Research Article
BibTex RIS Cite

BİR ÜRETİM FİRMASINDA İŞ ÇİZELGELEME PROBLEMİ İÇİN BİR TAM SAYILI PROGRAMLAMA MODELİ

Year 2022, , 110 - 119, 31.01.2022
https://doi.org/10.51551/verimlilik.819041

Abstract

Amaç: Bu çalışmada, bir otomotiv firmasındaki işlerin toplam gecikmesini ve toplam tamamlanma süresini en aza indirmek amacıyla karma tamsayılı bir programlama modeli geliştirilmektedir. Üretim yoluyla sürekli müşteri talebine hızlı cevap verebilmek için, araştırma ve geliştirme departmanındaki mühendislerin çalışma programı esnek olarak değerlendirilmektedir.

Yöntem: Yapılan çalışmada, karma tamsayı programlama modeli, toplam gecikme ve toplam tamamlanma sürelerinin ağırlıklı değerlerini belirlemek için analitik hiyerarşi süreç modeli tarafından desteklenmektedir. Geliştirilen model, gerçek veriler kullanılarak otomotiv firmasına uygulanmakta ve problem GAMS CPLEX 24.1.3 yazılımı kullanılarak çözülmektedir.

Bulgular: Bu iş çizelgeleme probleminde önerilen model kullanılarak, toplam tamamlanma süresi 10149 saatten 622 saate, maksimum gecikme süresi 104 saatten 9 saate ve toplam geç tamamlanma süresi 860 saatten 13 saate düşürülmektedir.

Özgünlük: Önerilen model söz konusu otomotiv endüstrisi firmasının yapısına özgün olarak, makine çizelgeleme modelleme esaslarının ve Analitik Hiyerarşi Prosesinin birlikte iş çizelgelemesi amacıyla kullanılmaktadır.

References

  • Charchi, N. Kalantari, Mehrabi Nejad, A. and Karimi Vardanjani, H. (2018). “Delineation of Groundwater Potential Zones Using Remote Sensing (RS), Geographical Information System (GIS) and Analytic Hierarchy Process (AHP) Techniques: A Case Study in the Leylia–Keynow Watershed, Southwest of Iran”, Carbonates and Evaporites, 34,1307-1319.
  • Dağdeviren, M. and Yüksel, İ. (2008). “Developing a Fuzzy Analytic Hierarchy Process (AHP) Model for Behavior-Based Safety Management”, Information Sciences, 178(6), 1717-1733.
  • Eck, B.T. and Pinedo, M. (1993). “On the Minimization of the Makespan Subject to Flowtime Optimality”, Operations Research, 41, 797-800.
  • Eren, T. and Güner, E. (2008). “A Bicriteria Flow Shop Scheduling with a Learning Effect”, Applied Mathematics and Computation, 32(9), 1719-1733.
  • Gupta, J.N.D., Ho, J.C. and Webster, S. (2000). “Bicriteria Optimization of the Makespan and Mean Flowtime on Two Identical Parallel Machines”, Journal of the Operational Research Society, 51(11), 1330-1339.
  • Gupta, J.N.D. and Ruiz-Torres, A.J. (2000). “Minimizing Makespan Subject to Minimum Total Flow-Time on Identical Parallel Machines”, European Journal of Operational Research, 125, 370-380.
  • Hu, H., Ng, K.K.H. and Qin, Y. (2016). “Robust Parallel Machine Scheduling Problem with Uncertainties and Sequence Dependent Setup Time”, Scientific Programming, 2016, 1-13.
  • Improta, G., Perrone, A., Russo, M.A. and Triassi, M. (2019). “Health Technology Assessment (HTA) of Optoelectronic Biosensors for Oncology by Analytic Hierarchy Process (AHP) and Likert Scale”, BMC Medical Research Methodology, 19, 140.
  • Kasımoğlu, S., Demir, G., Yaz, B.P. and Utku, D.H. (2021). “An Application: A Model with Sequence Dependent Setup Times for Parallel Machines for the Die House Station in a White Goods Manufacturing Company”, Osmaniye Korkut Ata University Journal of the Institute of Science and Technology, 4(1), 33-44.
  • Kurttila, M., Pesonen, M., Kangas, J. and Kajanus, M. (2000). “Utilizing the Analytic Hierarchy Process (AHP) in SWOT Analysis — A Hybrid Method and Its Application to a Forest-Certification Case”, Forest Policy and Economics,1(1), 41-52.
  • Lee, Y. and Kozar, K.A. (2006). “Investigating the Effect of Website Quality on E-Business Success: An Analytic Hierarchy Process (AHP) Approach”, Decision Support Systems, 42(3), 1383-1401.
  • Lenstra, J.K., Shmoys, D.B. and Tardos, E. (1990). “Approximation Algorithms for Scheduling Unrelated Parallel Machines”, Mathematical Programming, 46 (1-3), 259-271.
  • Liaw, C.F., Lin, Y.K., Cheng, C.Y. and Chen, M. (2003). “Scheduling Unrelated Parallel Machines to Minimize Total Weighted Tardiness”, Computer & Operations Research, 30(12), 1777-1789.
  • Lin, C.H. and Liao, C.J. (2004). “Makespan Minimization Subject to Flowtime Optimality on Identical Parallel Machines”, Computers and Operations Research, 31(10), 1655-1666.
  • Mohri, S., Masuda, T. and Ishii, H. (1999). “Bi-Criteria Scheduling Problem on Three Identical Parallel Machines”, International Journal of Production Economics, 60, 529-536.
  • Petruni, A., Giagloglou, E., Douglas, E., Geng, J., Leva, M.C. and Demichela, M. (2019). “Applying Analytic Hierarchy Process (AHP) to Choose a Human Factors Technique: Choosing the Suitable Human Reliability Analysis Technique for the Automotive Industry”, Safety Science, 119, 229-239.
  • Saaty, T.L. (1977). “A Scaling Method for Priorities in Hierarchical Structures”, Journal of Mathematical Psychology, 15(3), 234-281.
  • Sarin, S.C. and Hariharan, R. (2000). “A Two Machine Bicriteria Scheduling Problem,” International Journal of Production Economics, 65(2), 125-139.
  • Suresh, V. and Chaudhuri, D. (1996). “Bicriteria Scheduling Problem for Unrelated Parallel Machines”, Computers and Industrial Engineering, 30(1), 77-8.
  • Teknomo, K. (2006). Analytic Hierarchy Process (AHP) Tutorial Wong, J.K.W. and Li, H. (2008). “Application of the Analytic Hierarchy Process (AHP) in Multi-Criteria Analysis of the Selection of Intelligent Building Systems”, Building and Environment, 43(1), 108-125.
  • Yalaoui, F. and Chu C. (2002). “Parallel Machine Scheduling to Minimize Total Tardiness”, International Journal of Production Economics, 76(3), 265-279.
  • Younas, M., Jaffery, S.H.I., Khan, M., Khan, M.A., Ahmad, R., Mubashar, A. and Ali, L. (2019). “Multi-Objective Optimization for Sustainable Turning Ti6Al4V Alloy Using Grey Relational Analysis (GRA) Based on Analytic Hierarchy Process (AHP)”, The International Journal of Advanced Manufacturing Technology, 105, 1175-1188
  • Zheng, O., Tian, X. and Yang, M. (2019). “The Email Author Identification System Based on Support Vector Machine (SVM) and Analytic Hierarchy Process (AHP)”, IAENG International Journal of Computer Science, 46(2), 1-14.

