article
BibTex RIS Cite

Immunohistochemical Investigation of Oxidative Stress-induced DNA Damage and Lipid Peroxidation in Bovine Papillomas and Fibropapillomas

Year 2021, Volume: 32 Issue: 1, 22 - 27, 25.03.2021
https://doi.org/10.36483/vanvetj.843747

Abstract

In this study, it was aimed to evaluate the expressions of 8-OHdG and MDA immunohistochemically in order to determine the oxidative stress-induced DNA damage and lipid peroxidation in 16 papillomas and 14 fibropapillomas from 30 cattle brought to our department between 2013-2020. Biopsy samples taken after surgery were fixed in buffered 10% formaldehyde solution. Sections of 5 μm thickness were taken from the paraffin blocks prepared after routine tissue follow-up procedures and Hematoxylin & Eosin staining was applied to the sections in order to detect histopathological changes. Avidin Biotin Peroxidase method was used for immunohistochemical staining. In papilloma cases, severe hyperkeratosis, retepects extending from the epidermis to the dermis, spongiosis and balloon-like degeneration in squamous epithelial cells, basophilic inclusion bodies in granular cells, ulcerations in the epidermis layer, hemorrhagic areas and an increase in kerato hyaline granules were observed. In addition to these findings, dense connective tissue increases were detected in fibropapilloma cases. In immunohistochemical evaluations, positive reactions for BPV were observed in the nuclei of cells in stratum granulosum. 8-OHdG positive reactions were detected in the cytoplasm and nucleus of the epidermal cells in papilloma cases, whereas in cases of fibropapilloma, reactions in these cells were observed in the cytoplasm of fibrocytes and fibroblasts in the dermis. Membranous MDA positive reactions were observed in the epidermal cells in papilloma cases, whereas MDA expressions were detected in the cytoplasm of fibrocytes and fibroblasts in the dermis of fibropapilloma cases. As a result of the literature reviews, no study data was found in which DNA damage due to oxidative stres and lipid peroxidation was detected by means of 8-OHdG and MDA expressions in papilloma and fibropapilloma cases of cattle, it is thought that the findings obtained in this study will contribute to the literature. In addition, it has been concluded that oxidative stress plays an important role in the pathogenesis of this tumor.

