Research Article
BibTex RIS Cite

Modelling Strategy of Airline Tankering with Nonlinear Programming

Year 2023, Volume: 57 Issue: 2, 365 - 392, 28.04.2023
https://doi.org/10.51551/verimlilik.1065007

Abstract

Purpose: This study aims to reduce the fuel costs, which constitute the largest share of total cost that airline companies have, with extra fuel transportation.

Methodology: A nonlinear programming model has been developed for tankering application that takes advantage of the different fuel prices at the airports. General Reduced Gradient Method (GRG) is used to solve the generated nonlinear programming problem. MS EXCEL solver add-in is used to solve the problem.

Findings: In the application part of study, two application has been studied on and one of them is parametrical and other assumes Istanbul as an hub airport in order to analyze the effect of flight distance, load rate, fuel price difference between the airports and altitude of cruise flight on tankering and cost. It has been observed that the fuel cost can be saved when tankering is applied to flight distances of 1300nm and less. Although the load rate is high and the fuel price difference is low, flights have been conducted between the centers which have short flight distances, the model allowed to tanker. It was observed that when the amount of fuel recommended by the problem result was taken for the designed scenarios, the fuel consumption increased by 2.5-3% compared to the trips without tankering. Despite the increase in fuel consumption, it has been found that a total fuel cost can be saved of 1% to 47% for round trips.

Originality: The efficiency of the original optimization model created with non-linear modeling was developed and tested for various scenarios.

