Review
BibTex RIS Cite

EVALUATION of BIOREMEDIATION PRACTICES in ONE-HEALTH FRAMEWORK

Year 2023, Volume: 14 Issue: 3, 162 - 171, 30.12.2023
https://doi.org/10.38137/vftd.1366883

Abstract

Bioremediation can be defined as the rebalancing of environments where biological balance is disturbed by biotechnological methods. It stands out as an environmentally friendly, low-cost, sustainable environmental cleaning method. All ecosystems homeland for wildlife are under the influence of many pollutants with human interaction. Threats such as oil spillage, pesticides, and heavy metal pollution, habitat degradation threaten the sustainability of wildlife, and many improvement studies are carried out with bioremediation practices for the restoration of wildlife ecosystems. In addition, bioremediation applications are also used to reduce the spread of diseases by vector control. Since the effects of bioremediation applications affect environmental, veterinary and public health together, it is thought that they can be evaluated under the concept of single health. In this review, information about bioremediation applications, which is a new field of microbiology and nanobiotechnology, and the cleaning and by giving information about the areas of use and efforts to bring ecosystems into balance, it will be explained together with the concept of one health.

References

  • Adamia, G., Chogovadze, M., Chokheli, L., Gigolashvili, G., Gordeziani, M., Khatisashvili, G., Kurashvili, M., Pruidze, M. & Varazi, T. (2018). About possibility of alga Spirulina application for phytoremediation of water polluted with 2,4,6-trinitrotoluene. Annals of Agrarian Science, 16, 348–351.
  • Amenaghawon, A. N., Osunbor, O. & Obahiagbon, K. O. (2014). Impact of Nutrients , Aeration and Agitation on the Bioremediation of Crude Oil Polluted Water Using Mixed Microbial Culture Full Length Research Paper Impact of Nutrients , Aeration and Agitation on the Bioremediation of Crude Oil Polluted Water Using Mi. International Journal of Scientific Research in Environmental Sciences, 2, 43–48.
  • Anning, A. K. & Akoto, R. (2018). Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides. Ecotoxicology and Environmental Safety, 148, 97–104.
  • Bina, B., Amin, M. M., Kamarehie, B., Jafari, A., Ghaderpoori, M., Karami, M. A., Teimouri, F. & Sadani, M. (2018). Data on biosurfactant assisted removal of TNT from contaminated soil. Data in Brief, 19, 1600–1604.
  • Cardozo, M., De Almeida, J. S. F. D., De A Cavalcante, S. F., Salgado, J. R. S., Gonçalves, A. S., França, T. C. C., Kuca, K. & Bizzo, H. R. (2020). Biodegradation of organophosphorus compounds predicted by enzymatic process using molecular modelling and observed in soil samples through analytical techniques and microbiological analysis: A comparison. Molecules, 25, 1–21.
  • Chen, C. C. & Chen, S.-N. (2001). Water Quality Mnagment with Bacillus spp. in the High-Density Culture of Red-Parrot Fish Cichlasoma citrinellum x C. synspilum. North American Journal of Aquaculture, 63, 66–73.
  • Coninx, L., Martinova, V. & Rineau, F. (2017). Mycorrhiza-Assisted Phytoremediation. In Advances in Botanical Research (Vol. 83, pp. 127–188). Elsevier Ltd.
  • Crisa, F., Genovese, M., Smedile, F., Russo, D., Catalfamo, M., Yakimov, M., Giuliano, L. & Denaro, R. (2016). Bioremediation technologies for polluted seawater sampled after an oil-spill in Taranto Gulf (Italy): A comparison of biostimulation , bioaug- mentation and use of a washing agent in microcosm studies. Marine Pollution Bulletin, 106, 119–126.
