Review
BibTex RIS Cite

ENCAPSULATION AND ITS USE IN FOOD TECHNOLOGY

Year 2022, Volume: 13 Issue: 2, 99 - 119, 31.08.2022
https://doi.org/10.38137/vftd.1096571

Abstract

Encapsulation technique has gained popularity in the food industry in recent years. Important food components that are easily perishable in the food processing process can be protected by this technique. Since these encapsulated components are not affected by factors such as humidity, temperature, pH, additives, they can be stored for a longer period of time. Many techniques are involved in the encapsulation process. Spray drying and cooling, extrusion coating, fluidized bed coating, liposome capture, coacervation, extrusion and emulsification are frequently used to form capsules. With the encapsulation process, natural or artificial sweeteners, probiotics, prebiotics, minerals, vitamins and many additives can be added to food components. There are challenges in encapsulation technology such as developing equipment, clarifying procedures, selecting non-toxic materials for encapsulation developing capsules from polymers adapted to the pH of the digestive tract, and determining the release mechanisms of encapsulated substances. High production costs due to the use of different coating materials and complex processes of make the encapsulation techniques adversely affect their use in the sectors. Costs can vary widely depending on the technique used and the material of the product. Increasing the number of studies on this technology and reducing production costs could be effective for this beneficial application to be used more effectively in practice. In this review, up-to-date information about the encapsulation method, the techniques used, and its use in various foods are given.