References

  • Abadie, J., and Carpentier, J. (1969). "Generalization of the Wolfe reduced gradient method to the case of nonlinear constraints", Optimization, 37–47. https://ci.nii.ac.jp/naid/10010088491
  • Abdelghany, K., Abdelghany, A., and Raina, S. (2005). "A model for the airlines’ fuel management strategies", Journal of Air Transport Management, 11(4), 199–206. https://doi.org/10.1016/j.jairtraman.2004.10.002
  • aeroportos.weebly.com. (2020). "Fuel Prices", http://aeroportos.weebly.com/fuel-prices.html#.XfdHkugzbIW
  • Airbus. (2004). "Getting to grips with Fuel Economy", https://ansperformance.eu/library/airbus-fuel-economy.pdf
  • Airbus. (2005). "A319-Airplane Characteristics for Airport Planning".
  • Arora, J. S. (2017). "Introduction to Design Optimization", In Introduction to Optimum Design. https://doi.org/10.1016/b978-0-12-800806-5.00001-9
  • Darnell, D. W., and Loflin, C. (1977). "National Airlines Fuel Management and Allocation Model", Interfaces, 7(2), 1–16. https://doi.org/10.1287/inte.7.2.1
  • DE BAUDUS, L., and CASTAIGNS, P. (2016). "Control your speed… in cruise", Safety First, 9–21.
  • Deo, V. A., Silvestre, F. J., and Morales, M. (2020). "The benefits of tankering considering cost index flying and optional refuelling stops", Journal of Air Transport Management, 82. https://doi.org/10.1016/j.jairtraman.2019.101726
  • Erdoğan, N. K., and Alptekin, N. (2006). "Lineer Olmayan Programlama Problemleri". Anadolu Üniversitesi Yayınları.
  • EUROCONTROL. (2019). "Fuel tankering in European skies: economic benefits and environmental impact | EUROCONTROL", https://www.eurocontrol.int/publication/fuel-tankering-european-skies-economic-benefits-and-environmental-impact
  • Frank, S., Steponavice, I., and Rebennack, S. (2012). "Optimal power flow: a bibliographic survey I", Energy Systems. https://doi.org/10.1007/s12667-012-0056-y
  • Gerede, E., and Orhan, G. (2015). "Türk Havayolu Taşımacılığındaki Ekonomik Düzenlemelerin Gelişim Süreci", In Türk havayolu taşımacılığındaki ekonomik düzenlemelerin gelişim süreci. (pp. 169–170). Republic of Turkey Directorate General of Civil Aviation.
  • Guerreiro Fregnani, J. A. T., Müller, C., and Correia, A. R. (2013). "A fuel tankering model applied to a domestic airline network", Journal of Advanced Transportation, 47(4), 386–398. https://doi.org/10.1002/atr.162
  • Hubert, T., Guo, C., Mouton, C. A., and Powers, J. D. (2015). "Tankering Fuel on U.S. Air Force Transport Aircraft: An Assessment of Cost Savings" RAND Corporation. https://www.rand.org/pubs/research_reports/RR837.html
  • IATA. (2019a). "Fuel Fact Sheet", https://www.iata.org/contentassets/ebdba50e57194019930d72722413edd4/fact-sheet-fuel.pdf
  • IATA. (2019b). "Air Passenger Market Analysis", https://www.iata.org/contentassets/08ea7f485007409d998575257c822ee9/passenger-analysis-jun-2019.pdf
  • ICAO. (2018). "Annex 6 - Operation Of Aircraft - Part I - International Commercial Air Transport - Aeroplanes" (11.).
  • Lasdon, L. S., Waren, A. D., Jain, A., and Ratner, M. (1978). "Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming", ACM Transactions on Mathematical Software (TOMS), 4, 34–50. https://doi.org/10.1145/355769.355773
  • Lasdon, Leon S., Fox, R. L., and Ratner, M. W. (1974). "Nonlinear Optimization Using The Generalized Reduced Gradient Method", Revue Française D’automatique, İnformatique, Recherche Opérationnelle. Recherche Opérationnelle, 3(8), 73–103. https://doi.org/10.1051/ro/197408V300731
  • Nocedal, J., and Wright, S. J. (2006). "Numerical optimization", Springer Science and Business Media. https://doi.org/10.1201/b19115-11
  • Rao, S. S. (2009). "Engineering Optimization: Theory and Practice: Fourth Edition", In Engineering Optimization: Theory and Practice (Fourth Edi). John Wiley & Sons. https://doi.org/10.1002/9780470549124
  • Rudd, K., Foderaro, G., and Ferrari, S. (2013). "A generalized reduced gradient method for the optimal control of multiscale dynamical systems", Proceedings of the IEEE Conference on Decision and Control, 3857–3863. https://doi.org/10.1109/CDC.2013.6760478
  • Rudd, K., Foderaro, G., Zhu, P., and Ferrari, S. (2017). "A generalized reduced gradient method for the optimal control of very-large-scale robotic systems", IEEE Transactions on Robotics, 33(2), 1226–1232. https://doi.org/10.1109/TRO.2017.2686439
  • Rutner, S., and Brown, J. (1999). "Outsourcing as an Airline Strategy", Journal of Air Transportation World Wide.
  • Schonland, A. (2019, February 12). "Total Ground Time – A Key Operational Metric for Airlines » AirInsight", https://airinsight.com/total-ground-time-a-key-operational-metric-for-airlines/
  • skyvector.com. (2020). "SkyVector: Flight Planning / Aeronautical Charts", https://skyvector.com/
  • Smith, S., and Lasdon, L. (1992). "Solving large sparse nonlinear programs using GRG", ORSA Journal on Computing, 4(1), 2–15. https://doi.org/10.1287/ijoc.4.1.2
  • Stroup, J. S., and Wollmer, R. D. (1992). "Fuel management model for the airline industry", Operations Research, 40(2), 229–237. https://doi.org/10.1287/opre.40.2.229
  • Toplu, M. S., and Korpe, D. S. (2018). "Genel indirgenmiş gradyan metodu ile eniyileme çözücüsü geliştirilmesi", Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(3), 960–969. https://doi.org/10.16984/saufenbilder.298972
  • Tuncer, B., and Aydoğan, K. (2019). "Yakit Maliyetlerinin Taşinan Hava Kargo Miktari Üzerine Etkileri: 2007-2018 Türkiye Örneği", Uluslararası İktisadi ve İdari İncelemeler Dergisi, 146–147. https://doi.org/10.18092/ulikidince.517774
  • Turkish Airlines. (2019). "Turkish Airlines Board Activity Report", https://investor.turkishairlines.com/documents/ceyreklik-sonuclar/2019_yili_yk_faaliyet_raporu_en(2).pdf

Doğrusal Olmayan Programlama ile Havayolu Fazladan Yakıt Taşıma Stratejisinin Modellenmesi

Year 2023, Volume: 57 Issue: 2, 365 - 392, 28.04.2023
https://doi.org/10.51551/verimlilik.1065007

Abstract

Amaç: Bu çalışmanın amacı havayolu firmalarının en büyük maliyetini oluşturan yakıt maliyetlerini fazladan yakıt taşıma ile azaltmayı amaçlamaktadır.

Yöntem: Havalimanlarında yakıt fiyatlarının farklı olmasından faydalanan fazladan yakıt alma uygulaması için bir doğrusal olmayan programlama modeli geliştirilmiştir. Oluşturulan doğrusal olmayan programlama problemini çözmek için Genel İndirgenmiş Gradyan Metodundan yararlanılmıştır. Problemin çözümü için MS-EXCEL çözücü eklentisi kullanılmıştır.

