Research Article
BibTex RIS Cite

Holştayn Irkı Sığırlarda CACNA2D1 Geni ve Subklinik Mastitis Arasındaki İlişki

Year 2023, Volume: 34 Issue: 2, 93 - 97, 29.07.2023
https://doi.org/10.36483/vanvetj.1242270

Abstract

CACNA2D1 geni, CACNA2D1 proteinini kodlar ve sütün indirilmesi sırasında kas hücrelerinin uyarılma-kasılma mekanizmasında görev alarak meme uçlarının açılıp kapanmasına yardımcı olur. Fizyolojik olarak üstelendiği bu görev ve kantitatif özellik lokusu (QTL) bölgelerine yakınlığı nedeni ile CACNA2D1 geninin mastitis direnci ile ilişkili olduğu bilinmektedir. Bu çalışmada Kayseri ili Develi ilçesinde yetiştirilen sağmal Holştayn sığırlarda CACNA2D1 geninde bulunan üç farklı SNP bölgesi ile subklinik mastitis durumları arasındaki ilişkinin araştırılması amaçlandı. Çalışma grubunu hepsi üçüncü laktasyonda 151 baş sağmal Holştayn sığır ırkı oluşturdu. Çalışmada California mastitis test (CMT) durumuna göre CACNA2D1 geni üzerinde bulanan üç SNP (C367400T, A496561G ve G519663A) yönünden genotip dağılımları belirlendi. Yapılan istatistiki analizler sonucunda C367400T, A496561G ve G519663A SNP genotipleri arasında fark bulunmadı (p>0.05). Yapılan Chi-Kare analizinde incelenen çalışma grubunda C367400T ve A496561G kodlu SNP’ler yönünden Hardy-Weinberg dengesinde (HWE) oldukları, G519663A kodlu SNP yönünden ise HWE’den saptıkları (P<0.05) gözlemlendi. Sonuç olarak mastitis direnci ile ilgili çalışmalarda CACNA2D1 geni ve bu SNP'lerin daha fazla örneklemle ve farklı mastitis göstergesi verilerle değerlendirilmesi gerektiği düşünüldü.

Supporting Institution

Erciyes Üniversitesi

Project Number

TYL-2017-7703

Thanks

Çalışmada kullanılan hayvanlara ait kan örneklerinin alınması ve California Mastitis Testi (CMT) test uygulaması nedeni ile Uzman Veteriner Hekim Murat AKKAYA’ya teşekkür ederiz.