References

  • Adhikari, K., Mustapha, A. & Grün, I. U. (2003). Survival and metabolic activity of microencapsulated Bifidobacterium longum in stirred yogurt. Journal of Food Science, 68 (1), 275-280.
  • Aditya, N. P., Espinosa, Y. G. & Norton, I. T. (2017). Encapsulation systems for the delivery of hydrophilic nutraceuticals: Food Application. Biotechnology advances, 35 (4), 450-457.
  • Aditya, N. P., Yang, H., Kim, S. & Ko, S. (2015). Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability. Colloids and Surfaces B: Biointerfaces, 127, 114-121.
  • Alves, D., Marques, A., Milho, C., Costa, M. J., Pastrana, L. M., Cerqueira, M. A. & Sillankorva, S. M. (2019). Bacteriophage ϕIBB-PF7A loaded on sodium alginate-based films to prevent microbial meat spoilage. International Journal of Food Microbiology, 291, 121-127.
  • Alvim, I. D., Stein, M. A., Koury, I. P., Dantas, F. B. H. & Cruz, C. L. D. C. V. (2016). Comparison between the spray drying and spray chilling microparticles contain ascorbic acid in a baked product application. LWT-Food Science and Technology, 65, 689-694.
  • Anal, A. K. & Singh, H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in Food Science & Technology, 18 (5), 240-251.
  • Arshady, R. (1993). Microcapsules for food. Journal of Microencapsulation, 10 (4), 413-435.
  • Augustin, M. A., Sanguansri, L., Margetts, C. & Young, B. J. F. A. (2001). Microencapsulating food ingredients. Food Australia, 53 (6), 220-223.
  • Azarnia, S., Lee, B., St-Gelais, D., Kilcawley, K. & Noroozi, E. (2011). Effect of free and encapsulated recombinant aminopeptidase on proteolytic indices and sensory characteristics of Cheddar cheese. LWT-Food Science and Technology, 44 (2), 570-575.
  • Baik, M. Y., Suhendro, E. L., Nawar, W. W., McClements, D. J., Decker, E. A. & Chinachoti, P. (2004). Effects of antioxidants and humidity on the oxidative stability of microencapsulated fish oil. Journal of the American Oil Chemists’ Society, 81 (4), 355-360.
  • Bansode, S. S., Banarjee, S. K., Gaikwad, D. D., Jadhav, S. L. & Thorat, R. M. (2010). Microencapsulation: a review. International Journal of Pharmaceutical Sciences Review and Research, 1 (2), 38-43.
  • Barbosa, M. S., Todorov, S. D., Jurkiewicz, C. H. & Franco, B. D. (2015). Bacteriocin production by Lactobacillus curvatus MBSa2 entrapped in calcium alginate during ripening of salami for control of Listeria monocytogenes. Food Control, 47, 147-153.
  • Bilenler, T., Karabulut, I. & Candogan, K. (2017). Effects of encapsulated starter cultures on microbial and physicochemical properties of traditionally produced and heat treated sausages (sucuks). LWT, 75, 425-433.
  • Boral, S. & Bohidar, H. B. (2010). Effect of ionic strength on surface-selective patch binding-induced phase separation and coacervation in similarly charged gelatin−Agar molecular systems. The Journal of Physical Chemistry B, 114 (37), 12027-12035.
  • Bortnowska, G. (2015). Multilayer oil-in-water emulsions: formation, characteristics and application as the carriers for lipophilic bioactive food components-a review. Polish Journal of Food and Nutrition Sciences, 65 (3).
  • Burgain, J., Gaiani, C., Linder, M. & Scher, J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering, 104 (4), 467-483.
  • Champagne, C. P. & Fustier, P. (2007). Microencapsulation for the improved delivery of bioactive compounds into foods. Current Opinion in Biotechnology, 18 (2), 184-190.
  • Chan, Y. H., Chen, B. H., Chiu, C. P. & Lu, Y. F. (2004). The influence of phytosterols on the encapsulation efficiency of cholesterol liposomes. International Journal of Food Science & Technology, 39 (9), 985-995.
  • Charve, J. & Reineccius, G. A. (2009). Encapsulation performance of proteins and traditional materials for spray dried flavors. Journal of Agricultural and Food Chemistry, 57 (6), 2486-2492.
  • Chen, L., Remondetto, G. E. & Subirade, M. (2006). Food protein-based materials as nutraceutical delivery systems. Trends in Food Science & Technology, 17 (5), 272-283.
  • Chew, S. C., Tan, C. H., Pui, L. P., Chong, P. N., Gunasekaran, B. & Nyam, K. (2019). Encapsulation technologies: A tool for functional foods development. International Journal of Innovative Technology and Exploring Engineering, 8 (5), 154-162.
  • Chong, G. H., Yunus, R., Abdullah, N., Choong, T. S. Y. & Spotar, S. (2009). Coating and encapsulation of nanoparticles using supercritical antisolvent. American Journal of Applied Sciences, 6 (7), 1352-1358.
  • Comunian, A., Thomazini, M., Gambagorte, V. F., Trindade, M. A. & Favaro-Trindade, C. S. (2014). Effect of incorporating free or encapsulated ascorbic acid in chicken frankfurters on physicochemical and sensory stability. J Food Sci Eng, 167-175.
  • Cook, M. T., Tzortzis, G., Charalampopoulos, D. & Khutoryanskiy, V. V. (2012). Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release, 162 (1), 56-67.
  • Cui, H., Yuan, L., Ma, C., Li, C. & Lin, L. (2017). Effect of nianoliposome‐encapsulated thyme oil on growth of Salmonella enteritidis in chicken. Journal of Food Processing and Preservation, 41 (6), e13299.
  • da Silva Malheiros, P., Sant’Anna, V., Utpott, M. & Brandelli, A. (2012). Antilisterial activity and stability of nanovesicle-encapsulated antimicrobial peptide P34 in milk. Food Control, 23 (1), 42-47.
  • De Kruif, C. G., Weinbreck, F. & de Vries, R. (2004). Complex coacervation of proteins and anionic polysaccharides. Current Opinion in Colloid & Interface Science, 9 (5), 340-349.
  • De Prisco, A. & Mauriello, G. (2016). Probiotication of foods: A focus on microencapsulation tool. Trends in Food Science & Technology, 48, 27-39.
  • de Souza Simões, L., Madalena, D. A., Pinheiro, A. C., Teixeira, J. A., Vicente, A. A. & Ramos, O. L. (2017). Micro-and nano bio-based delivery systems for food applications: In vitro behavior. Advances in Colloid and Interface Science, 243, 23-45.
  • de Vos, P., Faas, M. M., Spasojevic, M. & Sikkema, J. (2010). Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal, 20 (4), 292-302.
  • De Vuyst, L., Falony, G. & Leroy, F. (2008). Probiotics in fermented sausages. Meat Science, 80 (1), 75-78. Desai, K. G. H. & Jin Park, H. (2005). Recent developments in microencapsulation of food ingredients. Drying Technology, 23 (7), 1361-1394.
  • DeZarn T. G. (1995). Food ingredients encapsulation: An overview. In S. J. Risch & G. A. Reineccius (Eds.): Encapsulation and controlled release of food ingredients. ACS symposium series. Cilt 590, Sf. 74–86.
  • Dias, D. R., Botrel, D. A., Fernandes, R. V. D. B. & Borges, S. V. (2017). Encapsulation as a tool for bioprocessing of functional foods. Current Opinion in Food Science, 13, 31-37.
  • Dickinson, E. (2009). Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids, 23 (6), 1473-1482.
  • Donsì, F., Annunziata, M., Vincensi, M. & Ferrari, G. (2012). Design of nanoemulsion-based delivery systems of natural antimicrobials: effect of the emulsifier. Journal of Biotechnology, 159 (4), 342-350.
  • Dube, A., Ng, K., Nicolazzo, J. A. & Larson, I. (2010). Effective use of reducing agents and nanoparticle encapsulation in stabilizing catechins in alkaline solution. Food Chemistry, 122 (3), 662-667.
  • Dubey, R. (2009). Microencapsulation technology and applications. Defence Science Journal, 59 (1), 82.
  • Edris, A. & Bergnståhl, B. (2001). Encapsulation of orange oil in a spray dried double emulsion. Food/Nahrung, 45 (2), 133-137.
  • Ezhilarasi, P. N., Karthik, P., Chhanwal, N. & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: a review. Food and Bioprocess Technology, 6 (3), 628-647.
  • Fang, Z. & Bhandari, B. (2010). Encapsulation of polyphenols–a review. Trends in Food Science & Technology, 21 (10), 510-523.
  • Favaro-Trindade, C. S., Heinemann, R. J. B. & Pedroso, D. D. L. (2011). Developments in probiotic encapsulation. CAB Rev, 6, 1-8.
  • Fernandes, Â., Antonio, A. L., Oliveira, M. B. P., Martins, A. & Ferreira, I. C. (2012). Effect of gamma and electron beam irradiation on the physico-chemical and nutritional properties of mushrooms: A review. Food chemistry, 135 (2), 641-650.
  • Fritzen-Freire, C. B., Prudêncio, E. S., Amboni, R. D., Pinto, S. S., Negrão-Murakami, A. N. & Murakami, F. S. (2012). Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Research International, 45 (1), 306-312.