  • de Mendonça, H. V., Ometto, J. P. H. B., Otenio, M. H., Marques, I. P. R. & dos Reis, A. J. D. (2018). Microalgae-mediated bioremediation and valorization of cattle wastewater previously digested in a hybrid anaerobic reactor using a photobioreactor: Comparison between batch and continuous operation. Science of the Total Environment, 633, 1–11.
  • El-gendy, N. S., Ali, H. R., El-Nady, M. M., Deriase, S. F., Yasser, M. M. & Roushdy, M. I. (2014). Effect of different bioremediation techniques on petroleum biomarkers and asphaltene fraction in oil- polluted sea water. Desalination and Water Treatment, 52, 7484–7494.
  • El Gaidoumi, A., Doña-Rodríguez, J. M., Pulido Melián, E., González-Díaz, O. M., El Bali, B., Navío, J. A. & Kherbeche, A. (2019). Mesoporous pyrophyllite–titania nanocomposites: synthesis and activity in phenol photocatalytic degradation. Research on Chemical Intermediates, 45, 333–353.
  • Elizondo-González, R., Quiroz-Guzmán, E., Escobedo-Fregoso, C., Magallón-Servín, P. & Peña-Rodríguez, A. (2018). Use of seaweed Ulva lactuca for water bioremediation and as feed additive for white shrimp Litopenaeus vannamei. PeerJ, 2018, 1–16.
  • Esteve-nu, A., Caballero, A. & Ramos, J. L. (2001). Biological Degradation of 2 , 4 , 6-Trinitrotoluene. Microbiology and Molecular Biology Reviews, 65, 335–352.
  • Funk, S. B., Crawford, D. L., Crawford, R. L., Mead, G. & Davis-Hoover, W. (1995). Full-scale anaerobic bioremediation of trinitrotoluene (TNT) contaminated soil - A US EPA SITE program demonstration. Applied Biochemistry and Biotechnology, 51–52, 625–633.
  • Gentili, A. R., Cubitto, M. A., Ferrero, M. & Z, M. S. R. (2006). Bioremediation of crude oil polluted seawater by a hydrocarbon- degrading bacterial strain immobilized on chitin and chitosan flakes. International Biodeterioration & Biodegradation, 57, 222–228.
  • Gökmen, F. (2019). toprak solucanı kullanımının ağır metal giderimine etkisi. Journal of Agriculture, 2, 92–99.
  • Hassanshahian, M., Emtiazi, G., Caruso, G. & Cappello, S. (2014). Bioremediation (bioaugmentation/biostimulation) trials of oil polluted seawater : A mesocosm simulation study. Marine Environmental Research, 95, 28–38.
  • Horemans, B., Breugelmans, P., Saeys, W. & Springael, D. (2017). Soil-Bacterium Compatibility Model as a Decision-Making Tool for Soil Bioremediation.
  • Jasmin, M. Y., Syukri, F., Kamarudin, M. S. & Karim, M. (2020). Potential of bioremediation in treating aquaculture sludge: Review article. Aquaculture, 519, 734905.
  • Kara, E. E., Taciroğlu, B. & Sak, T. (2016). Toprakta Ağır Metal Gideriminde Solucanların Kullanımı. Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi, 19, 201–206.
  • Kour, D., Kaur, T., Devi, R., Yadav, A., Singh, M., Joshi, D., Singh, J., Suyal, D. C., Kumar, A., Rajput, V. D., Yadav, A. N., Singh, K., Singh, J., Sayyed, R. Z., Arora, N. K. & Saxena, A. K. (2021). Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environmental Science and Pollution Research.
  • Lalloo, R., Ramchuran, S., Ramduth, D., Görgens, J. & Gardiner, N. (2007). Isolation and selection of Bacillus spp . as potential biological agents for enhancement of water quality in culture of ornamental fish. Journal of Applied Microbiology, 103, 1471–1479.
  • Ławniczak, Ł., Wo, M., Heipieper, H. J. & Łukasz C. (2020). Microbial Degradation of Hydrocarbons — Basic Principles for Bioremediation : A Review. Molecules Review, 25, 1–19.