References

  • Abdouslam OE, Levkut M, Levkutdva M, Revajova V, Ondrejka R, Benisek Z (1997). Immunohistochemistry of the progressive and regressive stages of bovine papillomatosis. Acta Vet Brno, 66 (4), 245-248.
  • Al-Salihi KA, Al-Dabhawi AH, Ajeel AA, Erzuki IA, Ali TAH (2020). Clinico-histopathological and immunohistochemical study of ruminant's cutaneous papillomavirus in Iraq. Vet Med Int, 2020, 5691974.
  • Araldi RP, Carvalho RF, Melo TC et al. (2014). Bovine papillomavirus in beef cattle: first description of BPV-12 and putative type BAPV8 in Brazil. Genet Mol Res, 13 (3), 5644-5653.
  • Araldi RP, Melo TC, Neves AC et al. (2015). Hyperproliferative action of bovine papillomavirus: genetic and histopathological aspects. Genet Mol Res, 14 (4), 12942-12954.
  • Aslan Ö, Saraç Ş (2011). Sığır Papillomatozis’inde lipid peroksidasyon düzeyi ve antioksidan enzim aktiviteleri. Erciyes Üniv Vet Fak Derg, 8 (2), 75-81.
  • Ata EB, Mahmoud MAE, Madboli AA (2018). Molecular detection and immunopathological examination of Deltapapillomavirus 4 in skin and udder of Egyptian cattle. Vet World, 11 (7), 915-920.
  • Atasever A, Çam Y, Atalay Ö (2005). Bir sığır sürüsünde deri papillomatosis olguları. Ankara Üniv Vet Fak Derg, 52 (3), 197-200.
  • Atmaca E, Aksoy A (2009). Oksidatif DNA hasarı ve kromatografik yöntemlerle tespit edilmesi. YYU Vet Fak Derg, 20 (2), 79-83.
  • Batista MV, Silva MA, Pontes NE et al. (2013). Molecular epidemiology of bovine papillomatosis and the identification of a putative new virus type in Brazilian cattle. Vet J, 197 (2), 368-373.
  • Berstein LM, Poroshina TE, Kovalenko IM, Vasilyev DA (2016). Serum levels of 8-Hydroxy-2'-deoxyguanosine DNA in patients with breast cancer and endometrial cancer with and without diabetes mellitus. Bull Exp Biol Med, 161 (4), 547-549.
  • Beytut E (2017). Pathological and immunohistochemical evaluation of skin and teat papillomas in cattle. Turk J Vet Anim Sci, 41 (2), 204-212.
  • Bianchi RM, Alves CDBT, Schwertz CI et al. (2020). Molecular and pathological characterization of teat papillomatosis in dairy cows in southern Brazil. Braz J Microbiol, 51 (1), 369-375.
  • Bocaneti F, Altamura G, Corteggio A, Velescu E, Borzacchiello G (2015). Expression of bcl-2 and p53 in bovine cutaneous fibropapillomas. Infect Agent Cancer, 10 (1), 2.
  • Carvalho RF, Sakata ST, Giovanni DN et al. (2013). Bovine papillomavirus in Brazil: detection of coinfection of unusual types by a PCR-RFLP method. Biomed Res Int, 2013, 270898.
  • da Silva FR, Daudt C, Streck AF et al. (2015). Genetic characterization of Amazonian bovine papillomavirus reveals the existence of four new putative types. Virus Genes, 51 (1), 77-84.
  • Das I, Saha T (2009). Effect of garlic on lipid peroxidation and antioxidation enzymes in DMBA-induced skin carcinoma. Nutrition, 25 (4), 459-471.
  • Dörttaş SD, Bilge Dağalp S (2020). Veteriner hekimlikte papillomaviruslar ve önemi. Atatürk Üniversitesi Vet Bil Derg, 15 (1), 91-99.
  • Erturan I, Kumbul Doğuç D, Korkmaz S, Büyükbayram HI, Yıldırım M, Kocabey Uzun S (2019). Evaluation of oxidative stress in patients with recalcitrant warts. J Eur Acad Dermatol Venereol, 33 (10), 1952-1957.
  • Georgescu SR, Mitran CI, Mitran MI et al. (2018). New insights in the pathogenesis of HPV infection and the associated carcinogenic processes: the role of chronic inflammation and oxidative Stress. J Immunol Res, 2018, 5315816.
  • Grindatto A, Ferraro G, Varello K et al. (2015). Molecular and histological characterization of bovine papillomavirus in North West Italy. Vet Microbiol, 180 (1-2), 113-117.
  • Hamad MA, Al-Shammari AM, Odisho SM, Yaseen NY (2016). Molecular and phylogenetic analysis of bovine papillomavirus type 1: first report in Iraqi cattle. Adv Virol, 2016, 2143024.
  • Hamad MA, Al-Shammari AM, Odisho SM, Yaseen NY (2017). Molecular epidemiology of bovine papillomatosis and identification of three genotypes in central Iraq. Intervirology, 60 (4), 156-164.
  • Hatama S, Nishida T, Kadota K, Uchida I, Kanno T (2009). Bovine papillomavirus type 9 induces epithelial papillomas on the teat skin of heifers. Vet Microbiol, 136 (3-4), 347-351.
  • Hong YJ, Kim JH (2015). Detection of bovine papillomaviruses in skin warts of Korean native cattle from Jeju Island. J Prev Vet Med, 39 (3), 84-88.
  • Jelínek F, Tachezy R (2005). Cutaneous papillomatosis in cattle. J Comp Pathol, 132 (1), 70-81.
  • Kumar A, Pant M C, Singh H S, Khandelwal S (2012). Determinants of oxidative stress and DNA damage (8-OhdG) in squamous cell carcinoma of head and neck. Indian J Cancer, 49 (3), 309-315.
  • Maeda Y, Shibahara T, Wada Y et al. (2007). An outbreak of teat papillomatosis in cattle caused by bovine papilloma virus (BPV) type 6 and unclassified BPVs. Vet Microbiol, 121 (3-4), 242-248.
  • Munday JS (2014).. Bovine and human papillomaviruses: a comparative review. Vet Pathol, 51 (6), 1063-1075.
  • Özcan O, Erdal H, Çakırca G, Yönden Z (2015). Oxidative stress and its impact on intracellular lipids, proteins and DNA. J Clin Exp Invest, 6 (3), 331-336.
  • Özsoy ŞY, Özyıldız Z, Güzel M (2011). Clinical, pathological and immunohistochemical findings of bovine cutaneous papillomatosis. Ankara Üniv Vet Fak Derg, 58 (3), 161-165.
  • Płachetka A, Adamek B, Strzelczyk JK et al. (2013). 8-hydroxy-2'-deoxyguanosine in colorectal adenocarcinoma--is it a result of oxidative stress? Med Sci Monit, 19, 690-695.
  • Qing X, Shi D, Lv X, Wang B, Chen S, Shao Z (2019). Prognostic significance of 8-hydroxy-2'-deoxyguanosine in solid tumors: a meta-analysis. BMC Cancer, 19 (1), 997.
  • Rojas-Anaya E, Cantú-Covarrubias A, Álvarez JF, Loza-Rubio E (2016). Detection and phylogenetic analysis of bovine papillomavirus in cutaneous warts in cattle in Tamaulipas, Mexico. Can J Vet Res, 80 (4), 262-268.
  • Romano G, Sgambato A, Mancini R et al. (2000). 8-hydroxy-2'-deoxyguanosine in cervical cells: correlation with grade of dysplasia and human papillomavirus infection. Carcinogenesis, 21 (6), 1143-1147.
  • Sasmaz S, Arican O, Kurutas EB (2005). Oxidative stress in patients with nongenital warts. Mediators Inflamm, 2005 (4), 233-236.
  • Tabakoğlu E, Durgut R (2013). Veteriner hekimlikte oksidatif stres ve bazı önemli hastalıklarda oksidatif stresin etkileri. AVKAE Derg, 3 (1), 69-75.
  • Tan MT, Yildirim Y, Sozmen M, et al. (2012). A histopathological, immunohistochemical and molecular study of cutaneous bovine papillomatosis. Kafkas Univ Vet Fak Derg, 18 (5), 739-744.
  • Tozato CC, Lunardi M, Alfieri AF, et al. (2013). Teat papillomatosis associated with bovine papillomavirus types 6, 7, 9, and 10 in dairy cattle from Brazil. Braz J Microbiol, 44 (3), 905-909.
  • Timurkan MO, Alcigir E (2017). Phylogenetic analysis of a partial L1 gene from bovine papillomavirus type 1 isolated from naturally occurring papilloma cases in the northwestern region of Turkey. Onderstepoort J Vet Res, 84 (1), e1-e6.
  • Yamashita-Kawanishi N, Tsuzuki M, Wei Z, et al. (2019). Identification of bovine papillomavirus type 1 and 2 from bovine anogenital fibropapillomas. J Vet Med Sci, 81 (7), 1000-1005.