  • Garti, N. & McClements, D. J. (2012). Encapsulation technologies and delivery systems for food ingredients and nutraceuticals, 2nd ed. Elsevier.
  • Gbassi, G. K. & Vandamme, T. (2012). Probiotic encapsulation technology: from microencapsulation to release into the gut. Pharmaceutics, 4 (1), 149-163.
  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A. & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40 (9), 1107-1121.
  • Ghorbanzade, T., Jafari, S. M., Akhavan, S. & Hadavi, R. (2017). Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chemistry, 216, 146-152.
  • Gibbs, B. F, Kermasha, S., Alli, I., Catherine, N. & Mulligan, B. (1999). Encapsulation in the food industry: a review. International Journal of Food Sciences and Nutrition, 50 (3), 213-224.
  • Gibis, M., Vogt, E. & Weiss, J. (2012). Encapsulation of polyphenolic grape seed extract in polymer-coated liposomes. Food & Function, 3 (3), 246-254.
  • González‐Sánchez, F., Azaola, A., Gutıérrez‐López, G. F. & Hernández‐Sánchez, H. (2010). Viability of microencapsulated Bifidobacterium animalis ssp. lactis BB12 in kefir during refrigerated storage. International Journal of Dairy Technology, 63 (3), 431-436.
  • Gouin, S. (2004). Microencapsulation: industrial appraisal of existing technologies and trends. Trends in Food Science & Technology, 15 (7-8), 330-347.
  • Gökmen, S., Palamutoğlu, R. & Sarıçoban, C. (2012). Gıda endüstrisinde enkapsülasyon uygulamaları. Gıda Teknolojileri Elektronik Dergisi, 7 (1), 36-50.
  • Guérin, D., Vuillemard, J. C. & Subirade, M. (2003). Protection of bifidobacteria encapsulated in polysaccharide-protein gel beads against gastric juice and bile. Journal of Food Protection, 66 (11), 2076-2084.
  • Haghshenas, B., Nami, Y., Haghshenas, M., Barzegari, A., Sharifi, S., Radiah, D. & Abdullah, N. (2015). Effect of addition of inulin and fenugreek on the survival of microencapsulated Enterococcus durans 39C in alginate-psyllium polymeric blends in simulated digestive system and yogurt. Asian Journal of Pharmaceutical Sciences, 10 (4), 350-361.
  • Hill, L. E., Gomes, C. & Taylor, T. M. (2013). Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT-Food Science and Technology, 51 (1), 86-93.
  • Homayouni, A., Azizi, A., Ehsani, M. R., Yarmand, M. S. & Razavi, S. H. (2008). Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food Chemistry, 111 (1), 50-55.
  • Huang, H. J., Yuan, W. K. & Chen, X. D. (2006). Microencapsulation based on emulsification for producing pharmaceutical products: A literature review. Developments in Chemical Engineering and Mineral Processing, 14 (3‐4), 515-544.
  • Hughes, G. A. (2005). Nanostructure-mediated drug delivery. Nanomedicine: Nanotechnology, Biology and Medicine, 1 (1), 22-30.
  • Jyothi, N. V. N., Prasanna, P. M., Sakarkar, S. N., Prabha, K. S., Ramaiah, P. S. & Srawan, G. Y. (2010). Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation, 27 (3), 187-197.
  • Kailasapathy, K. (2002). Microencapsulation of probiotic bacteria: technology and potential applications. Current Issues in Intestinal Microbiology, 3 (2), 39-48.
  • Kailasapathy, K. (2009). Encapsulation technologies for functional foods and nutraceutical product development. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 4 (033), 1-19.
  • Katona, J. M., Sovilj, V. J., Petrović, L. B. & Milanović, J. L. (2010). Preparation and characterization of oil containing microcapsules obtained by an interaction induced coacervation. Journal of Dispersion Science and Technology, 31 (12), 1679-1684.
  • Kılıç, B., Şimşek, A., Claus, J. R, Karaca, E. & Bilecen, D. (2018). Inhibition of Lipid Oxidation by Using a Combina-tion of Encapsulated and Unencapsulated Polyphosphates in Cooked Ground Meat during Storage. Meat and Muscle Biology, 1, 21-21.
  • Kınık, Ö., Kavas, G. & Yılmaz, E. (2003). Mikroenkapsülasyon tekniği ve süt teknolojisindeki kullanım olanakları. Gıda, 28 (4).
  • Kırtıl, E. & Öztop, M. H. (2014). Enkapsülasyon maddesi olarak lipozom ve gıdalarda kullanımı: Yapısı, karakterizasyonu, üretimi ve stabilitesi. Akademik Gıda, 12 (4), 41-57.
  • King, A. H. (1995). Encapsulation of Food Ingredients; A Review of Available Technology, Focusing on Hydrocolloids. In: Encapsulation and Controlled Release of Food Ingredients, Eds; Risch, S.J., Reineccius, G.A., American Chemical Society.
  • Kobayashi, N., Nishikawa, M. & Takakura, Y. (2005). Gene therapy and gene delivery. Drug Delivery: Principles and Applications, John Wiley & Sons, Inc, 305-319.
  • Koç, M., Sakin, M. & Kaymak Ertekin, F. (2010). Microencapsulation and its Applications in Food Technology. Pamukkale University Journal of Engineering Sciences, 16 (1), 77-86.
  • Krasaekoopt, W., Bhandari, B. & Deeth, H. (2003). Evaluation of encapsulation techniques of probiotics for yoghurt. International Dairy Journal, 13 (1), 3-13.
  • Krasaekoopt, W. & Watcharapoka, S. (2014). Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice. LWT-Food Science and Technology, 57 (2), 761-766.
  • Kurt, K. K. & Turgay, Ö. Fruktooligosakkarit ve aljinat ile enkapsüle edilmiş Lactobacillus reuteri DSM 17938 suşunun kurumaya karşı direncinin saptanması. Gıda ve Yem Bilimi Teknolojisi Dergisi, 27, 20-25.
  • Lagrega, M. D., Buchingam, P. L. & Evans, J. C. (1994). And The Environmental Resources Group, Hazardous Waste Management, Mc Graw Hill Inc. pp. 1103.
  • Lasch, J., Weissig, V. & Brandl, M. (2003). Preparation of liposomes, 2nd Ed., Oxford University Press, pp. 3-29.
  • Laye, C., McClements, D. J. & Weiss, J. (2008). Formation of biopolymer‐coated liposomes by electrostatic deposition of chitosan. Journal of Food Science, 73 (5), N7-N15.
  • Lee, D. H., Jin, B. H., Hwang, Y. I. & Lee, S. C. (2000). Encapsulation of bromelain in liposome. Preventive Nutrition and Food Science, 5 (2), 81-85.
  • Leong, W. F., Lai, O. M., Long, K., Man, Y. B. C., Misran, M. & Tan, C. P. (2011). Preparation and characterisation of water-soluble phytosterol nanodispersions. Food Chemistry, 129 (1), 77-83.
  • Lopez-Rubio, A., Gavara, R. & Lagaron, J. M. (2006). Bioactive packaging: turning foods into healthier foods through biomaterials. Trends in Food Science & Technology, 17 (10), 567-575.
  • Madene, A., Jacquot, M., Scher, J. & Desobry, S. (2006). Flavour encapsulation and controlled release–a review. International Journal of Food Science & Technology, 41 (1), 1-21.
  • Mady, M. M. & Darwish, M. M. (2010). Effect of chitosan coating on the characteristics of DPPC liposomes. Journal of Advanced Research, 1 (3), 187-191.
  • Martín, M. J., Lara-Villoslada, F., Ruiz, M. A. & Morales, M. E. (2015). Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science & Emerging Technologies, 27, 15-25.
  • McClements, D. J. (2015). Encapsulation, protection, and release of hydrophilic active components: Potential and limitations of colloidal delivery systems. Advances in Colloid and Interface Science, 219, 27-53.
  • Meena, K. S., Bairwa, N. K. & Parashar, B. (2011). Formulation and in vitro evaluation of verapamil hydrochloride loaded microcapsule using different polymer. Asian Journal of Biochemical and Pharmaceutical Research, 1 (3), 528-538.
  • Mohammed, N. K., Tan, C. P., Manap, Y. A., Muhialdin, B. J. & Hussin, A. S. M. (2020). Spray drying for the encapsulation of oils—A review. Molecules, 25 (17), 3873.
  • Mortazavianş A., Razaviş S. H., Ehsani, M. R. & Sohrabvandi, S. (2007). Principles and methods of microencapsulation of probiotic microorganisms. Iraian Journal of Biotechnology, 5 (1), 1-18.
  • Mozafari, M. R., Flanagan, J., Matia‐Merino, L., Awati, A., Omri, A., Suntres, Z. E. & Singh, H. (2006). Recent trends in the lipid‐based nanoencapsulation of antioxidants and their role in foods. Journal of the Science of Food and Agriculture, 86 (13), 2038-2045.
  • Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S. & Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Procedia Food Science, 1, 1806-1815.
  • Niu, Y., Ke, D., Yang, Q., Wang, X., Chen, Z., An, X. & Shen, W. (2012). Temperature-dependent stability and DPPH scavenging activity of liposomal curcumin at pH 7.0. Food Chemistry, 135 (3), 1377-1382.