References

  • Alaçam E (1997). Meme Hastalıkları. Alaçam E ve Şahal M (Ed). Sığır Hastalıkları (s. 389- 425). Medisan Yayınevi, Ankara.
  • Asaf VNM, Bhushan B, Panigrahi M et al. (2014a). Association study of genetic variants at single nucleotide polymorphism rs109231409 of mannose-binding lectins 1 gene with mastitis susceptibility in Vrindavani crossbred cattle. Vet World, 7 (10), 807-810.
  • Asaf VNM, Kumar A, Rahim A et al. (2014b). An overview on single nucleotide polymorphism studies in mastitis research. Vet World, 7 (10), 416–421.
  • Bagheri M, Miraie-Ashtiani R, Moradi-Shahrbabak M et al. (2013). Selective genotyping and logistic regression analyses to identify favorable SNP-genotypes for clinical mastitis and production traits in Holstein dairy cattle. Livest Sci, 151 (2-3), 140-151.
  • Baştan A (2019). İneklerde Meme Sağlığı ve Sorunları: Baştan A (Ed). Sütün Önemli Fiziksel ve Kimyasal Özellikleri (s. 34). Üçüncü Baskı. Hacattepe TAŞ, Ankara.
  • Bronzo V, Lopreiato V, Riva F et al. (2020). The role of innate immune response and microbiome in resilience of dairy cattle to disease: the mastitis model. Animals, 10 (8), 1397.
  • Buitkamp J, Ewald D, Masabanda J, Bishop MD, Fries R (2003). FISH and RH mapping of the bovine alpha (2)/delta calcium channel subunit gene (CACNA2D1). Anim Genet, 34 (4), 309–310.
  • Daldaban F, Arslan K, Akçay A, Sohel MMH, Akyüz B (2021). Association of BRCA1 (G22231T, T25025A, C28300A) polymorphisms with subclinical mastitis and milk yields in Holstein Cattle. Harran Üniv Vet Fak Derg, 10 (1), 12–19.
  • Deng G, Yuan Z, Gao X et al. (2011). Identification mutation of the CACNA2D1 gene and its effect on somatic cell score in cattle. J Appl Anim Res, 39 (1), 15–18.
  • Fthenakis GC (1995). California Mastitis Test and Whiteside Test in diagnosis of subclinical mastitis of dairy ewes. Small Rumin Res, 16 (3), 271–276.
  • Gabashvili IS, Sokolowski BHA, Morton CC, Giersch A (2007). Ion channel gene expression in the inner ear. J Assoc Res Otolaryngol, 8 (3), 305-328.
  • Jacob KK, Radhika G, Aravindakshan TV (2020). An in-silico evaluation of non-synonymous single nucleotide polymorphisms of mastitis resistance genes in cattle. Anim Biotechnol, 31 (1), 25-31.
  • Kirsanova E, Boysen P, Johansen GM et al., (2020). Expression analysis of candidate genes for chronic subclinical mastitis in Norwegian Red cattle. J Dairy Sci, 103 (10), 9142-9149.
  • Krishnamoorthy P, Goudar AL, Suresh KP, Roy P (2021). Global and countrywide prevalence of subclinical and clinical mastitis in dairy cattle and buffaloes by systematic review and meta-analysis. Res Vet Sci, 136, 561-586.
  • Longeri M, Polli M, Strillacci MG, Samore AB, Zanotti M (2006). Quantitative trait loci affecting the somatic cell score on chromosomes 4 and 26 in Italian Holstein cattle. J Dairy Sci, 89 (8), 3175–3177.
  • Magotra A, Gupta ID, Verma A et al. (2017). Characterization and validation of point mutation in exon 19 of CACNA2D1 gene in Karan Fries (Bos taurus x Bos indicus) cattle. Indian J Anim Res, 51 (2), 227–230.
  • Magotra A, Gupta ID, Verma A et al. (2018). Characterization and validation of point mutation in Exon 19 of Calcium channel, voltage-dependent, Alpha-2/Delta subunit 1 (CACNA2D1) gene and its relationship with mastitis traits in Sahiwal. Indian J Anim Res, 52 (1), 61-64.
  • Magotra A, Gupta ID, Verma A et al. (2019). Candidate SNP of CACNA2D1 gene associated with clinical mastitis and production traits in Sahiwal (Bos taurus indicus) and Karan Fries (Bos taurustaurus × Bos taurus indicus). Anim Biotechnol, 30 (1), 75–81.
  • Mundan D, Karabulut O (2008). Sütçü sığırlarda damızlıkta kullanma süresi ve uzun ömürlülüğün ekonomik açıdan önemi. YYÜ Vet Fak Derg, 19 (1), 65–68.
  • Narayana SG, de Jong E, Schenkel FS et al. (2022). Underlying genetic architecture of resistance to mastitis in dairy cattle: A systematic review and gene prioritization analysis of genome-wide association studies. J Dairy Sci, 100 (1), 323-351.
  • Puttaraju HP, Prakash BM, Keshava Murthy BC (2020). Molecular Biology and Biochemistry: A Lab Manual.
  • Puttaraju HP, Prakash BM, Keshava Murthy BC (Ed). Nucleic Acid Extraction (pp. 51-52). New India Pblishing Agency, New Delhi.
  • Rupp R, Boichard D (2003). Genetics of resistance to mastitis in dairy cattle. Vet Res, 34, 671–688.
  • Sabuncuoğlu N, Çoban Ö (2006). Mastitis ekonomisi. Atatürk Üniversitesi Vet Bil Derg, 1 (1-2), 1-5.
  • Sarıözkan S (2019). Türkiye’de süt sığırcılığı işletmelerinde mastitis nedeniyle oluşan finansal kayıpların tahmin edilmesi. Harran Üniv Vet Fak Derg, 8 (2),147–151.
  • Tolone M, Mastrangelo S, di Gerlando R et al. (2016). Association study between β-defensin gene polymorphisms and mastitis resistance in Valle del Belice dairy sheep breed. Small Rumin Res, 136, 18-21.
  • Youngerman SM, Saxton AM, Oliver SP, Pighetti GM (2004). Association of CXCR2 polymorphisms with subclinical and clinical mastitis in dairy cattle. J Dairy Sci, 87 (8), 2442-2448.
  • Yuan ZR, Li J, Liu L et al. (2011a). Single nucleotide polymorphism of CACNA2D1 gene and its association with milk somatic cell score in cattle. Mol Biol Rep, 38 (8), 5179–5183.
  • Yuan ZR, Li J, Zhang LP et al. (2011b). Novel SNPs polymorphism of bovine CACNA2D1 gene and their association with somatic cell score. Afr J Biotechnol, 10 (10), 1789-1793.
  • Zhang Q, Boichard D, Hoeschele I et al. (1998). Mapping quantitative trait loci for milk production and health of dairy cattle in a large, outbred pedigree. Genetics, 149 (4), 1959-1973.
  • Zhang H, Liu A, Wang Y et al. (2021). Genetic parameters, and genome-wide association studies of eight longevity traits representing either full or partial lifespan in Chinese Holsteins. Front Genet, 12, 634986.