Bulgular: Çalışmanın uygulama kısmında uçuş mesafesinin, doluluk oranının, uçulan merkezler arasındaki yakıt fiyat farkının ve düz uçuş yüksekliğinin fazladan yakıt taşıma ve maliyet üzerine etkisini analiz etmek amacıyla parametrik ve İstanbul’u merkez alan iki uygulama yapılmıştır. Fazladan yakıt taşımanın 1300nm ve daha kısa olan uçuş mesafelerine uygulandığında yakıt maliyetinden tasarruf edilebileceği görülmüştür. Uçuş mesafesi kısa olan merkezler arasında gerçekleşen seferlerde doluluk oranı yüksek ve yakıt fiyat farkı az olsa da model fazladan yakıt taşımaya izin vermiştir. Tasarlanan senaryolar için problem sonucunun önerdiği miktarlarda yakıt alındığında, fazladan yakıt alınmadan gerçekleştirilen seferlere kıyasla uçağın yakıt sarfiyatının %2,5-3 artırdığı gözlemlenmiştir. Bu yakıt sarfiyatının artışına rağmen gidiş-dönüş seferleri için toplam yakıt maliyetinden %1-%47 arasında tasarruf sağlanabileceği tespit edilmiştir.

Özgünlük: Doğrusal olmayan modelleme ile oluşturulan orijinal optimizasyon modelinin verimliliği çeşitli senaryolara ortaya geliştirilerek test edilmiştir.