Sığır Papillom ve Fibropapillomlarda Oksidatif Stres Kaynaklı DNA Hasarı ve Lipid Peroksidasyonun İmmunohistokimyasal Olarak Araştırılması

Year 2021, Volume: 32 Issue: 1, 22 - 27, 25.03.2021
https://doi.org/10.36483/vanvetj.843747

Abstract

Bu çalışmada 2013-2020 yılları arasında anabilim dalımıza getirilen toplamda 30 adet sığırlara ait 16 adet papillom ve 14 adet fibropapillom örneğinde oksidatif stres kaynaklı DNA hasarı ve lipid peroksidasyonu belirlemek amacıyla immunohistokimyasal olarak 8-OHdG ve MDA ekspresyonlarının değerlendirilmesi amaçlandı. Cerrahi operasyon sonrası alınan biyopsi örnekleri tamponlu %10’luk formaldehit solüsyonunda fikze edildi. Rutin doku takip işlemleri sonrası hazırlanan parafin bloklardan 5 μm kalınlığında kesitler alındı ve histopatolojik değişikliklerin saptanabilmesi amacıyla kesitlere Hematoksilen & Eozin boyaması uygulandı. İmmunohistokimyasal boyamalarda Avidin Biotin Peroksidaz metodu uygulandı. Papillom vakalarında şiddetli hiperkeratoz, epidermisten dermise doğru uzanan retepektler, skuamöz epitel hücrelerinde spongiyozis ve balonumsu dejenerasyon, granüler hücrelerde bazofilik inklüzyon cisimcikleri, epidermis katmanında ülserasyonlar ve kanama alanları ile kerato hiyalin granüllerinde artış gözlendi. Fibropapillom vakalarında ise bu bulgulara ek olarak girdap tarzında bağ doku artışları tespit edildi. İmmunohistokimyasal değerlendirmelerde ise BPV pozitif reaksiyonlar stratum granulozumdaki hücrelerin çekirdeğinde gözlendi. 8-OHdG pozitif reaksiyonlar papillom vakalarında epidermal hücrelerin sitoplazmasında ve çekirdeğinde saptanırken, fibropapillom vakalarında ise bu hücrelerdeki reaksiyonlara ek olarak dermisteki fibrosit ve fibroblastların sitoplazmasında rastlanıldı. Papilloma olgularında epidermal hücrelerde membranöz MDA pozitif reaksiyonlar görülürken, fibropapilloma vakalarının dermisinde fibrosit ve fibroblastların sitoplazmasında MDA ekspresyonları tespit edildi. Yapılan literatür taramaları sonucunda sığırlara ait papillom ve fibropapillom vakalarında oksidatif strese bağlı DNA hasarı ile lipid peroksidasyonun 8-OHdG ve MDA ekspresyonları vasıtasıyla tespit edildiği herhangi bir çalışma verisine rastlanmamış olup ve bu yönüyle bu çalışmada elden edilen bulguların literatüre katkı sunacağı düşünülmektedir. Bunlara ek olarak oksidatif stresin bu tümörün patogenezinde önemli bir rol oynadığı kanaatine varılmıştır.