  • Oliveira, A. C., Moretti, T. S., Boschini, C., Baliero, J. C. C., Freitas, O. D. & Favaro-Trindade, C. S. (2007). Stability of microencapsulated B. lactis (BI 01) and L. acidophilus (LAC 4) by complex coacervation followed by spray drying. Journal of Microencapsulation, 24 (7), 685-693.
  • Orive, G., Anitua, E., Pedraz, J. L. & Emerich, D. F. (2009). Biomaterials for promoting brain protection, repair and regeneration. Nature Reviews Neuroscience, 10 (9), 682-692.
  • Panya, A., Laguerre, M., Lecomte, J., Villeneuve, P., Weiss, J., McClements, D. J. & Decker, E. A. (2010). Effects of chitosan and rosmarinate esters on the physical and oxidative stability of liposomes. Journal of Agricultural and Food Chemistry, 58 (9), 5679-5684.
  • Paucar, O. C., Tulini, F. L., Thomazini, M., Balieiro, J. C. C., Pallone, E. M. J. A. & Favaro-Trindade, C. S. (2016). Production by spray chilling and characterization of solid lipid microparticles loaded with vitamin D3. Food and Bioproducts Processing, 100, 344-350.
  • Pavlík, Z., Saláková, A., Kameník, J., Pospíšil, J., Králová, M. & Steinhauserová, I. (2014). Effect of micro-encapsulated n-3 fatty acids on quality properties of two types of dry sausages. Acta Veterinaria Brno, 83 (2).
  • Peker, H. & Arslan, S. (2011). Mikroenkapsülasyon ve süt teknolojisinde kullanım alanları. Akademik Gıda, 9 (6), 70-80.
  • Pérez-Chabela, M. L., Lara-Labastida, R., Rodriguez-Huezo, E. & Totosaus, A. (2013). Effect of spray drying encapsulation of thermotolerant lactic acid bacteria on meat batters properties. Food and Bioprocess Technology, 6 (6), 1505-1515.
  • Picot, A. & Lacroix, C. (2004). Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. International Dairy Journal, 14 (6), 505-515.
  • Prata, A. S., Zanin, M. H., Ré, M. I. & Grosso, C. R. (2008). Release properties of chemical and enzymatic crosslinked gelatin-gum Arabic microparticles containing a fluorescent probe plus vetiver essential oil. Colloids and Surfaces B: Biointerfaces, 67 (2), 171-178.
  • Qi, M., Gu, Y., Sakata, N., Kim, D., Shirouzu, Y., Yamamoto, C., Hiura, A., Sumi, S. & Inoue, K. (2004). PVA hydrogel sheet macroencapsulation for the bioartificial pancreas. Biomaterials, 25 (27), 5885-5892.
  • Qi, W. T., Ma, J., Yu, W. T., Xie, Y. B., Wang, W. & Ma, X. (2006). Behavior of microbial growth and metabolism in alginate–chitosan–alginate (ACA) microcapsules. Enzyme and Microbial Technology, 38 (5), 697-704.
  • Radünz, M., da Trindade, M. L. M., Camargo, T. M., Radünz, A. L., Borges, C. D., Gandra, E. A. & Helbig, E. (2019). Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food Chemistry, 276, 180-186.
  • Rao, J. P. & Geckeler, K. E. (2011). Polymer nanoparticles: preparation techniques and size-control parameters. Progress in Polymer Science, 36 (7), 887-913.
  • Reis, C. P., Neufeld, R. J., Ribeiro, A. J. & Veiga, F. (2006). Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 2 (1), 8-21.
  • Rodrigues, F. J., Cedran, M. F. & Garcia, S. (2018). Influence of linseed mucilage incorporated into an alginate-base edible coating containing probiotic bacteria on shelf-life of fresh-cut yacon (Smallanthus sonchifolius). Food and Bioprocess Technology, 11 (8), 1605-1614.
  • Rokka, S. & Rantamäki, P. (2010). Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. European Food Research and Technology, 231 (1), 1-12.
  • Sagalowicz, L. & Leser, M. E. (2010). Delivery systems for liquid food products. Current Opinion in Colloid & Interface Science, 15 (1-2), 61-72.
  • Sagis, L. M. (2015). Microencapsulation and microspheres for food applications. In: Sagis LM (Ed): Determination of Mechanical Properties of Microcapsules. England, London: Academic Press, pp.195-205.
  • Saha, D. & Bhattacharya, S. (2010). Hydrocolloids as thickening and gelling agents in food: a critical review. Journal of Food Science and Technology, 47 (6), 587-597.
  • Salvia-Trujillo, L., Rojas-Graü, M. A., Soliva-Fortuny, R. & Martín-Belloso, O. (2015). Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut Fuji apples. Postharvest Biology and Technology, 105, 8-16.
  • Sedefoğlu, S., Ortakcı, F. & Sert, S. (2022). Enkapsüle Edilmiş ve Serbest Formda Probiyotik Lactobacillus acidophilus ATCC 4356 Suşunun Dondurma Depolama Periyodunda Stabilitesinin İncelenmesi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 53 (1), 14-23.
  • Semyonov, D., Ramon, O., Kaplun, Z., Levin-Brener, L., Gurevich, N. & Shimoni, E. (2010). Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Research International, 43 (1), 193-202.
  • Shahidi, F. & Han, X. Q. (1993). Encapsulation of food ingredients. Critical Reviews in Food Science & Nutrition, 33 (6), 501-547.
  • Singh, H., Thompson, A., Liu, W. & Corredig, M. (2012). Liposomes as food ingredients and nutraceutical delivery systems. In: Garti N., McClements DJ (Eds). Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Woodhead Publishing pp. 287-318.
  • Soodbakhsh, S., Gheisari, H. R., Aminlari, M. & Dehnavi, T. (2012). Viability of encapsulated Lactobacillus casei and Bifidobacterium lactis in synbiotic frozen yogurt and their survival under in vitro simulated gastrointestinal conditions. International Journal of Probiotics & Prebiotics, 7 (3/4), 121.
  • Soukoulis, C. & Bohn, T. (2018). A comprehensive overview on the micro-and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids. Critical Reviews in Food Science and Nutrition, 58 (1), 1-36.
  • Steenson, L. R., Klaenhammer, T. R. & Swaisgood, H. E. (1987). Calcium alginate-immobilized cultures of lactic streptococci are protected from bacteriophages. Journal of Dairy Science, 70 (6), 1121-1127.
  • Sultana, K., Godward, G., Reynolds, N., Arumugaswamy, R., Peiris, P. & Kailasapathy, K. (2000). Encapsulation of probiotic bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. International Journal of Food Microbiology, 62 (1-2), 47-55.
  • Şümnü, S. G. & Şahin, S. (2015). B1 vitaminin ikili emülsiyon yöntemi ile kapsüllenmesi. ODTÜMETU, 44. Teunou, E. & Poncelet, D. (2005). Food powder processing: Fluid-bed coating. In: Encapsulated and Powdered Foods. Onwulata CI (Ed). CRC Press, Taylor & Francis Group. P: 197-215.
  • Tokle, T., Mao, Y. & McClements, D. J. (2013). Potential biological fate of emulsion-based delivery systems: lipid particles nanolaminated with lactoferrin and β-lactoglobulin coatings. Pharmaceutical Research, 30 (12), 3200-3213.
  • Triki, M., Herrero, A. M., Rodríguez-Salas, L., Jiménez-Colmenero, F. & Ruiz-Capillas, C. (2013). Chilled storage characteristics of low-fat, n-3 PUFA-enriched dry fermented sausage reformulated with a healthy oil combination stabilized in a konjac matrix. Food Control, 31 (1), 158-165.
  • Viljanen, K., Kivikari, R. & Heinonen, M. (2004). Protein− lipid interactions during liposome oxidation with added anthocyanin and other phenolic compounds. Journal of Agricultural and Food Chemistry, 52 (5), 1104-1111.
  • Wandrey, C., Bartkowia, A. & Harding, S. E. (2010). Materials for encapsulation. In encapsulation technologies for active food ingredients and food processing. Zuidam NJ. and Nedovic VA.. Springer, NY., 31-100.
  • Wang, B., Siahaan, T. & Soltero, R. (2005). Drug Delivery: Principles and Applications, John Wiley & Sons.
  • Wang, G. (2005). Liposomes as drug delivery vehicles (pp. 411-434). John Wiley and Sons, Inc.
  • Wang, M., Wang, C., Gao, F. & Guo, M. (2018). Effects of polymerised whey protein-based microencapsulation on survivability of Lactobacillus acidophilus LA-5 and physiochemical properties of yoghurt. Journal of Microencapsulation, 35 (5), 504-512.
  • Xiao, Z., Liu, W., Zhu, G., Zhou, R. & Niu, Y. (2014). A review of the preparation and application of flavour and essential oils microcapsules based on complex coacervation technology. Journal of the Science of Food and Agriculture, 94 (8), 1482-1494.
  • Zhang, M., Tang, J., Mujumdar, A. S. & Wang, S. (2006). Trends in microwave-related drying of fruits and vegetables. Trends in Food Science & Technology, 17 (10), 524-534.
  • Zuidam, N. J. & Shimoni, E. (2010). Overview of microencapsulates for use in food products or processes and methods to make them. İn Zuidam NJ, Nedovic V (eds): Encapsulation technologies for active food ingredients and food processing, New York: ABD, Springer, pp. 3-29.