  • Lewis, T. A., Newcombe, D. A. & Crawford, R. L. (2004). Bioremediation of soils contaminated with explosives. Journal of Environmental Management, 70, 291–307.
  • Li, Q., Guo, C., Hu, H. & Lu, J. (2022). Towards One Health: Reflections and practices on the different fields of One Health in China. Biosafety and Health, 4, 23–29.
  • Liu, Y., Wang, W., Shah, S. B., Zanaroli, G., Xu, P. & Tang, H. (2020). Phenol biodegradation by Acinetobacter radioresistens APH1 and its application in soil bioremediation. Applied Microbiology and Biotechnology, 104, 427–437.
  • Lu, W., Asraful Alam, M., Liu, S., Xu, J. & Parra Saldivar, R. (2020). Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO2 from livestock farms: A review. Science of the Total Environment, 716, 135247.
  • Luminit, D., Sobariu, S., Ionela, D., Fertu, T., Diaconu, M., Vasile, L., Curteanu, S., Lenz, M., Hlihor, R., Niculina, E., Corvini, P. F. & Gavrilescu, M. (2017). Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. New Biotechnology, 39, 125–134.
  • Mahdi, A. M. El, Aziz, H. A., Amr, S. S. A., Sh, N. & Nassar, E. H. N. (2016). Isolation and characterization of Pseudomonas sp . NAF1 and its application in biodegradation of crude oil. Environmental Earth Sciences, 75, 1–11.
  • Malaysiana, S., Bakteria, P., Dipencilkan, A., Sisa, A., Akuakultur, U., Pemulihan, A. B., Nitrogen, J. A., Nitrit, P., Fantroussi, E. & Fantroussi, E. (2015). Identification of Indigenous Bacteria Isolated from Shrimp Aquaculture Wastewater with Bioremediation Application : Total Ammoniacal Nitrogen (TAN) and Nitrite Removal. Sains Malaysiana, 44, 1103–1110.
  • Manorama Thampatti, K. C., Beena, V. I., Meera, A. V. & Ajayan, A. S. (2020). Phytoremediation of Metals by Aquatic Macrophytes.
  • Martinkosky, L., Barkley, J., Sabadell, G., Gough, H. & Davidson, S. (2017). Science of the Total Environment Earthworms (Eisenia fetida) demonstrate potential for use in soil bioremediation by increasing the degradation rates of heavy crude oil hydrocarbons. Science of the Total Environment, 580, 734–743.
  • Mckew, B. A., Coulon, F., Yakimov, M. M., Denaro, R., Genovese, M., Smith, C. J., Osborn, A. M., Timmis, K. N. & Mcgenity, T. J. (2007). Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria. Environmental Microbiology, 9, 1562–1571.
  • Mingmongkolchai, S., & Panbangred, W. (2018). Bacillus probiotics: an alternative to antibiotics for livestock production. Journal of Applied Microbiology, 124, 1334–1346.
  • Nuhoglu, A., & Yalcin, B. (2005). Modelling of phenol removal in a batch reactor. Process Biochemistry, 40, 1233–1239. Özcan, G. & Türkdoğan, İ. (2014). Askeri Alanlardaki Kirliliklerin Gideriminde Biyoremediasyon Teknikleri. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 17, 31–36.
  • Pacwa-Płociniczak, M., Czapla, J., Płociniczak, T. & Piotrowska-Seget, Z. (2019). The effect of bioaugmentation of petroleum-contaminated soil with Rhodococcus erythropolis strains on removal of petroleum from soil. Ecotoxicology and Environmental Safety, 169, 615–622.
  • Rahiman, K. M. M., Jesmi, Y., Thomas, A. P. & Hatha, A. A. M. (2010). Probiotic effect of Bacillus NL110 and Vibrio NE17 on the survival , growth performance and immune response of Macrobrachium rosenbergii (de Man). Aquaculture Research, 2010, 120–134.
  • Rezaei, M. R., Abdoli, M. A., Karbassi, A., Baghvand, A. & Khalilzadeh, R. (2010). Bioremediation of TNT contaminated soil by composting with municipal solid wastes. Soil and Sediment Contamination, 19, 504–514.