A MIXED-INTEGER PROGRAMMING MODEL FOR THE JOB SCHEDULING PROBLEM IN A PRODUCTION COMPANY

Year 2022, , 110 - 119, 31.01.2022
https://doi.org/10.51551/verimlilik.819041

Abstract

Purpose: In this study, a mixed-integer programming model is developed to minimize the total lateness and total completion time of the jobs in an automotive company. In order to respond rapidly to the continuous customer demand through the production, the work schedule of engineers in the research and development department is considered flexibly.

Methodology: In the study, the mixed-integer programming model is supported by the analytical hierarchy process model to determine the weighted values of total tardiness and total completion times. The developed model is applied to the automotive company using the real data and the problem is solved using the GAMS CPLEX 24.1.3 software.

Findings: In this job scheduling problem, the total completion time is decreased to 622 hours from 10149 hours, maximum tardiness is decreased to 9 hours from 104 hours and total tardiness is decreased to 13 hours from 860 hours by using the proposed model.

Originality: The proposed model is used for the job scheduling purpose in compliance with the structure of the automotive industry company using the machine scheduling modeling principles and Analytical Hierarchy Process together.
Keywords: Parallel Machine Scheduling, Optimization, Mixed Integer Programming, Analytical Hierarchical Process.

References

  • Charchi, N. Kalantari, Mehrabi Nejad, A. and Karimi Vardanjani, H. (2018). “Delineation of Groundwater Potential Zones Using Remote Sensing (RS), Geographical Information System (GIS) and Analytic Hierarchy Process (AHP) Techniques: A Case Study in the Leylia–Keynow Watershed, Southwest of Iran”, Carbonates and Evaporites, 34,1307-1319.
  • Dağdeviren, M. and Yüksel, İ. (2008). “Developing a Fuzzy Analytic Hierarchy Process (AHP) Model for Behavior-Based Safety Management”, Information Sciences, 178(6), 1717-1733.
  • Eck, B.T. and Pinedo, M. (1993). “On the Minimization of the Makespan Subject to Flowtime Optimality”, Operations Research, 41, 797-800.
  • Eren, T. and Güner, E. (2008). “A Bicriteria Flow Shop Scheduling with a Learning Effect”, Applied Mathematics and Computation, 32(9), 1719-1733.
  • Gupta, J.N.D., Ho, J.C. and Webster, S. (2000). “Bicriteria Optimization of the Makespan and Mean Flowtime on Two Identical Parallel Machines”, Journal of the Operational Research Society, 51(11), 1330-1339.
  • Gupta, J.N.D. and Ruiz-Torres, A.J. (2000). “Minimizing Makespan Subject to Minimum Total Flow-Time on Identical Parallel Machines”, European Journal of Operational Research, 125, 370-380.
  • Hu, H., Ng, K.K.H. and Qin, Y. (2016). “Robust Parallel Machine Scheduling Problem with Uncertainties and Sequence Dependent Setup Time”, Scientific Programming, 2016, 1-13.
  • Improta, G., Perrone, A., Russo, M.A. and Triassi, M. (2019). “Health Technology Assessment (HTA) of Optoelectronic Biosensors for Oncology by Analytic Hierarchy Process (AHP) and Likert Scale”, BMC Medical Research Methodology, 19, 140.
  • Kasımoğlu, S., Demir, G., Yaz, B.P. and Utku, D.H. (2021). “An Application: A Model with Sequence Dependent Setup Times for Parallel Machines for the Die House Station in a White Goods Manufacturing Company”, Osmaniye Korkut Ata University Journal of the Institute of Science and Technology, 4(1), 33-44.
