Research Article
BibTex RIS Cite

Entegreli Termal Yönetim Sisteminde Gizli Isı Depolamanın Etkisi

Year 2024, Volume: 2 Issue: 1, 1 - 13, 28.06.2024

Abstract

Termal yönetim sistemleri (TYS) içinde aktif ve pasif soğutma yöntemlerinin avantajlarını bir araya getiren entegreli termal yönetim sistemleri (ETYS) son birkaç yıldır yeni nesil uygulamalar arasında yer almaktadır. ETYS, yüksek ısı üreten uygulamalarda kullanılarak cihaz bileşenlerinden kaynaklanan ısıyı etkin bir şekilde kontrol edip dağıtmak için iki mekanik döngüden oluşmaktadır. Birincil döngüde, bileşenlerden gelen ısı, sıvı soğutma sistemine entegre edilmiş sistem aracılığıyla uzaklaştırılmaktadır. İkincil döngüde ise dolaşan sıvı, cihazın ısı üreten bileşenlerinden ısıyı absorbe ederek tekrar birincil döngüdeki sıvı soğutucu ünitesi tarafından soğutulmaktadır. Bu deneysel çalışmada, birincil döngüdeki radyatöre faz değişim malzemesi (FDM) entegre edilmiş olup FDM' nin gizli ısı depolama kapasitesinden yararlanılarak radyatör üzerindeki ısıl yükün azaltılması amaçlanmıştır. Deneylerde sıcak iklim koşulları baz alınarak radyatörde dolaştırılan ısı transfer akışkanı (ITA) ile FDM arasındaki termal etkiler incelenmiştir. Çalışma kapsamında sıcak iklimdeki agresif ve sürekli yüksek deşarj akımının neden olduğu sıcaklık artışını sönümleyici bir yaklaşım sunulmuştur. Elde edilen veriler, birincil döngüde yer alan radyatörün üstündeki termal yükün, gizli ısı depolama enerjisi kullanıldığında %21.45 azaldığını ortaya koymuştur. Aynı zamanda radyatör kanalları boyunca istikrarlı ve homojen bir ısı dağılımı gözlemlenmiş ve belirsizlik analizi de yapılmıştır.

Ethical Statement

Dergiye gönderilen makalenin yazarın özgün çalışması olduğunu ve makalede etik ihlal yapılmadığını saygılarımla beyan ederim.