The Relationship Between CACNA2D1 Gene and Subclinic Mastitis in Holstein Breed Cattle

Year 2023, Volume: 34 Issue: 2, 93 - 97, 29.07.2023
https://doi.org/10.36483/vanvetj.1242270

Abstract

The CACNA2D1 gene encodes the CACNA2D1 protein and, this protein is involved in the excitation-contraction mechanism of the muscle cells during milk withdrawal, helps the nipples to open and close. Because of this role in physiological mechanism and its relationship with quantitative trait locus (QTL) regions, CACNA2D1 gene is known to be associated with mastitis resistance. In this study, it was aimed to investigate the relationship between different three SNP (C367400T, A496561G and G519663A) on the CACNA2D1 gene, and subclinical mastitis in Holstein breed cattle reared in Develi district of Kayseri province. SNPs were genotyped from DNA samples by PCR-RFLP method. In the study, California mastitis test (CMT) data, and distributions of genotypes of the three SNPs on the CACNA2D1 gene were calculated. In the study, genotype distributions were determined in terms of C367400T, A496561G and G519663A SNPs found on the CACNA2D1 gene according to CMT status. The difference between the C367400T, A496561G and G519663A SNPs was not significant (p>0.05). In the study group examined the Chi-square (χ2) analysis conducted, it was observed that the Holstein cattle were in the Hardy-Weinberg equilibrium (HWE) in terms of C367400T and A496561G SNPs, deviation from HWE for the G519663A SNP (p<0.05). As a result, it was thought that the CACNA2D1 gene and these SNPs should be evaluated with more samples and different mastitis indicator data in studies on mastitis resistance.