References

  • Abdouslam OE, Levkut M, Levkutdva M, Revajova V, Ondrejka R, Benisek Z (1997). Immunohistochemistry of the progressive and regressive stages of bovine papillomatosis. Acta Vet Brno, 66 (4), 245-248.
  • Al-Salihi KA, Al-Dabhawi AH, Ajeel AA, Erzuki IA, Ali TAH (2020). Clinico-histopathological and immunohistochemical study of ruminant's cutaneous papillomavirus in Iraq. Vet Med Int, 2020, 5691974.
  • Araldi RP, Carvalho RF, Melo TC et al. (2014). Bovine papillomavirus in beef cattle: first description of BPV-12 and putative type BAPV8 in Brazil. Genet Mol Res, 13 (3), 5644-5653.
  • Araldi RP, Melo TC, Neves AC et al. (2015). Hyperproliferative action of bovine papillomavirus: genetic and histopathological aspects. Genet Mol Res, 14 (4), 12942-12954.
  • Aslan Ö, Saraç Ş (2011). Sığır Papillomatozis’inde lipid peroksidasyon düzeyi ve antioksidan enzim aktiviteleri. Erciyes Üniv Vet Fak Derg, 8 (2), 75-81.
  • Ata EB, Mahmoud MAE, Madboli AA (2018). Molecular detection and immunopathological examination of Deltapapillomavirus 4 in skin and udder of Egyptian cattle. Vet World, 11 (7), 915-920.
  • Atasever A, Çam Y, Atalay Ö (2005). Bir sığır sürüsünde deri papillomatosis olguları. Ankara Üniv Vet Fak Derg, 52 (3), 197-200.
  • Atmaca E, Aksoy A (2009). Oksidatif DNA hasarı ve kromatografik yöntemlerle tespit edilmesi. YYU Vet Fak Derg, 20 (2), 79-83.
  • Batista MV, Silva MA, Pontes NE et al. (2013). Molecular epidemiology of bovine papillomatosis and the identification of a putative new virus type in Brazilian cattle. Vet J, 197 (2), 368-373.
  • Berstein LM, Poroshina TE, Kovalenko IM, Vasilyev DA (2016). Serum levels of 8-Hydroxy-2'-deoxyguanosine DNA in patients with breast cancer and endometrial cancer with and without diabetes mellitus. Bull Exp Biol Med, 161 (4), 547-549.
  • Beytut E (2017). Pathological and immunohistochemical evaluation of skin and teat papillomas in cattle. Turk J Vet Anim Sci, 41 (2), 204-212.
  • Bianchi RM, Alves CDBT, Schwertz CI et al. (2020). Molecular and pathological characterization of teat papillomatosis in dairy cows in southern Brazil. Braz J Microbiol, 51 (1), 369-375.
  • Bocaneti F, Altamura G, Corteggio A, Velescu E, Borzacchiello G (2015). Expression of bcl-2 and p53 in bovine cutaneous fibropapillomas. Infect Agent Cancer, 10 (1), 2.
  • Carvalho RF, Sakata ST, Giovanni DN et al. (2013). Bovine papillomavirus in Brazil: detection of coinfection of unusual types by a PCR-RFLP method. Biomed Res Int, 2013, 270898.
  • da Silva FR, Daudt C, Streck AF et al. (2015). Genetic characterization of Amazonian bovine papillomavirus reveals the existence of four new putative types. Virus Genes, 51 (1), 77-84.
  • Das I, Saha T (2009). Effect of garlic on lipid peroxidation and antioxidation enzymes in DMBA-induced skin carcinoma. Nutrition, 25 (4), 459-471.
  • Dörttaş SD, Bilge Dağalp S (2020). Veteriner hekimlikte papillomaviruslar ve önemi. Atatürk Üniversitesi Vet Bil Derg, 15 (1), 91-99.
  • Erturan I, Kumbul Doğuç D, Korkmaz S, Büyükbayram HI, Yıldırım M, Kocabey Uzun S (2019). Evaluation of oxidative stress in patients with recalcitrant warts. J Eur Acad Dermatol Venereol, 33 (10), 1952-1957.
  • Georgescu SR, Mitran CI, Mitran MI et al. (2018). New insights in the pathogenesis of HPV infection and the associated carcinogenic processes: the role of chronic inflammation and oxidative Stress. J Immunol Res, 2018, 5315816.
  • Grindatto A, Ferraro G, Varello K et al. (2015). Molecular and histological characterization of bovine papillomavirus in North West Italy. Vet Microbiol, 180 (1-2), 113-117.