ENKAPSÜLASYON VE GIDA TEKNOLOJİSİNDE KULLANIMI

Year 2022, Volume: 13 Issue: 2, 99 - 119, 31.08.2022
https://doi.org/10.38137/vftd.1096571

Abstract

Enkapsülasyon yönteminin kullanımı son yıllarda gıda endüstrisi alanında önemli bir konuma gelmiştir. Gıda işleme prosesinde kolaylıkla bozulabilen önemli gıda bileşenleri enkapsülasyon yöntemiyle korunabilmektedir. Kapsüllenen bu bileşenler, nem, sıcaklık, pH, katkı maddeleri gibi faktörlerden etkilenmediği için daha uzun süre muhafaza edilebilir duruma gelir. Enkapsülasyon işleminde birçok yöntem bir arada uygulanmaktadır. Kapsülleri oluşturmak için, püskürtmeyle kurutma ve soğutma, ekstrüzyonla kaplama, akışkan yatak kaplama, lipozom yakalama, koaservasyon, ekstrüzyon ve emülsifikasyon işlemleri sıklıkla kullanılmaktadır. Enkapsülasyon işlemi ile gıda bileşenlerine doğal ya da yapay tatlandırıcılar, probiyotikler, prebiyotikler, mineraller, vitaminler ve birçok katkı maddesi eklenebilmektedir. Enkapsülasyon teknolojisinde ekipmanlarının geliştirilmesi, prosedürlerinin netleştirilmesi, kapsüllenecek maddelerin enkapsülasyonu için toksik olmayan materyallerin seçilmesi, sindirim sisteminin pH’sına uyarlanmış polimerlerden kapsüller geliştirilmesi ve kapsüllenmiş maddelerin salım mekanizmalarının belirlenmesi gibi zorluklar bulunmaktadır. Enkapsülasyon yöntemlerinin uygulanmasında karmaşık süreçlere sahip olması ve farklı kaplama materyallerin kullanılmasından dolayı yüksek üretim maliyeti olması da sektörlerde kullanımını olumsuz yönde etkilemektedir. Maliyetler, kullanılan yönteme ve materyale bağlı olarak büyük ölçüde değişebilir. Konu ile ilgili çalışmaların sayısının arttırılması ve üretim maliyetlerinin azaltılması sonucunda bu faydalı uygulamanın pratik olarak kullanılmasında etkili olacağı düşünülmektedir. Bu derlemede enkapsülasyon yöntemi, kullanılan yöntemler ve çeşitli gıdalarda kullanımı ile ilgili güncel bilgiler yer almaktadır.