References

  • [1] A. Lajunen, Y. Yang, A. Emadi, (2018). Recent developments in thermal management of electrified powertrains, IEEE Trans. Veh. Technol. 67, 11486–11499. https://doi.org/10.1109/TVT.2018.2876315.
  • [2] X. Tang, Q. Guo, M. Li, C. Wei, Z. Pan, Y. Wang, (2021). Performance analysis on liquid cooled battery thermal management for electric vehicles based on machine learning, J. Power Sources 494, 229-727. https://doi.org/10.1016/j. jpowsour.2021.229727
  • [3] J. Guo, F. Jiang, (2021). A novel electric vehicle thermal management system based on cooling and heating of batteries by refrigerant, Energy Convers. Manag. 237, 114145. https://doi.org/10.1016/j.enconman.2021.114145
  • [4] Y. Huo, X. Pang, Z. Rao, (2020). Investigation on the effects of temperature equilibrium strategy in battery thermal management using phase change material, Int. J. Energy Res. 44, 7660–7673. https://doi.org/10.1002/er.5497.
  • [5] G.A. Kilic, E. Yalcin, A.A. Aydin, (2020). Optimum Operating Temperature Range of Phase Change Materials Used in Cold Storage Applications: A Case Study. In: Dincer, I., Colpan, C., Ezan, M. (eds) Environmentally-Benign Energy Solutions. Green Energy and Technology. Springer, Cham, Switzerland AG. https://doi.org/10.1007/978-3-030-20637-6_35
  • [6] Y. Lyu, A.R.M. Siddique, S.H. Majid, M. Biglarbegian, S.A. Gadsden, S. Mahmud, (2019). Electric vehicle battery thermal management system with thermoelectric cooling, Energy Rep. 5, 822–827. https://doi.org/10.1016/j.egyr.2019.06.016.
  • [7] M. Bernagozzi, A. Georgoulas, N. Mich´e, C. Rouaud, M. Marengo, (2021). Novel battery thermal management system for electric vehicles with a loop heat pipe and graphite sheet inserts, Appl. Therm. Eng. 194, 117061. https://doi.org/10.1016/j.applthermaleng.2021.1170
  • [8] S. Kharabati, S. Saedodin, (2024). A systematic review of thermal management techniques for electric vehicle batteries. Journal of Energy Storage, 75, 109586. https://doi.org/10.1016/j.est.2023.109586
  • [9] H. Zou, B. Jiang, Q. Wang, C. Tian, Y. Yan, (2014). Performance analysis of a heat pump air conditioning system coupling with battery cooling for electric vehicles, Energy Procedia 61, 891–894. https://doi.org/10.1016/j.egypro.2014.11.989
  • [10] H. Behi, D. Karimi, M. Behi, M. Ghanbarpour, J. Jaguemont, M.A. Sokkeh, F. H. Gandoman, M. Berecibar, J. Van Mierlo, (2020). A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles, Appl. Therm. Eng. 174, 115280. https://doi.org/10.1016/j. applthermaleng.2020.115280
  • [11] X. Kuang, K. Li, Y. Xie, C. Wu, P. Wang, X. Wang, C. Fu, (2020). Research on control strategy for a battery thermal management system for electric vehicles based on secondary loop cooling, IEEE Access. 8, 73475–73493. https://doi.org/10.1109/ACCESS.2020.2986814
  • [12] D. Leighton, (2015). Combined Fluid Loop Thermal Management for Electric Drive Vehicle Range Improvement. SAE Int J Passenger Cars Mech Syst; 2:711–20. https://doi.org/10.1016/j.ensm.2015.07.001
  • [13] J. Wang, S. Lu, Y. Wang, Y. Ni, S. Zhang, (2020). Novel investigation strategy for minichannel liquid-cooled battery thermal management system, Int. J. Energy Res. 44, 1971–1985. https://doi.org/10.1002/er.5049.
  • [14] Y. Chung, M.S. Kim, (2019). Thermal analysis and pack level design of battery thermal management system with liquid cooling for electric vehicles, Energy Convers. Manag. 196, 105–116. https://doi.org/10.1016/j.enconman.2019.05.083.
  • [15] A.A. Pesaran, M. Keyser, (2022). Thermal characteristics of selected EV and HEV batteries.16th Annual Battery Conference on Applications and Advances, 12 Jan 2022, Long Beach, CA, USA. https://ieeexplore.ieee.org/abstract/document/905129. Erişim tarihi: 22 Kasım 2022. https://doi.org/10.1109/BCAA.2001.905129
  • [16] A.R.M. Siddique, S. Mahmud, B.V. Heyst, (2022). A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations. Journal of Power Sources, 401, 224-237. https://doi.org/10.1016/j.jpowsour.2018.08.094
  • [17] C. Liu, F. Li, L.P. Ma, H.M. Cheng, (2010). Advanced materials for energy storage. Advanced Materials, 22(8), 28-62. https://doi.org/10.1002/adma.200903328
  • [18] S. Singirikonda, Y. P. Obulesu, (2022). Adaptive secondary loop liquid cooling with refrigerant cabin active thermal management system for electric vehicle. Journal of Energy Storage, 50, 104624. https://doi.org/10.1016/j.est.2022.104624
  • [19] H. Yang, J. Wu, X. Xue, Z. Guo, H. Zhang, F. Chen, Y. Chen, (2023). A refrigerant-injection heat pump-based efficient integrated thermal management system for electric vehicles approaching the wide temperature range in China. Energy Conversion and Management, 288, 117102. https://doi.org/10.1016/j.enconman.2023.117102
  • [20] E Bae, J. Hyun, D.J. Han, (2024). Adaptive Integrated Thermal Management System for a Stable Driving Environment in Battery Electric Vehicles. Batteries, 10(2), 59. https://doi.org/10.3390/batteries10020059
  • [21] Emission Test Cycles, (2023). Available online:https://dieselnet.com/standards/cycles/hwfet.php. Erişim tarihi: 1 Kasım 2023.
  • [22] L. He, Z. Gu, Y. Zhang, H. Jing, P. Li, (2023). Control strategy analysis of vehicle thermal management system based on motor heat utilization. Energy Technology, 11(10), 2300495. https://doi.org/10.1002/ente.202300495
  • [23] H. Khalili, P. Ahmadi, M. Ashjaee, E. Houshfar, (2023). Thermal analysis of a novel cycle for battery pre-warm-up and cool down for real driving cycles during different seasons. Journal of Thermal Analysis and Calorimetry, 148(16), 8175-8193. https://doi.org/10.1007/s10973-022-11601-3
  • [24] G.A. Kilic, (2023). An experimental analysis on the effects of passive liquid cooling system on thermal management system. International Journal of Thermofluids, 18, 100370. https://doi.org/10.1016/j.ijft.2023.100370.
  • [25] https://onlinelibrary.wiley.com/doi/epdf/10.1002/er.8279?saml_referrer. Erişim tarihi: 29.Ekim.2023.
  • [26] J.P. Holman, (1971). Experimental methods for engineers and scientists, 37-52, McGraw-Hill Company, USA.