  • Rizwan, M., Ali, S., Zia ur Rehman, M., Rinklebe, J., Tsang, D. C. W., Bashir, A., Maqbool, A., Tack, F. M. G. & Ok, Y. S. (2018). Cadmium phytoremediation potential of Brassica crop species: A review. Science of the Total Environment, 631–632, 1175–1191.
  • Romeh, A. A. (2020). Synergistic use of Plantago major and effective microorganisms, EM1 to clean up the soil polluted with imidacloprid under laboratory and field condition. International Journal of Phytoremediation, 22, 1515–1523.
  • Samani, M. N., Jafaryan, H., Gholipour, H., Harsij, M. & Farhangi, M. (2016). Effect of different concentration of profitable Bacillus on bioremediation of common carp (Cyprinus carpio) pond discharge. Iranian Journal of Aquatic Animal Health, 2, 44–54.
  • Sandøe, P., Palmer, C., Corr, S., Astrup, A. & Bjørnvad, C. R. (2014). Canine and feline obesity: A One Health perspective. Veterinary Record, 175, 610–616.
  • Sayed, K., Baloo, L. & Sharma, N. K. (2021). Bioremediation of Total Petroleum Hydrocarbons ( TPH ) by Bioaugmentation and Biostimulation in Water with Floating Oil Spill Containment Booms as Bioreactor Basin. International Journal of Environmental Research and Public Health, 2021, 2226.
  • Scalzo, A. M., Thompson, M. A., Holz, A. & Murray, W. (1998). Remediation of Explosives Contaminated Soils At Joliet Army Ammunition Plant via Windrow Composting. In US Army Corps of Engineers.
  • Scherer, M. D., de Oliveira, A. C., Filho, F. J. C. M., Ugaya, C. M. L., Mariano, A. B. & Vargas, J. V. C. (2017). Environmental study of producing microalgal biomass and bioremediation of cattle manure effluents by microalgae cultivation. Clean Technologies and Environmental Policy, 19, 1745–1759.
  • Sitarek, M., Napiórkowska-Krzebietke, A., Mazur, R., Czarnecki, B., Pyka, J. P., Stawecki, K., Olech, M., Sołtysiak, S. & Kapusta, A. (2017). Application of effective microorganisms technology as a lake restoration tool a case study of muchawka reservoir. Journal of Elementology, 22, 529–543.
  • Staninska-Pięta, J., Piotrowska-Cyplik, A., Juzwa, W., Zgoła-Grześkowiak, A., Wolko, Ł., Sydow, Z., Kaczorowski, Ł., Powierska-Czarny, J. & Cyplik, P. (2019). The impact of natural and synthetic surfactants on bacterial community during hydrocarbon biodegradation. International Biodeterioration & Biodegradation, 142, 191–199.
  • Talip, B. A., Zing, N. Z., Hairuddin, N. D., Mohamed, R. M. S. R., Muhammad, N., Basri, H., Abdullah, N., Kahar, E. E. M., Al-Gheethi, A. A. S. & Abdullah, S. (2019). Determination of physicochemical properties of formulated fish feed supplemented with microalgae from bioremediation process. Jurnal Teknologi, 81, 151–157.
  • Tasho, R. P. & Cho, J. Y. (2016). Veterinary antibiotics in animal waste , its distribution in soil and uptake by plants : A review. Science of the Total Environment, 563–564, 366–376.
  • Tekere, M. (2013). Microbial Bioremediation and Different Bioreactors Designs Applied. IntechOpen, 32, 1–19. Wu, Y., Jing, X., Gao, C., Huang, Q. & Cai, P. (2018). Chemosphere Recent advances in microbial electrochemical system for soil bioremediation. Chemosphere, 211, 156–163.
  • Yu, C., Wang, Y., Guo, T., Shen, W. & Gu, M. (2012). Isolation and Identification of Ammonia Nitrogen Degradation Strains from Industrial Wastewater. Engineering, 2012, 790–793.
  • Zhu, B., Chen, S., Zhao, C., Zhong, W., Zeng, R. & Yang, S. (2019). Effects of Marichromatium gracile YL28 on the nitrogen management in the aquaculture pond water. Bioresource Technology, 292, 121917.