References

  • Adhikari, K., Mustapha, A. & Grün, I. U. (2003). Survival and metabolic activity of microencapsulated Bifidobacterium longum in stirred yogurt. Journal of Food Science, 68 (1), 275-280.
  • Aditya, N. P., Espinosa, Y. G. & Norton, I. T. (2017). Encapsulation systems for the delivery of hydrophilic nutraceuticals: Food Application. Biotechnology advances, 35 (4), 450-457.
  • Aditya, N. P., Yang, H., Kim, S. & Ko, S. (2015). Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability. Colloids and Surfaces B: Biointerfaces, 127, 114-121.
  • Alves, D., Marques, A., Milho, C., Costa, M. J., Pastrana, L. M., Cerqueira, M. A. & Sillankorva, S. M. (2019). Bacteriophage ϕIBB-PF7A loaded on sodium alginate-based films to prevent microbial meat spoilage. International Journal of Food Microbiology, 291, 121-127.
  • Alvim, I. D., Stein, M. A., Koury, I. P., Dantas, F. B. H. & Cruz, C. L. D. C. V. (2016). Comparison between the spray drying and spray chilling microparticles contain ascorbic acid in a baked product application. LWT-Food Science and Technology, 65, 689-694.
  • Anal, A. K. & Singh, H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in Food Science & Technology, 18 (5), 240-251.
  • Arshady, R. (1993). Microcapsules for food. Journal of Microencapsulation, 10 (4), 413-435.
  • Augustin, M. A., Sanguansri, L., Margetts, C. & Young, B. J. F. A. (2001). Microencapsulating food ingredients. Food Australia, 53 (6), 220-223.
  • Azarnia, S., Lee, B., St-Gelais, D., Kilcawley, K. & Noroozi, E. (2011). Effect of free and encapsulated recombinant aminopeptidase on proteolytic indices and sensory characteristics of Cheddar cheese. LWT-Food Science and Technology, 44 (2), 570-575.
  • Baik, M. Y., Suhendro, E. L., Nawar, W. W., McClements, D. J., Decker, E. A. & Chinachoti, P. (2004). Effects of antioxidants and humidity on the oxidative stability of microencapsulated fish oil. Journal of the American Oil Chemists’ Society, 81 (4), 355-360.
  • Bansode, S. S., Banarjee, S. K., Gaikwad, D. D., Jadhav, S. L. & Thorat, R. M. (2010). Microencapsulation: a review. International Journal of Pharmaceutical Sciences Review and Research, 1 (2), 38-43.
  • Barbosa, M. S., Todorov, S. D., Jurkiewicz, C. H. & Franco, B. D. (2015). Bacteriocin production by Lactobacillus curvatus MBSa2 entrapped in calcium alginate during ripening of salami for control of Listeria monocytogenes. Food Control, 47, 147-153.
  • Bilenler, T., Karabulut, I. & Candogan, K. (2017). Effects of encapsulated starter cultures on microbial and physicochemical properties of traditionally produced and heat treated sausages (sucuks). LWT, 75, 425-433.
  • Boral, S. & Bohidar, H. B. (2010). Effect of ionic strength on surface-selective patch binding-induced phase separation and coacervation in similarly charged gelatin−Agar molecular systems. The Journal of Physical Chemistry B, 114 (37), 12027-12035.
  • Bortnowska, G. (2015). Multilayer oil-in-water emulsions: formation, characteristics and application as the carriers for lipophilic bioactive food components-a review. Polish Journal of Food and Nutrition Sciences, 65 (3).
  • Burgain, J., Gaiani, C., Linder, M. & Scher, J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering, 104 (4), 467-483.
  • Champagne, C. P. & Fustier, P. (2007). Microencapsulation for the improved delivery of bioactive compounds into foods. Current Opinion in Biotechnology, 18 (2), 184-190.
  • Chan, Y. H., Chen, B. H., Chiu, C. P. & Lu, Y. F. (2004). The influence of phytosterols on the encapsulation efficiency of cholesterol liposomes. International Journal of Food Science & Technology, 39 (9), 985-995.
  • Charve, J. & Reineccius, G. A. (2009). Encapsulation performance of proteins and traditional materials for spray dried flavors. Journal of Agricultural and Food Chemistry, 57 (6), 2486-2492.
  • Chen, L., Remondetto, G. E. & Subirade, M. (2006). Food protein-based materials as nutraceutical delivery systems. Trends in Food Science & Technology, 17 (5), 272-283.
  • Chew, S. C., Tan, C. H., Pui, L. P., Chong, P. N., Gunasekaran, B. & Nyam, K. (2019). Encapsulation technologies: A tool for functional foods development. International Journal of Innovative Technology and Exploring Engineering, 8 (5), 154-162.
  • Chong, G. H., Yunus, R., Abdullah, N., Choong, T. S. Y. & Spotar, S. (2009). Coating and encapsulation of nanoparticles using supercritical antisolvent. American Journal of Applied Sciences, 6 (7), 1352-1358.
  • Comunian, A., Thomazini, M., Gambagorte, V. F., Trindade, M. A. & Favaro-Trindade, C. S. (2014). Effect of incorporating free or encapsulated ascorbic acid in chicken frankfurters on physicochemical and sensory stability. J Food Sci Eng, 167-175.
  • Cook, M. T., Tzortzis, G., Charalampopoulos, D. & Khutoryanskiy, V. V. (2012). Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release, 162 (1), 56-67.
  • Cui, H., Yuan, L., Ma, C., Li, C. & Lin, L. (2017). Effect of nianoliposome‐encapsulated thyme oil on growth of Salmonella enteritidis in chicken. Journal of Food Processing and Preservation, 41 (6), e13299.
  • da Silva Malheiros, P., Sant’Anna, V., Utpott, M. & Brandelli, A. (2012). Antilisterial activity and stability of nanovesicle-encapsulated antimicrobial peptide P34 in milk. Food Control, 23 (1), 42-47.
  • De Kruif, C. G., Weinbreck, F. & de Vries, R. (2004). Complex coacervation of proteins and anionic polysaccharides. Current Opinion in Colloid & Interface Science, 9 (5), 340-349.
  • De Prisco, A. & Mauriello, G. (2016). Probiotication of foods: A focus on microencapsulation tool. Trends in Food Science & Technology, 48, 27-39.
  • de Souza Simões, L., Madalena, D. A., Pinheiro, A. C., Teixeira, J. A., Vicente, A. A. & Ramos, O. L. (2017). Micro-and nano bio-based delivery systems for food applications: In vitro behavior. Advances in Colloid and Interface Science, 243, 23-45.
  • de Vos, P., Faas, M. M., Spasojevic, M. & Sikkema, J. (2010). Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal, 20 (4), 292-302.
  • De Vuyst, L., Falony, G. & Leroy, F. (2008). Probiotics in fermented sausages. Meat Science, 80 (1), 75-78. Desai, K. G. H. & Jin Park, H. (2005). Recent developments in microencapsulation of food ingredients. Drying Technology, 23 (7), 1361-1394.
  • DeZarn T. G. (1995). Food ingredients encapsulation: An overview. In S. J. Risch & G. A. Reineccius (Eds.): Encapsulation and controlled release of food ingredients. ACS symposium series. Cilt 590, Sf. 74–86.
  • Dias, D. R., Botrel, D. A., Fernandes, R. V. D. B. & Borges, S. V. (2017). Encapsulation as a tool for bioprocessing of functional foods. Current Opinion in Food Science, 13, 31-37.
  • Dickinson, E. (2009). Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids, 23 (6), 1473-1482.
  • Donsì, F., Annunziata, M., Vincensi, M. & Ferrari, G. (2012). Design of nanoemulsion-based delivery systems of natural antimicrobials: effect of the emulsifier. Journal of Biotechnology, 159 (4), 342-350.
  • Dube, A., Ng, K., Nicolazzo, J. A. & Larson, I. (2010). Effective use of reducing agents and nanoparticle encapsulation in stabilizing catechins in alkaline solution. Food Chemistry, 122 (3), 662-667.
  • Dubey, R. (2009). Microencapsulation technology and applications. Defence Science Journal, 59 (1), 82.
  • Edris, A. & Bergnståhl, B. (2001). Encapsulation of orange oil in a spray dried double emulsion. Food/Nahrung, 45 (2), 133-137.
  • Ezhilarasi, P. N., Karthik, P., Chhanwal, N. & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: a review. Food and Bioprocess Technology, 6 (3), 628-647.
  • Fang, Z. & Bhandari, B. (2010). Encapsulation of polyphenols–a review. Trends in Food Science & Technology, 21 (10), 510-523.
  • Favaro-Trindade, C. S., Heinemann, R. J. B. & Pedroso, D. D. L. (2011). Developments in probiotic encapsulation. CAB Rev, 6, 1-8.
  • Fernandes, Â., Antonio, A. L., Oliveira, M. B. P., Martins, A. & Ferreira, I. C. (2012). Effect of gamma and electron beam irradiation on the physico-chemical and nutritional properties of mushrooms: A review. Food chemistry, 135 (2), 641-650.
  • Fritzen-Freire, C. B., Prudêncio, E. S., Amboni, R. D., Pinto, S. S., Negrão-Murakami, A. N. & Murakami, F. S. (2012). Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Research International, 45 (1), 306-312.
  • Garti, N. & McClements, D. J. (2012). Encapsulation technologies and delivery systems for food ingredients and nutraceuticals, 2nd ed. Elsevier.