  • Hamad MA, Al-Shammari AM, Odisho SM, Yaseen NY (2016). Molecular and phylogenetic analysis of bovine papillomavirus type 1: first report in Iraqi cattle. Adv Virol, 2016, 2143024.
  • Hamad MA, Al-Shammari AM, Odisho SM, Yaseen NY (2017). Molecular epidemiology of bovine papillomatosis and identification of three genotypes in central Iraq. Intervirology, 60 (4), 156-164.
  • Hatama S, Nishida T, Kadota K, Uchida I, Kanno T (2009). Bovine papillomavirus type 9 induces epithelial papillomas on the teat skin of heifers. Vet Microbiol, 136 (3-4), 347-351.
  • Hong YJ, Kim JH (2015). Detection of bovine papillomaviruses in skin warts of Korean native cattle from Jeju Island. J Prev Vet Med, 39 (3), 84-88.
  • Jelínek F, Tachezy R (2005). Cutaneous papillomatosis in cattle. J Comp Pathol, 132 (1), 70-81.
  • Kumar A, Pant M C, Singh H S, Khandelwal S (2012). Determinants of oxidative stress and DNA damage (8-OhdG) in squamous cell carcinoma of head and neck. Indian J Cancer, 49 (3), 309-315.
  • Maeda Y, Shibahara T, Wada Y et al. (2007). An outbreak of teat papillomatosis in cattle caused by bovine papilloma virus (BPV) type 6 and unclassified BPVs. Vet Microbiol, 121 (3-4), 242-248.
  • Munday JS (2014).. Bovine and human papillomaviruses: a comparative review. Vet Pathol, 51 (6), 1063-1075.
  • Özcan O, Erdal H, Çakırca G, Yönden Z (2015). Oxidative stress and its impact on intracellular lipids, proteins and DNA. J Clin Exp Invest, 6 (3), 331-336.
  • Özsoy ŞY, Özyıldız Z, Güzel M (2011). Clinical, pathological and immunohistochemical findings of bovine cutaneous papillomatosis. Ankara Üniv Vet Fak Derg, 58 (3), 161-165.
  • Płachetka A, Adamek B, Strzelczyk JK et al. (2013). 8-hydroxy-2'-deoxyguanosine in colorectal adenocarcinoma--is it a result of oxidative stress? Med Sci Monit, 19, 690-695.
  • Qing X, Shi D, Lv X, Wang B, Chen S, Shao Z (2019). Prognostic significance of 8-hydroxy-2'-deoxyguanosine in solid tumors: a meta-analysis. BMC Cancer, 19 (1), 997.
  • Rojas-Anaya E, Cantú-Covarrubias A, Álvarez JF, Loza-Rubio E (2016). Detection and phylogenetic analysis of bovine papillomavirus in cutaneous warts in cattle in Tamaulipas, Mexico. Can J Vet Res, 80 (4), 262-268.
  • Romano G, Sgambato A, Mancini R et al. (2000). 8-hydroxy-2'-deoxyguanosine in cervical cells: correlation with grade of dysplasia and human papillomavirus infection. Carcinogenesis, 21 (6), 1143-1147.
  • Sasmaz S, Arican O, Kurutas EB (2005). Oxidative stress in patients with nongenital warts. Mediators Inflamm, 2005 (4), 233-236.
  • Tabakoğlu E, Durgut R (2013). Veteriner hekimlikte oksidatif stres ve bazı önemli hastalıklarda oksidatif stresin etkileri. AVKAE Derg, 3 (1), 69-75.
  • Tan MT, Yildirim Y, Sozmen M, et al. (2012). A histopathological, immunohistochemical and molecular study of cutaneous bovine papillomatosis. Kafkas Univ Vet Fak Derg, 18 (5), 739-744.
  • Tozato CC, Lunardi M, Alfieri AF, et al. (2013). Teat papillomatosis associated with bovine papillomavirus types 6, 7, 9, and 10 in dairy cattle from Brazil. Braz J Microbiol, 44 (3), 905-909.
  • Timurkan MO, Alcigir E (2017). Phylogenetic analysis of a partial L1 gene from bovine papillomavirus type 1 isolated from naturally occurring papilloma cases in the northwestern region of Turkey. Onderstepoort J Vet Res, 84 (1), e1-e6.
  • Yamashita-Kawanishi N, Tsuzuki M, Wei Z, et al. (2019). Identification of bovine papillomavirus type 1 and 2 from bovine anogenital fibropapillomas. J Vet Med Sci, 81 (7), 1000-1005.
There are 40 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Araştırma Makaleleri
Authors