BİYOREMEDİASYON UYGULAMALARININ TEK SAĞLIK YÖNÜYLE DEĞERLENDİRİLMESİ

Year 2023, Volume: 14 Issue: 3, 162 - 171, 30.12.2023
https://doi.org/10.38137/vftd.1366883

Abstract

Biyoremediasyon biyolojik dengenin bozulduğu ortamların yeniden biyoteknolojik yöntemler ile dengelenmesi olarak tanımlanabilir. Çevreci, az maliyetli, sürdürülebilir bir çevre temizlik yöntemi olarak öne çıkmaktadır. Yaban hayatını barındıran tüm ekosistemler insan etkileşimi ile birçok kirleticinin etkisi altındadır. Petrol sızıntısı, tarım ilaçları ve ağır metal kirliliği, habitat bozulması gibi tehditler yaban hayatının sürdürülebilirliğini tehdit etmekte ve yaban hayatı ekosistemlerinin onarımı için biyoremediasyon uygulamaları ile birçok iyileştirme çalışması yapılmaktadır. Bunun yanında vektör kontrolü ile hastalıkların yayılmasının azaltılmasında da biyoremediasyon uygulamaları kullanılmaktadır. Biyoremediasyon uygulamalarının etkileri çevre, veteriner ve halk sağlığını beraber etkilediği için tek sağlık kavramı altında da değerlendirilebileceği düşünülmektedir. Bu derlemede mikrobiyolojinin ve nanobiyoteklojinin yeni bir alanı olan biyoremidiasyon uygulamaları, kullanım alanları ve ekosistemleri dengeye getirme çalışmaları hakkında bilgi verilerek tek sağlık kavramı ile açıklanacaktır.

Ethical Statement

Çıkar çatışması bulunmamaktadır.

Supporting Institution

Bulunmamaktadır.