  • Gbassi, G. K. & Vandamme, T. (2012). Probiotic encapsulation technology: from microencapsulation to release into the gut. Pharmaceutics, 4 (1), 149-163.
  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A. & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40 (9), 1107-1121.
  • Ghorbanzade, T., Jafari, S. M., Akhavan, S. & Hadavi, R. (2017). Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chemistry, 216, 146-152.
  • Gibbs, B. F, Kermasha, S., Alli, I., Catherine, N. & Mulligan, B. (1999). Encapsulation in the food industry: a review. International Journal of Food Sciences and Nutrition, 50 (3), 213-224.
  • Gibis, M., Vogt, E. & Weiss, J. (2012). Encapsulation of polyphenolic grape seed extract in polymer-coated liposomes. Food & Function, 3 (3), 246-254.
  • González‐Sánchez, F., Azaola, A., Gutıérrez‐López, G. F. & Hernández‐Sánchez, H. (2010). Viability of microencapsulated Bifidobacterium animalis ssp. lactis BB12 in kefir during refrigerated storage. International Journal of Dairy Technology, 63 (3), 431-436.
  • Gouin, S. (2004). Microencapsulation: industrial appraisal of existing technologies and trends. Trends in Food Science & Technology, 15 (7-8), 330-347.
  • Gökmen, S., Palamutoğlu, R. & Sarıçoban, C. (2012). Gıda endüstrisinde enkapsülasyon uygulamaları. Gıda Teknolojileri Elektronik Dergisi, 7 (1), 36-50.
  • Guérin, D., Vuillemard, J. C. & Subirade, M. (2003). Protection of bifidobacteria encapsulated in polysaccharide-protein gel beads against gastric juice and bile. Journal of Food Protection, 66 (11), 2076-2084.
  • Haghshenas, B., Nami, Y., Haghshenas, M., Barzegari, A., Sharifi, S., Radiah, D. & Abdullah, N. (2015). Effect of addition of inulin and fenugreek on the survival of microencapsulated Enterococcus durans 39C in alginate-psyllium polymeric blends in simulated digestive system and yogurt. Asian Journal of Pharmaceutical Sciences, 10 (4), 350-361.
  • Hill, L. E., Gomes, C. & Taylor, T. M. (2013). Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT-Food Science and Technology, 51 (1), 86-93.
  • Homayouni, A., Azizi, A., Ehsani, M. R., Yarmand, M. S. & Razavi, S. H. (2008). Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food Chemistry, 111 (1), 50-55.
  • Huang, H. J., Yuan, W. K. & Chen, X. D. (2006). Microencapsulation based on emulsification for producing pharmaceutical products: A literature review. Developments in Chemical Engineering and Mineral Processing, 14 (3‐4), 515-544.
  • Hughes, G. A. (2005). Nanostructure-mediated drug delivery. Nanomedicine: Nanotechnology, Biology and Medicine, 1 (1), 22-30.
  • Jyothi, N. V. N., Prasanna, P. M., Sakarkar, S. N., Prabha, K. S., Ramaiah, P. S. & Srawan, G. Y. (2010). Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation, 27 (3), 187-197.
  • Kailasapathy, K. (2002). Microencapsulation of probiotic bacteria: technology and potential applications. Current Issues in Intestinal Microbiology, 3 (2), 39-48.
  • Kailasapathy, K. (2009). Encapsulation technologies for functional foods and nutraceutical product development. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 4 (033), 1-19.
  • Katona, J. M., Sovilj, V. J., Petrović, L. B. & Milanović, J. L. (2010). Preparation and characterization of oil containing microcapsules obtained by an interaction induced coacervation. Journal of Dispersion Science and Technology, 31 (12), 1679-1684.
  • Kılıç, B., Şimşek, A., Claus, J. R, Karaca, E. & Bilecen, D. (2018). Inhibition of Lipid Oxidation by Using a Combina-tion of Encapsulated and Unencapsulated Polyphosphates in Cooked Ground Meat during Storage. Meat and Muscle Biology, 1, 21-21.
  • Kınık, Ö., Kavas, G. & Yılmaz, E. (2003). Mikroenkapsülasyon tekniği ve süt teknolojisindeki kullanım olanakları. Gıda, 28 (4).
  • Kırtıl, E. & Öztop, M. H. (2014). Enkapsülasyon maddesi olarak lipozom ve gıdalarda kullanımı: Yapısı, karakterizasyonu, üretimi ve stabilitesi. Akademik Gıda, 12 (4), 41-57.
  • King, A. H. (1995). Encapsulation of Food Ingredients; A Review of Available Technology, Focusing on Hydrocolloids. In: Encapsulation and Controlled Release of Food Ingredients, Eds; Risch, S.J., Reineccius, G.A., American Chemical Society.
  • Kobayashi, N., Nishikawa, M. & Takakura, Y. (2005). Gene therapy and gene delivery. Drug Delivery: Principles and Applications, John Wiley & Sons, Inc, 305-319.
  • Koç, M., Sakin, M. & Kaymak Ertekin, F. (2010). Microencapsulation and its Applications in Food Technology. Pamukkale University Journal of Engineering Sciences, 16 (1), 77-86.
  • Krasaekoopt, W., Bhandari, B. & Deeth, H. (2003). Evaluation of encapsulation techniques of probiotics for yoghurt. International Dairy Journal, 13 (1), 3-13.
  • Krasaekoopt, W. & Watcharapoka, S. (2014). Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice. LWT-Food Science and Technology, 57 (2), 761-766.
  • Kurt, K. K. & Turgay, Ö. Fruktooligosakkarit ve aljinat ile enkapsüle edilmiş Lactobacillus reuteri DSM 17938 suşunun kurumaya karşı direncinin saptanması. Gıda ve Yem Bilimi Teknolojisi Dergisi, 27, 20-25.
  • Lagrega, M. D., Buchingam, P. L. & Evans, J. C. (1994). And The Environmental Resources Group, Hazardous Waste Management, Mc Graw Hill Inc. pp. 1103.
  • Lasch, J., Weissig, V. & Brandl, M. (2003). Preparation of liposomes, 2nd Ed., Oxford University Press, pp. 3-29.
  • Laye, C., McClements, D. J. & Weiss, J. (2008). Formation of biopolymer‐coated liposomes by electrostatic deposition of chitosan. Journal of Food Science, 73 (5), N7-N15.
  • Lee, D. H., Jin, B. H., Hwang, Y. I. & Lee, S. C. (2000). Encapsulation of bromelain in liposome. Preventive Nutrition and Food Science, 5 (2), 81-85.
  • Leong, W. F., Lai, O. M., Long, K., Man, Y. B. C., Misran, M. & Tan, C. P. (2011). Preparation and characterisation of water-soluble phytosterol nanodispersions. Food Chemistry, 129 (1), 77-83.
  • Lopez-Rubio, A., Gavara, R. & Lagaron, J. M. (2006). Bioactive packaging: turning foods into healthier foods through biomaterials. Trends in Food Science & Technology, 17 (10), 567-575.
  • Madene, A., Jacquot, M., Scher, J. & Desobry, S. (2006). Flavour encapsulation and controlled release–a review. International Journal of Food Science & Technology, 41 (1), 1-21.
  • Mady, M. M. & Darwish, M. M. (2010). Effect of chitosan coating on the characteristics of DPPC liposomes. Journal of Advanced Research, 1 (3), 187-191.
  • Martín, M. J., Lara-Villoslada, F., Ruiz, M. A. & Morales, M. E. (2015). Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science & Emerging Technologies, 27, 15-25.
  • McClements, D. J. (2015). Encapsulation, protection, and release of hydrophilic active components: Potential and limitations of colloidal delivery systems. Advances in Colloid and Interface Science, 219, 27-53.
  • Meena, K. S., Bairwa, N. K. & Parashar, B. (2011). Formulation and in vitro evaluation of verapamil hydrochloride loaded microcapsule using different polymer. Asian Journal of Biochemical and Pharmaceutical Research, 1 (3), 528-538.
  • Mohammed, N. K., Tan, C. P., Manap, Y. A., Muhialdin, B. J. & Hussin, A. S. M. (2020). Spray drying for the encapsulation of oils—A review. Molecules, 25 (17), 3873.
  • Mortazavianş A., Razaviş S. H., Ehsani, M. R. & Sohrabvandi, S. (2007). Principles and methods of microencapsulation of probiotic microorganisms. Iraian Journal of Biotechnology, 5 (1), 1-18.
  • Mozafari, M. R., Flanagan, J., Matia‐Merino, L., Awati, A., Omri, A., Suntres, Z. E. & Singh, H. (2006). Recent trends in the lipid‐based nanoencapsulation of antioxidants and their role in foods. Journal of the Science of Food and Agriculture, 86 (13), 2038-2045.
  • Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S. & Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Procedia Food Science, 1, 1806-1815.
  • Niu, Y., Ke, D., Yang, Q., Wang, X., Chen, Z., An, X. & Shen, W. (2012). Temperature-dependent stability and DPPH scavenging activity of liposomal curcumin at pH 7.0. Food Chemistry, 135 (3), 1377-1382.
  • Oliveira, A. C., Moretti, T. S., Boschini, C., Baliero, J. C. C., Freitas, O. D. & Favaro-Trindade, C. S. (2007). Stability of microencapsulated B. lactis (BI 01) and L. acidophilus (LAC 4) by complex coacervation followed by spray drying. Journal of Microencapsulation, 24 (7), 685-693.