The Effect of Latent Heat Storage in Integrated Thermal Management System

Year 2024, Volume: 2 Issue: 1, 1 - 13, 28.06.2024

Abstract

Integrated thermal management systems (ITMS), which combine the advantages of active and passive cooling methods within thermal management systems (TMS), have been among the new generation applications in recent years. ITMS, used in applications generating high heat, consists of two mechanical cycles to effectively control and distribute heat originating from device components. In the primary cycle, heat from the components is dissipated through a system integrated with a liquid cooling system. In the secondary cycle, the circulating liquid absorbs heat from the heat-generating components of the device and is then cooled again by the liquid cooling unit in the primary cycle. In this experimental study, phase change material (PCM) was integrated into the radiator in the primary cycle to reduce the thermal load on the radiator by utilizing the latent heat storage capacity of PCM. Thermal effects between the heat transfer fluid (HTF) circulated in the radiator and PCM were examined considering hot climate conditions in experiments. Within the scope of the study, a mitigating approach to suppress the temperature increase caused by aggressive and continuous high discharge currents in hot climates was proposed. The obtained data revealed a reduction of 21.45% in the thermal load on the radiator when utilizing latent heat storage energy in the primary cycle. Additionally, a stable and homogeneous heat distribution along the radiator channels was observed, and uncertainty analysis was conducted.