Project Number

TYL-2017-7703

References

  • Alaçam E (1997). Meme Hastalıkları. Alaçam E ve Şahal M (Ed). Sığır Hastalıkları (s. 389- 425). Medisan Yayınevi, Ankara.
  • Asaf VNM, Bhushan B, Panigrahi M et al. (2014a). Association study of genetic variants at single nucleotide polymorphism rs109231409 of mannose-binding lectins 1 gene with mastitis susceptibility in Vrindavani crossbred cattle. Vet World, 7 (10), 807-810.
  • Asaf VNM, Kumar A, Rahim A et al. (2014b). An overview on single nucleotide polymorphism studies in mastitis research. Vet World, 7 (10), 416–421.
  • Bagheri M, Miraie-Ashtiani R, Moradi-Shahrbabak M et al. (2013). Selective genotyping and logistic regression analyses to identify favorable SNP-genotypes for clinical mastitis and production traits in Holstein dairy cattle. Livest Sci, 151 (2-3), 140-151.
  • Baştan A (2019). İneklerde Meme Sağlığı ve Sorunları: Baştan A (Ed). Sütün Önemli Fiziksel ve Kimyasal Özellikleri (s. 34). Üçüncü Baskı. Hacattepe TAŞ, Ankara.
  • Bronzo V, Lopreiato V, Riva F et al. (2020). The role of innate immune response and microbiome in resilience of dairy cattle to disease: the mastitis model. Animals, 10 (8), 1397.
  • Buitkamp J, Ewald D, Masabanda J, Bishop MD, Fries R (2003). FISH and RH mapping of the bovine alpha (2)/delta calcium channel subunit gene (CACNA2D1). Anim Genet, 34 (4), 309–310.
  • Daldaban F, Arslan K, Akçay A, Sohel MMH, Akyüz B (2021). Association of BRCA1 (G22231T, T25025A, C28300A) polymorphisms with subclinical mastitis and milk yields in Holstein Cattle. Harran Üniv Vet Fak Derg, 10 (1), 12–19.
  • Deng G, Yuan Z, Gao X et al. (2011). Identification mutation of the CACNA2D1 gene and its effect on somatic cell score in cattle. J Appl Anim Res, 39 (1), 15–18.
  • Fthenakis GC (1995). California Mastitis Test and Whiteside Test in diagnosis of subclinical mastitis of dairy ewes. Small Rumin Res, 16 (3), 271–276.
  • Gabashvili IS, Sokolowski BHA, Morton CC, Giersch A (2007). Ion channel gene expression in the inner ear. J Assoc Res Otolaryngol, 8 (3), 305-328.
  • Jacob KK, Radhika G, Aravindakshan TV (2020). An in-silico evaluation of non-synonymous single nucleotide polymorphisms of mastitis resistance genes in cattle. Anim Biotechnol, 31 (1), 25-31.
  • Kirsanova E, Boysen P, Johansen GM et al., (2020). Expression analysis of candidate genes for chronic subclinical mastitis in Norwegian Red cattle. J Dairy Sci, 103 (10), 9142-9149.
  • Krishnamoorthy P, Goudar AL, Suresh KP, Roy P (2021). Global and countrywide prevalence of subclinical and clinical mastitis in dairy cattle and buffaloes by systematic review and meta-analysis. Res Vet Sci, 136, 561-586.
  • Longeri M, Polli M, Strillacci MG, Samore AB, Zanotti M (2006). Quantitative trait loci affecting the somatic cell score on chromosomes 4 and 26 in Italian Holstein cattle. J Dairy Sci, 89 (8), 3175–3177.
  • Magotra A, Gupta ID, Verma A et al. (2017). Characterization and validation of point mutation in exon 19 of CACNA2D1 gene in Karan Fries (Bos taurus x Bos indicus) cattle. Indian J Anim Res, 51 (2), 227–230.
  • Magotra A, Gupta ID, Verma A et al. (2018). Characterization and validation of point mutation in Exon 19 of Calcium channel, voltage-dependent, Alpha-2/Delta subunit 1 (CACNA2D1) gene and its relationship with mastitis traits in Sahiwal. Indian J Anim Res, 52 (1), 61-64.
  • Magotra A, Gupta ID, Verma A et al. (2019). Candidate SNP of CACNA2D1 gene associated with clinical mastitis and production traits in Sahiwal (Bos taurus indicus) and Karan Fries (Bos taurustaurus × Bos taurus indicus). Anim Biotechnol, 30 (1), 75–81.
  • Mundan D, Karabulut O (2008). Sütçü sığırlarda damızlıkta kullanma süresi ve uzun ömürlülüğün ekonomik açıdan önemi. YYÜ Vet Fak Derg, 19 (1), 65–68.
  • Narayana SG, de Jong E, Schenkel FS et al. (2022). Underlying genetic architecture of resistance to mastitis in dairy cattle: A systematic review and gene prioritization analysis of genome-wide association studies. J Dairy Sci, 100 (1), 323-351.
  • Puttaraju HP, Prakash BM, Keshava Murthy BC (2020). Molecular Biology and Biochemistry: A Lab Manual.
  • Puttaraju HP, Prakash BM, Keshava Murthy BC (Ed). Nucleic Acid Extraction (pp. 51-52). New India Pblishing Agency, New Delhi.
  • Rupp R, Boichard D (2003). Genetics of resistance to mastitis in dairy cattle. Vet Res, 34, 671–688.
  • Sabuncuoğlu N, Çoban Ö (2006). Mastitis ekonomisi. Atatürk Üniversitesi Vet Bil Derg, 1 (1-2), 1-5.
  • Sarıözkan S (2019). Türkiye’de süt sığırcılığı işletmelerinde mastitis nedeniyle oluşan finansal kayıpların tahmin edilmesi. Harran Üniv Vet Fak Derg, 8 (2),147–151.
  • Tolone M, Mastrangelo S, di Gerlando R et al. (2016). Association study between β-defensin gene polymorphisms and mastitis resistance in Valle del Belice dairy sheep breed. Small Rumin Res, 136, 18-21.
  • Youngerman SM, Saxton AM, Oliver SP, Pighetti GM (2004). Association of CXCR2 polymorphisms with subclinical and clinical mastitis in dairy cattle. J Dairy Sci, 87 (8), 2442-2448.
  • Yuan ZR, Li J, Liu L et al. (2011a). Single nucleotide polymorphism of CACNA2D1 gene and its association with milk somatic cell score in cattle. Mol Biol Rep, 38 (8), 5179–5183.
  • Yuan ZR, Li J, Zhang LP et al. (2011b). Novel SNPs polymorphism of bovine CACNA2D1 gene and their association with somatic cell score. Afr J Biotechnol, 10 (10), 1789-1793.
  • Zhang Q, Boichard D, Hoeschele I et al. (1998). Mapping quantitative trait loci for milk production and health of dairy cattle in a large, outbred pedigree. Genetics, 149 (4), 1959-1973.
  • Zhang H, Liu A, Wang Y et al. (2021). Genetic parameters, and genome-wide association studies of eight longevity traits representing either full or partial lifespan in Chinese Holsteins. Front Genet, 12, 634986.
There are 31 citations in total.