Emin Karakurt 0000-0003-2019-3690

Publication Date March 25, 2021
Submission Date December 20, 2020
Acceptance Date January 26, 2021
Published in Issue Year 2021 Volume: 32 Issue: 1

Cite

APA Karakurt, E. (2021). Immunohistochemical Investigation of Oxidative Stress-induced DNA Damage and Lipid Peroxidation in Bovine Papillomas and Fibropapillomas. Van Veterinary Journal, 32(1), 22-27. https://doi.org/10.36483/vanvetj.843747
AMA Karakurt E. Immunohistochemical Investigation of Oxidative Stress-induced DNA Damage and Lipid Peroxidation in Bovine Papillomas and Fibropapillomas. Van Vet J. March 2021;32(1):22-27. doi:10.36483/vanvetj.843747
Chicago Karakurt, Emin. “Immunohistochemical Investigation of Oxidative Stress-Induced DNA Damage and Lipid Peroxidation in Bovine Papillomas and Fibropapillomas”. Van Veterinary Journal 32, no. 1 (March 2021): 22-27. https://doi.org/10.36483/vanvetj.843747.
EndNote Karakurt E (March 1, 2021) Immunohistochemical Investigation of Oxidative Stress-induced DNA Damage and Lipid Peroxidation in Bovine Papillomas and Fibropapillomas. Van Veterinary Journal 32 1 22–27.
IEEE E. Karakurt, “Immunohistochemical Investigation of Oxidative Stress-induced DNA Damage and Lipid Peroxidation in Bovine Papillomas and Fibropapillomas”, Van Vet J, vol. 32, no. 1, pp. 22–27, 2021, doi: 10.36483/vanvetj.843747.
ISNAD Karakurt, Emin. “Immunohistochemical Investigation of Oxidative Stress-Induced DNA Damage and Lipid Peroxidation in Bovine Papillomas and Fibropapillomas”. Van Veterinary Journal 32/1 (March 2021), 22-27. https://doi.org/10.36483/vanvetj.843747.
JAMA Karakurt E. Immunohistochemical Investigation of Oxidative Stress-induced DNA Damage and Lipid Peroxidation in Bovine Papillomas and Fibropapillomas. Van Vet J. 2021;32:22–27.
MLA Karakurt, Emin. “Immunohistochemical Investigation of Oxidative Stress-Induced DNA Damage and Lipid Peroxidation in Bovine Papillomas and Fibropapillomas”. Van Veterinary Journal, vol. 32, no. 1, 2021, pp. 22-27, doi:10.36483/vanvetj.843747.
Vancouver Karakurt E. Immunohistochemical Investigation of Oxidative Stress-induced DNA Damage and Lipid Peroxidation in Bovine Papillomas and Fibropapillomas. Van Vet J. 2021;32(1):22-7.

88x31.png

Accepted papers are licensed under Creative Commons Attribution-NonCommercial 4.0 International License