References

  • Adamia, G., Chogovadze, M., Chokheli, L., Gigolashvili, G., Gordeziani, M., Khatisashvili, G., Kurashvili, M., Pruidze, M. & Varazi, T. (2018). About possibility of alga Spirulina application for phytoremediation of water polluted with 2,4,6-trinitrotoluene. Annals of Agrarian Science, 16, 348–351.
  • Amenaghawon, A. N., Osunbor, O. & Obahiagbon, K. O. (2014). Impact of Nutrients , Aeration and Agitation on the Bioremediation of Crude Oil Polluted Water Using Mixed Microbial Culture Full Length Research Paper Impact of Nutrients , Aeration and Agitation on the Bioremediation of Crude Oil Polluted Water Using Mi. International Journal of Scientific Research in Environmental Sciences, 2, 43–48.
  • Anning, A. K. & Akoto, R. (2018). Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides. Ecotoxicology and Environmental Safety, 148, 97–104.
  • Bina, B., Amin, M. M., Kamarehie, B., Jafari, A., Ghaderpoori, M., Karami, M. A., Teimouri, F. & Sadani, M. (2018). Data on biosurfactant assisted removal of TNT from contaminated soil. Data in Brief, 19, 1600–1604.
  • Cardozo, M., De Almeida, J. S. F. D., De A Cavalcante, S. F., Salgado, J. R. S., Gonçalves, A. S., França, T. C. C., Kuca, K. & Bizzo, H. R. (2020). Biodegradation of organophosphorus compounds predicted by enzymatic process using molecular modelling and observed in soil samples through analytical techniques and microbiological analysis: A comparison. Molecules, 25, 1–21.
  • Chen, C. C. & Chen, S.-N. (2001). Water Quality Mnagment with Bacillus spp. in the High-Density Culture of Red-Parrot Fish Cichlasoma citrinellum x C. synspilum. North American Journal of Aquaculture, 63, 66–73.
  • Coninx, L., Martinova, V. & Rineau, F. (2017). Mycorrhiza-Assisted Phytoremediation. In Advances in Botanical Research (Vol. 83, pp. 127–188). Elsevier Ltd.
  • Crisa, F., Genovese, M., Smedile, F., Russo, D., Catalfamo, M., Yakimov, M., Giuliano, L. & Denaro, R. (2016). Bioremediation technologies for polluted seawater sampled after an oil-spill in Taranto Gulf (Italy): A comparison of biostimulation , bioaug- mentation and use of a washing agent in microcosm studies. Marine Pollution Bulletin, 106, 119–126.
  • de Mendonça, H. V., Ometto, J. P. H. B., Otenio, M. H., Marques, I. P. R. & dos Reis, A. J. D. (2018). Microalgae-mediated bioremediation and valorization of cattle wastewater previously digested in a hybrid anaerobic reactor using a photobioreactor: Comparison between batch and continuous operation. Science of the Total Environment, 633, 1–11.
  • El-gendy, N. S., Ali, H. R., El-Nady, M. M., Deriase, S. F., Yasser, M. M. & Roushdy, M. I. (2014). Effect of different bioremediation techniques on petroleum biomarkers and asphaltene fraction in oil- polluted sea water. Desalination and Water Treatment, 52, 7484–7494.
  • El Gaidoumi, A., Doña-Rodríguez, J. M., Pulido Melián, E., González-Díaz, O. M., El Bali, B., Navío, J. A. & Kherbeche, A. (2019). Mesoporous pyrophyllite–titania nanocomposites: synthesis and activity in phenol photocatalytic degradation. Research on Chemical Intermediates, 45, 333–353.
  • Elizondo-González, R., Quiroz-Guzmán, E., Escobedo-Fregoso, C., Magallón-Servín, P. & Peña-Rodríguez, A. (2018). Use of seaweed Ulva lactuca for water bioremediation and as feed additive for white shrimp Litopenaeus vannamei. PeerJ, 2018, 1–16.
  • Esteve-nu, A., Caballero, A. & Ramos, J. L. (2001). Biological Degradation of 2 , 4 , 6-Trinitrotoluene. Microbiology and Molecular Biology Reviews, 65, 335–352.
  • Funk, S. B., Crawford, D. L., Crawford, R. L., Mead, G. & Davis-Hoover, W. (1995). Full-scale anaerobic bioremediation of trinitrotoluene (TNT) contaminated soil - A US EPA SITE program demonstration. Applied Biochemistry and Biotechnology, 51–52, 625–633.
  • Gentili, A. R., Cubitto, M. A., Ferrero, M. & Z, M. S. R. (2006). Bioremediation of crude oil polluted seawater by a hydrocarbon- degrading bacterial strain immobilized on chitin and chitosan flakes. International Biodeterioration & Biodegradation, 57, 222–228.
  • Gökmen, F. (2019). toprak solucanı kullanımının ağır metal giderimine etkisi. Journal of Agriculture, 2, 92–99.
  • Hassanshahian, M., Emtiazi, G., Caruso, G. & Cappello, S. (2014). Bioremediation (bioaugmentation/biostimulation) trials of oil polluted seawater : A mesocosm simulation study. Marine Environmental Research, 95, 28–38.