References

  • Abadie, J., and Carpentier, J. (1969). "Generalization of the Wolfe reduced gradient method to the case of nonlinear constraints", Optimization, 37–47. https://ci.nii.ac.jp/naid/10010088491
  • Abdelghany, K., Abdelghany, A., and Raina, S. (2005). "A model for the airlines’ fuel management strategies", Journal of Air Transport Management, 11(4), 199–206. https://doi.org/10.1016/j.jairtraman.2004.10.002
  • aeroportos.weebly.com. (2020). "Fuel Prices", http://aeroportos.weebly.com/fuel-prices.html#.XfdHkugzbIW
  • Airbus. (2004). "Getting to grips with Fuel Economy", https://ansperformance.eu/library/airbus-fuel-economy.pdf
  • Airbus. (2005). "A319-Airplane Characteristics for Airport Planning".
  • Arora, J. S. (2017). "Introduction to Design Optimization", In Introduction to Optimum Design. https://doi.org/10.1016/b978-0-12-800806-5.00001-9
  • Darnell, D. W., and Loflin, C. (1977). "National Airlines Fuel Management and Allocation Model", Interfaces, 7(2), 1–16. https://doi.org/10.1287/inte.7.2.1
  • DE BAUDUS, L., and CASTAIGNS, P. (2016). "Control your speed… in cruise", Safety First, 9–21.
  • Deo, V. A., Silvestre, F. J., and Morales, M. (2020). "The benefits of tankering considering cost index flying and optional refuelling stops", Journal of Air Transport Management, 82. https://doi.org/10.1016/j.jairtraman.2019.101726
  • Erdoğan, N. K., and Alptekin, N. (2006). "Lineer Olmayan Programlama Problemleri". Anadolu Üniversitesi Yayınları.
  • EUROCONTROL. (2019). "Fuel tankering in European skies: economic benefits and environmental impact | EUROCONTROL", https://www.eurocontrol.int/publication/fuel-tankering-european-skies-economic-benefits-and-environmental-impact
  • Frank, S., Steponavice, I., and Rebennack, S. (2012). "Optimal power flow: a bibliographic survey I", Energy Systems. https://doi.org/10.1007/s12667-012-0056-y
  • Gerede, E., and Orhan, G. (2015). "Türk Havayolu Taşımacılığındaki Ekonomik Düzenlemelerin Gelişim Süreci", In Türk havayolu taşımacılığındaki ekonomik düzenlemelerin gelişim süreci. (pp. 169–170). Republic of Turkey Directorate General of Civil Aviation.
  • Guerreiro Fregnani, J. A. T., Müller, C., and Correia, A. R. (2013). "A fuel tankering model applied to a domestic airline network", Journal of Advanced Transportation, 47(4), 386–398. https://doi.org/10.1002/atr.162
  • Hubert, T., Guo, C., Mouton, C. A., and Powers, J. D. (2015). "Tankering Fuel on U.S. Air Force Transport Aircraft: An Assessment of Cost Savings" RAND Corporation. https://www.rand.org/pubs/research_reports/RR837.html
  • IATA. (2019a). "Fuel Fact Sheet", https://www.iata.org/contentassets/ebdba50e57194019930d72722413edd4/fact-sheet-fuel.pdf
  • IATA. (2019b). "Air Passenger Market Analysis", https://www.iata.org/contentassets/08ea7f485007409d998575257c822ee9/passenger-analysis-jun-2019.pdf
  • ICAO. (2018). "Annex 6 - Operation Of Aircraft - Part I - International Commercial Air Transport - Aeroplanes" (11.).
  • Lasdon, L. S., Waren, A. D., Jain, A., and Ratner, M. (1978). "Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming", ACM Transactions on Mathematical Software (TOMS), 4, 34–50. https://doi.org/10.1145/355769.355773
  • Lasdon, Leon S., Fox, R. L., and Ratner, M. W. (1974). "Nonlinear Optimization Using The Generalized Reduced Gradient Method", Revue Française D’automatique, İnformatique, Recherche Opérationnelle. Recherche Opérationnelle, 3(8), 73–103. https://doi.org/10.1051/ro/197408V300731
  • Nocedal, J., and Wright, S. J. (2006). "Numerical optimization", Springer Science and Business Media. https://doi.org/10.1201/b19115-11
  • Rao, S. S. (2009). "Engineering Optimization: Theory and Practice: Fourth Edition", In Engineering Optimization: Theory and Practice (Fourth Edi). John Wiley & Sons. https://doi.org/10.1002/9780470549124
  • Rudd, K., Foderaro, G., and Ferrari, S. (2013). "A generalized reduced gradient method for the optimal control of multiscale dynamical systems", Proceedings of the IEEE Conference on Decision and Control, 3857–3863. https://doi.org/10.1109/CDC.2013.6760478
  • Rudd, K., Foderaro, G., Zhu, P., and Ferrari, S. (2017). "A generalized reduced gradient method for the optimal control of very-large-scale robotic systems", IEEE Transactions on Robotics, 33(2), 1226–1232. https://doi.org/10.1109/TRO.2017.2686439
  • Rutner, S., and Brown, J. (1999). "Outsourcing as an Airline Strategy", Journal of Air Transportation World Wide.
  • Schonland, A. (2019, February 12). "Total Ground Time – A Key Operational Metric for Airlines » AirInsight", https://airinsight.com/total-ground-time-a-key-operational-metric-for-airlines/
  • skyvector.com. (2020). "SkyVector: Flight Planning / Aeronautical Charts", https://skyvector.com/
  • Smith, S., and Lasdon, L. (1992). "Solving large sparse nonlinear programs using GRG", ORSA Journal on Computing, 4(1), 2–15. https://doi.org/10.1287/ijoc.4.1.2
  • Stroup, J. S., and Wollmer, R. D. (1992). "Fuel management model for the airline industry", Operations Research, 40(2), 229–237. https://doi.org/10.1287/opre.40.2.229
  • Toplu, M. S., and Korpe, D. S. (2018). "Genel indirgenmiş gradyan metodu ile eniyileme çözücüsü geliştirilmesi", Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(3), 960–969. https://doi.org/10.16984/saufenbilder.298972
  • Tuncer, B., and Aydoğan, K. (2019). "Yakit Maliyetlerinin Taşinan Hava Kargo Miktari Üzerine Etkileri: 2007-2018 Türkiye Örneği", Uluslararası İktisadi ve İdari İncelemeler Dergisi, 146–147. https://doi.org/10.18092/ulikidince.517774
  • Turkish Airlines. (2019). "Turkish Airlines Board Activity Report", https://investor.turkishairlines.com/documents/ceyreklik-sonuclar/2019_yili_yk_faaliyet_raporu_en(2).pdf
There are 32 citations in total.

Details

Primary Language English
Journal Section Araştırma Makalesi
Authors

Niyazi Cem Gürsoy 0000-0003-2743-5314

Nesrin Alptekin 0000-0002-8967-8955

Publication Date April 28, 2023
Submission Date January 30, 2022
Published in Issue Year 2023 Volume: 57 Issue: 2

Cite

APA Gürsoy, N. C., & Alptekin, N. (2023). Modelling Strategy of Airline Tankering with Nonlinear Programming. Verimlilik Dergisi, 57(2), 365-392. https://doi.org/10.51551/verimlilik.1065007

23139       23140          29293

22408 Journal of Productivity is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)