  • Orive, G., Anitua, E., Pedraz, J. L. & Emerich, D. F. (2009). Biomaterials for promoting brain protection, repair and regeneration. Nature Reviews Neuroscience, 10 (9), 682-692.
  • Panya, A., Laguerre, M., Lecomte, J., Villeneuve, P., Weiss, J., McClements, D. J. & Decker, E. A. (2010). Effects of chitosan and rosmarinate esters on the physical and oxidative stability of liposomes. Journal of Agricultural and Food Chemistry, 58 (9), 5679-5684.
  • Paucar, O. C., Tulini, F. L., Thomazini, M., Balieiro, J. C. C., Pallone, E. M. J. A. & Favaro-Trindade, C. S. (2016). Production by spray chilling and characterization of solid lipid microparticles loaded with vitamin D3. Food and Bioproducts Processing, 100, 344-350.
  • Pavlík, Z., Saláková, A., Kameník, J., Pospíšil, J., Králová, M. & Steinhauserová, I. (2014). Effect of micro-encapsulated n-3 fatty acids on quality properties of two types of dry sausages. Acta Veterinaria Brno, 83 (2).
  • Peker, H. & Arslan, S. (2011). Mikroenkapsülasyon ve süt teknolojisinde kullanım alanları. Akademik Gıda, 9 (6), 70-80.
  • Pérez-Chabela, M. L., Lara-Labastida, R., Rodriguez-Huezo, E. & Totosaus, A. (2013). Effect of spray drying encapsulation of thermotolerant lactic acid bacteria on meat batters properties. Food and Bioprocess Technology, 6 (6), 1505-1515.
  • Picot, A. & Lacroix, C. (2004). Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. International Dairy Journal, 14 (6), 505-515.
  • Prata, A. S., Zanin, M. H., Ré, M. I. & Grosso, C. R. (2008). Release properties of chemical and enzymatic crosslinked gelatin-gum Arabic microparticles containing a fluorescent probe plus vetiver essential oil. Colloids and Surfaces B: Biointerfaces, 67 (2), 171-178.
  • Qi, M., Gu, Y., Sakata, N., Kim, D., Shirouzu, Y., Yamamoto, C., Hiura, A., Sumi, S. & Inoue, K. (2004). PVA hydrogel sheet macroencapsulation for the bioartificial pancreas. Biomaterials, 25 (27), 5885-5892.
  • Qi, W. T., Ma, J., Yu, W. T., Xie, Y. B., Wang, W. & Ma, X. (2006). Behavior of microbial growth and metabolism in alginate–chitosan–alginate (ACA) microcapsules. Enzyme and Microbial Technology, 38 (5), 697-704.
  • Radünz, M., da Trindade, M. L. M., Camargo, T. M., Radünz, A. L., Borges, C. D., Gandra, E. A. & Helbig, E. (2019). Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food Chemistry, 276, 180-186.
  • Rao, J. P. & Geckeler, K. E. (2011). Polymer nanoparticles: preparation techniques and size-control parameters. Progress in Polymer Science, 36 (7), 887-913.
  • Reis, C. P., Neufeld, R. J., Ribeiro, A. J. & Veiga, F. (2006). Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 2 (1), 8-21.
  • Rodrigues, F. J., Cedran, M. F. & Garcia, S. (2018). Influence of linseed mucilage incorporated into an alginate-base edible coating containing probiotic bacteria on shelf-life of fresh-cut yacon (Smallanthus sonchifolius). Food and Bioprocess Technology, 11 (8), 1605-1614.
  • Rokka, S. & Rantamäki, P. (2010). Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. European Food Research and Technology, 231 (1), 1-12.
  • Sagalowicz, L. & Leser, M. E. (2010). Delivery systems for liquid food products. Current Opinion in Colloid & Interface Science, 15 (1-2), 61-72.
  • Sagis, L. M. (2015). Microencapsulation and microspheres for food applications. In: Sagis LM (Ed): Determination of Mechanical Properties of Microcapsules. England, London: Academic Press, pp.195-205.
  • Saha, D. & Bhattacharya, S. (2010). Hydrocolloids as thickening and gelling agents in food: a critical review. Journal of Food Science and Technology, 47 (6), 587-597.
  • Salvia-Trujillo, L., Rojas-Graü, M. A., Soliva-Fortuny, R. & Martín-Belloso, O. (2015). Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut Fuji apples. Postharvest Biology and Technology, 105, 8-16.
  • Sedefoğlu, S., Ortakcı, F. & Sert, S. (2022). Enkapsüle Edilmiş ve Serbest Formda Probiyotik Lactobacillus acidophilus ATCC 4356 Suşunun Dondurma Depolama Periyodunda Stabilitesinin İncelenmesi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 53 (1), 14-23.
  • Semyonov, D., Ramon, O., Kaplun, Z., Levin-Brener, L., Gurevich, N. & Shimoni, E. (2010). Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Research International, 43 (1), 193-202.
  • Shahidi, F. & Han, X. Q. (1993). Encapsulation of food ingredients. Critical Reviews in Food Science & Nutrition, 33 (6), 501-547.
  • Singh, H., Thompson, A., Liu, W. & Corredig, M. (2012). Liposomes as food ingredients and nutraceutical delivery systems. In: Garti N., McClements DJ (Eds). Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Woodhead Publishing pp. 287-318.
  • Soodbakhsh, S., Gheisari, H. R., Aminlari, M. & Dehnavi, T. (2012). Viability of encapsulated Lactobacillus casei and Bifidobacterium lactis in synbiotic frozen yogurt and their survival under in vitro simulated gastrointestinal conditions. International Journal of Probiotics & Prebiotics, 7 (3/4), 121.
  • Soukoulis, C. & Bohn, T. (2018). A comprehensive overview on the micro-and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids. Critical Reviews in Food Science and Nutrition, 58 (1), 1-36.
  • Steenson, L. R., Klaenhammer, T. R. & Swaisgood, H. E. (1987). Calcium alginate-immobilized cultures of lactic streptococci are protected from bacteriophages. Journal of Dairy Science, 70 (6), 1121-1127.
  • Sultana, K., Godward, G., Reynolds, N., Arumugaswamy, R., Peiris, P. & Kailasapathy, K. (2000). Encapsulation of probiotic bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. International Journal of Food Microbiology, 62 (1-2), 47-55.
  • Şümnü, S. G. & Şahin, S. (2015). B1 vitaminin ikili emülsiyon yöntemi ile kapsüllenmesi. ODTÜMETU, 44. Teunou, E. & Poncelet, D. (2005). Food powder processing: Fluid-bed coating. In: Encapsulated and Powdered Foods. Onwulata CI (Ed). CRC Press, Taylor & Francis Group. P: 197-215.
  • Tokle, T., Mao, Y. & McClements, D. J. (2013). Potential biological fate of emulsion-based delivery systems: lipid particles nanolaminated with lactoferrin and β-lactoglobulin coatings. Pharmaceutical Research, 30 (12), 3200-3213.
  • Triki, M., Herrero, A. M., Rodríguez-Salas, L., Jiménez-Colmenero, F. & Ruiz-Capillas, C. (2013). Chilled storage characteristics of low-fat, n-3 PUFA-enriched dry fermented sausage reformulated with a healthy oil combination stabilized in a konjac matrix. Food Control, 31 (1), 158-165.
  • Viljanen, K., Kivikari, R. & Heinonen, M. (2004). Protein− lipid interactions during liposome oxidation with added anthocyanin and other phenolic compounds. Journal of Agricultural and Food Chemistry, 52 (5), 1104-1111.
  • Wandrey, C., Bartkowia, A. & Harding, S. E. (2010). Materials for encapsulation. In encapsulation technologies for active food ingredients and food processing. Zuidam NJ. and Nedovic VA.. Springer, NY., 31-100.
  • Wang, B., Siahaan, T. & Soltero, R. (2005). Drug Delivery: Principles and Applications, John Wiley & Sons.
  • Wang, G. (2005). Liposomes as drug delivery vehicles (pp. 411-434). John Wiley and Sons, Inc.
  • Wang, M., Wang, C., Gao, F. & Guo, M. (2018). Effects of polymerised whey protein-based microencapsulation on survivability of Lactobacillus acidophilus LA-5 and physiochemical properties of yoghurt. Journal of Microencapsulation, 35 (5), 504-512.
  • Xiao, Z., Liu, W., Zhu, G., Zhou, R. & Niu, Y. (2014). A review of the preparation and application of flavour and essential oils microcapsules based on complex coacervation technology. Journal of the Science of Food and Agriculture, 94 (8), 1482-1494.
  • Zhang, M., Tang, J., Mujumdar, A. S. & Wang, S. (2006). Trends in microwave-related drying of fruits and vegetables. Trends in Food Science & Technology, 17 (10), 524-534.
  • Zuidam, N. J. & Shimoni, E. (2010). Overview of microencapsulates for use in food products or processes and methods to make them. İn Zuidam NJ, Nedovic V (eds): Encapsulation technologies for active food ingredients and food processing, New York: ABD, Springer, pp. 3-29.
There are 126 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Sciences
Journal Section Review
Authors

Soner Tutun 0000-0002-6208-476X

Ozen Yurdakul 0000-0001-7680-015X

Publication Date August 31, 2022
Acceptance Date August 26, 2022
Published in Issue Year 2022 Volume: 13 Issue: 2

Cite

APA Tutun, S., & Yurdakul, O. (2022). ENKAPSÜLASYON VE GIDA TEKNOLOJİSİNDE KULLANIMI. Veteriner Farmakoloji Ve Toksikoloji Derneği Bülteni, 13(2), 99-119. https://doi.org/10.38137/vftd.1096571