  • Horemans, B., Breugelmans, P., Saeys, W. & Springael, D. (2017). Soil-Bacterium Compatibility Model as a Decision-Making Tool for Soil Bioremediation.
  • Jasmin, M. Y., Syukri, F., Kamarudin, M. S. & Karim, M. (2020). Potential of bioremediation in treating aquaculture sludge: Review article. Aquaculture, 519, 734905.
  • Kara, E. E., Taciroğlu, B. & Sak, T. (2016). Toprakta Ağır Metal Gideriminde Solucanların Kullanımı. Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi, 19, 201–206.
  • Kour, D., Kaur, T., Devi, R., Yadav, A., Singh, M., Joshi, D., Singh, J., Suyal, D. C., Kumar, A., Rajput, V. D., Yadav, A. N., Singh, K., Singh, J., Sayyed, R. Z., Arora, N. K. & Saxena, A. K. (2021). Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environmental Science and Pollution Research.
  • Lalloo, R., Ramchuran, S., Ramduth, D., Görgens, J. & Gardiner, N. (2007). Isolation and selection of Bacillus spp . as potential biological agents for enhancement of water quality in culture of ornamental fish. Journal of Applied Microbiology, 103, 1471–1479.
  • Ławniczak, Ł., Wo, M., Heipieper, H. J. & Łukasz C. (2020). Microbial Degradation of Hydrocarbons — Basic Principles for Bioremediation : A Review. Molecules Review, 25, 1–19.
  • Lewis, T. A., Newcombe, D. A. & Crawford, R. L. (2004). Bioremediation of soils contaminated with explosives. Journal of Environmental Management, 70, 291–307.
  • Li, Q., Guo, C., Hu, H. & Lu, J. (2022). Towards One Health: Reflections and practices on the different fields of One Health in China. Biosafety and Health, 4, 23–29.
  • Liu, Y., Wang, W., Shah, S. B., Zanaroli, G., Xu, P. & Tang, H. (2020). Phenol biodegradation by Acinetobacter radioresistens APH1 and its application in soil bioremediation. Applied Microbiology and Biotechnology, 104, 427–437.
  • Lu, W., Asraful Alam, M., Liu, S., Xu, J. & Parra Saldivar, R. (2020). Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO2 from livestock farms: A review. Science of the Total Environment, 716, 135247.
  • Luminit, D., Sobariu, S., Ionela, D., Fertu, T., Diaconu, M., Vasile, L., Curteanu, S., Lenz, M., Hlihor, R., Niculina, E., Corvini, P. F. & Gavrilescu, M. (2017). Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. New Biotechnology, 39, 125–134.
  • Mahdi, A. M. El, Aziz, H. A., Amr, S. S. A., Sh, N. & Nassar, E. H. N. (2016). Isolation and characterization of Pseudomonas sp . NAF1 and its application in biodegradation of crude oil. Environmental Earth Sciences, 75, 1–11.
  • Malaysiana, S., Bakteria, P., Dipencilkan, A., Sisa, A., Akuakultur, U., Pemulihan, A. B., Nitrogen, J. A., Nitrit, P., Fantroussi, E. & Fantroussi, E. (2015). Identification of Indigenous Bacteria Isolated from Shrimp Aquaculture Wastewater with Bioremediation Application : Total Ammoniacal Nitrogen (TAN) and Nitrite Removal. Sains Malaysiana, 44, 1103–1110.
  • Manorama Thampatti, K. C., Beena, V. I., Meera, A. V. & Ajayan, A. S. (2020). Phytoremediation of Metals by Aquatic Macrophytes.
  • Martinkosky, L., Barkley, J., Sabadell, G., Gough, H. & Davidson, S. (2017). Science of the Total Environment Earthworms (Eisenia fetida) demonstrate potential for use in soil bioremediation by increasing the degradation rates of heavy crude oil hydrocarbons. Science of the Total Environment, 580, 734–743.
  • Mckew, B. A., Coulon, F., Yakimov, M. M., Denaro, R., Genovese, M., Smith, C. J., Osborn, A. M., Timmis, K. N. & Mcgenity, T. J. (2007). Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria. Environmental Microbiology, 9, 1562–1571.
  • Mingmongkolchai, S., & Panbangred, W. (2018). Bacillus probiotics: an alternative to antibiotics for livestock production. Journal of Applied Microbiology, 124, 1334–1346.
  • Nuhoglu, A., & Yalcin, B. (2005). Modelling of phenol removal in a batch reactor. Process Biochemistry, 40, 1233–1239. Özcan, G. & Türkdoğan, İ. (2014). Askeri Alanlardaki Kirliliklerin Gideriminde Biyoremediasyon Teknikleri. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 17, 31–36.
  • Pacwa-Płociniczak, M., Czapla, J., Płociniczak, T. & Piotrowska-Seget, Z. (2019). The effect of bioaugmentation of petroleum-contaminated soil with Rhodococcus erythropolis strains on removal of petroleum from soil. Ecotoxicology and Environmental Safety, 169, 615–622.