Details

Primary Language English
Subjects Veterinary Sciences (Other)
Journal Section Araştırma Makaleleri
Authors

Fadime Daldaban 0000-0001-5795-8859

Korhan Arslan 0000-0002-2440-884X

Bilal Akyüz 0000-0001-7548-9830

Project Number TYL-2017-7703
Early Pub Date July 26, 2023
Publication Date July 29, 2023
Submission Date January 25, 2023
Acceptance Date May 17, 2023
Published in Issue Year 2023 Volume: 34 Issue: 2

Cite

APA Daldaban, F., Arslan, K., & Akyüz, B. (2023). The Relationship Between CACNA2D1 Gene and Subclinic Mastitis in Holstein Breed Cattle. Van Veterinary Journal, 34(2), 93-97. https://doi.org/10.36483/vanvetj.1242270
AMA Daldaban F, Arslan K, Akyüz B. The Relationship Between CACNA2D1 Gene and Subclinic Mastitis in Holstein Breed Cattle. Van Vet J. July 2023;34(2):93-97. doi:10.36483/vanvetj.1242270
Chicago Daldaban, Fadime, Korhan Arslan, and Bilal Akyüz. “The Relationship Between CACNA2D1 Gene and Subclinic Mastitis in Holstein Breed Cattle”. Van Veterinary Journal 34, no. 2 (July 2023): 93-97. https://doi.org/10.36483/vanvetj.1242270.
EndNote Daldaban F, Arslan K, Akyüz B (July 1, 2023) The Relationship Between CACNA2D1 Gene and Subclinic Mastitis in Holstein Breed Cattle. Van Veterinary Journal 34 2 93–97.
IEEE F. Daldaban, K. Arslan, and B. Akyüz, “The Relationship Between CACNA2D1 Gene and Subclinic Mastitis in Holstein Breed Cattle”, Van Vet J, vol. 34, no. 2, pp. 93–97, 2023, doi: 10.36483/vanvetj.1242270.
ISNAD Daldaban, Fadime et al. “The Relationship Between CACNA2D1 Gene and Subclinic Mastitis in Holstein Breed Cattle”. Van Veterinary Journal 34/2 (July 2023), 93-97. https://doi.org/10.36483/vanvetj.1242270.
JAMA Daldaban F, Arslan K, Akyüz B. The Relationship Between CACNA2D1 Gene and Subclinic Mastitis in Holstein Breed Cattle. Van Vet J. 2023;34:93–97.
MLA Daldaban, Fadime et al. “The Relationship Between CACNA2D1 Gene and Subclinic Mastitis in Holstein Breed Cattle”. Van Veterinary Journal, vol. 34, no. 2, 2023, pp. 93-97, doi:10.36483/vanvetj.1242270.
Vancouver Daldaban F, Arslan K, Akyüz B. The Relationship Between CACNA2D1 Gene and Subclinic Mastitis in Holstein Breed Cattle. Van Vet J. 2023;34(2):93-7.

88x31.png

Accepted papers are licensed under Creative Commons Attribution-NonCommercial 4.0 International License