  • Kurttila, M., Pesonen, M., Kangas, J. and Kajanus, M. (2000). “Utilizing the Analytic Hierarchy Process (AHP) in SWOT Analysis — A Hybrid Method and Its Application to a Forest-Certification Case”, Forest Policy and Economics,1(1), 41-52.
  • Lee, Y. and Kozar, K.A. (2006). “Investigating the Effect of Website Quality on E-Business Success: An Analytic Hierarchy Process (AHP) Approach”, Decision Support Systems, 42(3), 1383-1401.
  • Lenstra, J.K., Shmoys, D.B. and Tardos, E. (1990). “Approximation Algorithms for Scheduling Unrelated Parallel Machines”, Mathematical Programming, 46 (1-3), 259-271.
  • Liaw, C.F., Lin, Y.K., Cheng, C.Y. and Chen, M. (2003). “Scheduling Unrelated Parallel Machines to Minimize Total Weighted Tardiness”, Computer & Operations Research, 30(12), 1777-1789.
  • Lin, C.H. and Liao, C.J. (2004). “Makespan Minimization Subject to Flowtime Optimality on Identical Parallel Machines”, Computers and Operations Research, 31(10), 1655-1666.
  • Mohri, S., Masuda, T. and Ishii, H. (1999). “Bi-Criteria Scheduling Problem on Three Identical Parallel Machines”, International Journal of Production Economics, 60, 529-536.
  • Petruni, A., Giagloglou, E., Douglas, E., Geng, J., Leva, M.C. and Demichela, M. (2019). “Applying Analytic Hierarchy Process (AHP) to Choose a Human Factors Technique: Choosing the Suitable Human Reliability Analysis Technique for the Automotive Industry”, Safety Science, 119, 229-239.
  • Saaty, T.L. (1977). “A Scaling Method for Priorities in Hierarchical Structures”, Journal of Mathematical Psychology, 15(3), 234-281.
  • Sarin, S.C. and Hariharan, R. (2000). “A Two Machine Bicriteria Scheduling Problem,” International Journal of Production Economics, 65(2), 125-139.
  • Suresh, V. and Chaudhuri, D. (1996). “Bicriteria Scheduling Problem for Unrelated Parallel Machines”, Computers and Industrial Engineering, 30(1), 77-8.
  • Teknomo, K. (2006). Analytic Hierarchy Process (AHP) Tutorial Wong, J.K.W. and Li, H. (2008). “Application of the Analytic Hierarchy Process (AHP) in Multi-Criteria Analysis of the Selection of Intelligent Building Systems”, Building and Environment, 43(1), 108-125.
  • Yalaoui, F. and Chu C. (2002). “Parallel Machine Scheduling to Minimize Total Tardiness”, International Journal of Production Economics, 76(3), 265-279.
  • Younas, M., Jaffery, S.H.I., Khan, M., Khan, M.A., Ahmad, R., Mubashar, A. and Ali, L. (2019). “Multi-Objective Optimization for Sustainable Turning Ti6Al4V Alloy Using Grey Relational Analysis (GRA) Based on Analytic Hierarchy Process (AHP)”, The International Journal of Advanced Manufacturing Technology, 105, 1175-1188
  • Zheng, O., Tian, X. and Yang, M. (2019). “The Email Author Identification System Based on Support Vector Machine (SVM) and Analytic Hierarchy Process (AHP)”, IAENG International Journal of Computer Science, 46(2), 1-14.
There are 23 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Durdu Hakan Utku 0000-0002-5755-6101

Karanfil Özyiğit

Esra Yağmur Farizoğlu

Publication Date January 31, 2022
Submission Date October 31, 2020
Published in Issue Year 2022

Cite

APA Utku, D. H., Özyiğit, K., & Farizoğlu, E. Y. (2022). A MIXED-INTEGER PROGRAMMING MODEL FOR THE JOB SCHEDULING PROBLEM IN A PRODUCTION COMPANY. Verimlilik Dergisi(1), 110-119. https://doi.org/10.51551/verimlilik.819041

                                                                                                          23139       23140           29293

22408  Verimlilik Dergisi Creative Commons Atıf-GayrıTicari 4.0 Uluslararası Lisansı (CC BY-NC 4.0) ile lisanslanmıştır.