  • Rahiman, K. M. M., Jesmi, Y., Thomas, A. P. & Hatha, A. A. M. (2010). Probiotic effect of Bacillus NL110 and Vibrio NE17 on the survival , growth performance and immune response of Macrobrachium rosenbergii (de Man). Aquaculture Research, 2010, 120–134.
  • Rezaei, M. R., Abdoli, M. A., Karbassi, A., Baghvand, A. & Khalilzadeh, R. (2010). Bioremediation of TNT contaminated soil by composting with municipal solid wastes. Soil and Sediment Contamination, 19, 504–514.
  • Rizwan, M., Ali, S., Zia ur Rehman, M., Rinklebe, J., Tsang, D. C. W., Bashir, A., Maqbool, A., Tack, F. M. G. & Ok, Y. S. (2018). Cadmium phytoremediation potential of Brassica crop species: A review. Science of the Total Environment, 631–632, 1175–1191.
  • Romeh, A. A. (2020). Synergistic use of Plantago major and effective microorganisms, EM1 to clean up the soil polluted with imidacloprid under laboratory and field condition. International Journal of Phytoremediation, 22, 1515–1523.
  • Samani, M. N., Jafaryan, H., Gholipour, H., Harsij, M. & Farhangi, M. (2016). Effect of different concentration of profitable Bacillus on bioremediation of common carp (Cyprinus carpio) pond discharge. Iranian Journal of Aquatic Animal Health, 2, 44–54.
  • Sandøe, P., Palmer, C., Corr, S., Astrup, A. & Bjørnvad, C. R. (2014). Canine and feline obesity: A One Health perspective. Veterinary Record, 175, 610–616.
  • Sayed, K., Baloo, L. & Sharma, N. K. (2021). Bioremediation of Total Petroleum Hydrocarbons ( TPH ) by Bioaugmentation and Biostimulation in Water with Floating Oil Spill Containment Booms as Bioreactor Basin. International Journal of Environmental Research and Public Health, 2021, 2226.
  • Scalzo, A. M., Thompson, M. A., Holz, A. & Murray, W. (1998). Remediation of Explosives Contaminated Soils At Joliet Army Ammunition Plant via Windrow Composting. In US Army Corps of Engineers.
  • Scherer, M. D., de Oliveira, A. C., Filho, F. J. C. M., Ugaya, C. M. L., Mariano, A. B. & Vargas, J. V. C. (2017). Environmental study of producing microalgal biomass and bioremediation of cattle manure effluents by microalgae cultivation. Clean Technologies and Environmental Policy, 19, 1745–1759.
  • Sitarek, M., Napiórkowska-Krzebietke, A., Mazur, R., Czarnecki, B., Pyka, J. P., Stawecki, K., Olech, M., Sołtysiak, S. & Kapusta, A. (2017). Application of effective microorganisms technology as a lake restoration tool a case study of muchawka reservoir. Journal of Elementology, 22, 529–543.
  • Staninska-Pięta, J., Piotrowska-Cyplik, A., Juzwa, W., Zgoła-Grześkowiak, A., Wolko, Ł., Sydow, Z., Kaczorowski, Ł., Powierska-Czarny, J. & Cyplik, P. (2019). The impact of natural and synthetic surfactants on bacterial community during hydrocarbon biodegradation. International Biodeterioration & Biodegradation, 142, 191–199.
  • Talip, B. A., Zing, N. Z., Hairuddin, N. D., Mohamed, R. M. S. R., Muhammad, N., Basri, H., Abdullah, N., Kahar, E. E. M., Al-Gheethi, A. A. S. & Abdullah, S. (2019). Determination of physicochemical properties of formulated fish feed supplemented with microalgae from bioremediation process. Jurnal Teknologi, 81, 151–157.
  • Tasho, R. P. & Cho, J. Y. (2016). Veterinary antibiotics in animal waste , its distribution in soil and uptake by plants : A review. Science of the Total Environment, 563–564, 366–376.
  • Tekere, M. (2013). Microbial Bioremediation and Different Bioreactors Designs Applied. IntechOpen, 32, 1–19. Wu, Y., Jing, X., Gao, C., Huang, Q. & Cai, P. (2018). Chemosphere Recent advances in microbial electrochemical system for soil bioremediation. Chemosphere, 211, 156–163.
  • Yu, C., Wang, Y., Guo, T., Shen, W. & Gu, M. (2012). Isolation and Identification of Ammonia Nitrogen Degradation Strains from Industrial Wastewater. Engineering, 2012, 790–793.
  • Zhu, B., Chen, S., Zhao, C., Zhong, W., Zeng, R. & Yang, S. (2019). Effects of Marichromatium gracile YL28 on the nitrogen management in the aquaculture pond water. Bioresource Technology, 292, 121917.
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Medicine
Journal Section Review
Authors

Erdem Danyer 0000-0002-7922-7384

Publication Date December 30, 2023
Acceptance Date December 26, 2023
Published in Issue Year 2023 Volume: 14 Issue: 3

Cite

APA Danyer, E. (2023). BİYOREMEDİASYON UYGULAMALARININ TEK SAĞLIK YÖNÜYLE DEĞERLENDİRİLMESİ. Veteriner Farmakoloji Ve Toksikoloji Derneği Bülteni, 14(3), 162-171. https://doi.org/10.38137/vftd.1366883