References

  • [1] A. Lajunen, Y. Yang, A. Emadi, (2018). Recent developments in thermal management of electrified powertrains, IEEE Trans. Veh. Technol. 67, 11486–11499. https://doi.org/10.1109/TVT.2018.2876315.
  • [2] X. Tang, Q. Guo, M. Li, C. Wei, Z. Pan, Y. Wang, (2021). Performance analysis on liquid cooled battery thermal management for electric vehicles based on machine learning, J. Power Sources 494, 229-727. https://doi.org/10.1016/j. jpowsour.2021.229727
  • [3] J. Guo, F. Jiang, (2021). A novel electric vehicle thermal management system based on cooling and heating of batteries by refrigerant, Energy Convers. Manag. 237, 114145. https://doi.org/10.1016/j.enconman.2021.114145
  • [4] Y. Huo, X. Pang, Z. Rao, (2020). Investigation on the effects of temperature equilibrium strategy in battery thermal management using phase change material, Int. J. Energy Res. 44, 7660–7673. https://doi.org/10.1002/er.5497.
  • [5] G.A. Kilic, E. Yalcin, A.A. Aydin, (2020). Optimum Operating Temperature Range of Phase Change Materials Used in Cold Storage Applications: A Case Study. In: Dincer, I., Colpan, C., Ezan, M. (eds) Environmentally-Benign Energy Solutions. Green Energy and Technology. Springer, Cham, Switzerland AG. https://doi.org/10.1007/978-3-030-20637-6_35
  • [6] Y. Lyu, A.R.M. Siddique, S.H. Majid, M. Biglarbegian, S.A. Gadsden, S. Mahmud, (2019). Electric vehicle battery thermal management system with thermoelectric cooling, Energy Rep. 5, 822–827. https://doi.org/10.1016/j.egyr.2019.06.016.
  • [7] M. Bernagozzi, A. Georgoulas, N. Mich´e, C. Rouaud, M. Marengo, (2021). Novel battery thermal management system for electric vehicles with a loop heat pipe and graphite sheet inserts, Appl. Therm. Eng. 194, 117061. https://doi.org/10.1016/j.applthermaleng.2021.1170
  • [8] S. Kharabati, S. Saedodin, (2024). A systematic review of thermal management techniques for electric vehicle batteries. Journal of Energy Storage, 75, 109586. https://doi.org/10.1016/j.est.2023.109586
  • [9] H. Zou, B. Jiang, Q. Wang, C. Tian, Y. Yan, (2014). Performance analysis of a heat pump air conditioning system coupling with battery cooling for electric vehicles, Energy Procedia 61, 891–894. https://doi.org/10.1016/j.egypro.2014.11.989
  • [10] H. Behi, D. Karimi, M. Behi, M. Ghanbarpour, J. Jaguemont, M.A. Sokkeh, F. H. Gandoman, M. Berecibar, J. Van Mierlo, (2020). A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles, Appl. Therm. Eng. 174, 115280. https://doi.org/10.1016/j. applthermaleng.2020.115280
  • [11] X. Kuang, K. Li, Y. Xie, C. Wu, P. Wang, X. Wang, C. Fu, (2020). Research on control strategy for a battery thermal management system for electric vehicles based on secondary loop cooling, IEEE Access. 8, 73475–73493. https://doi.org/10.1109/ACCESS.2020.2986814
  • [12] D. Leighton, (2015). Combined Fluid Loop Thermal Management for Electric Drive Vehicle Range Improvement. SAE Int J Passenger Cars Mech Syst; 2:711–20. https://doi.org/10.1016/j.ensm.2015.07.001
  • [13] J. Wang, S. Lu, Y. Wang, Y. Ni, S. Zhang, (2020). Novel investigation strategy for minichannel liquid-cooled battery thermal management system, Int. J. Energy Res. 44, 1971–1985. https://doi.org/10.1002/er.5049.
  • [14] Y. Chung, M.S. Kim, (2019). Thermal analysis and pack level design of battery thermal management system with liquid cooling for electric vehicles, Energy Convers. Manag. 196, 105–116. https://doi.org/10.1016/j.enconman.2019.05.083.
  • [15] A.A. Pesaran, M. Keyser, (2022). Thermal characteristics of selected EV and HEV batteries.16th Annual Battery Conference on Applications and Advances, 12 Jan 2022, Long Beach, CA, USA. https://ieeexplore.ieee.org/abstract/document/905129. Erişim tarihi: 22 Kasım 2022. https://doi.org/10.1109/BCAA.2001.905129
  • [16] A.R.M. Siddique, S. Mahmud, B.V. Heyst, (2022). A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations. Journal of Power Sources, 401, 224-237. https://doi.org/10.1016/j.jpowsour.2018.08.094
  • [17] C. Liu, F. Li, L.P. Ma, H.M. Cheng, (2010). Advanced materials for energy storage. Advanced Materials, 22(8), 28-62. https://doi.org/10.1002/adma.200903328
  • [18] S. Singirikonda, Y. P. Obulesu, (2022). Adaptive secondary loop liquid cooling with refrigerant cabin active thermal management system for electric vehicle. Journal of Energy Storage, 50, 104624. https://doi.org/10.1016/j.est.2022.104624
  • [19] H. Yang, J. Wu, X. Xue, Z. Guo, H. Zhang, F. Chen, Y. Chen, (2023). A refrigerant-injection heat pump-based efficient integrated thermal management system for electric vehicles approaching the wide temperature range in China. Energy Conversion and Management, 288, 117102. https://doi.org/10.1016/j.enconman.2023.117102
  • [20] E Bae, J. Hyun, D.J. Han, (2024). Adaptive Integrated Thermal Management System for a Stable Driving Environment in Battery Electric Vehicles. Batteries, 10(2), 59. https://doi.org/10.3390/batteries10020059
  • [21] Emission Test Cycles, (2023). Available online:https://dieselnet.com/standards/cycles/hwfet.php. Erişim tarihi: 1 Kasım 2023.
  • [22] L. He, Z. Gu, Y. Zhang, H. Jing, P. Li, (2023). Control strategy analysis of vehicle thermal management system based on motor heat utilization. Energy Technology, 11(10), 2300495. https://doi.org/10.1002/ente.202300495
  • [23] H. Khalili, P. Ahmadi, M. Ashjaee, E. Houshfar, (2023). Thermal analysis of a novel cycle for battery pre-warm-up and cool down for real driving cycles during different seasons. Journal of Thermal Analysis and Calorimetry, 148(16), 8175-8193. https://doi.org/10.1007/s10973-022-11601-3
  • [24] G.A. Kilic, (2023). An experimental analysis on the effects of passive liquid cooling system on thermal management system. International Journal of Thermofluids, 18, 100370. https://doi.org/10.1016/j.ijft.2023.100370.
  • [25] https://onlinelibrary.wiley.com/doi/epdf/10.1002/er.8279?saml_referrer. Erişim tarihi: 29.Ekim.2023.
  • [26] J.P. Holman, (1971). Experimental methods for engineers and scientists, 37-52, McGraw-Hill Company, USA.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Gülenay Alevay Kılıç 0000-0002-3513-8785

Publication Date June 28, 2024
Submission Date March 12, 2024
Acceptance Date April 29, 2024
Published in Issue Year 2024 Volume: 2 Issue: 1

Cite

APA Kılıç, G. A. (2024). Entegreli Termal Yönetim Sisteminde Gizli Isı Depolamanın Etkisi. Van Yüzüncü Yıl Üniversitesi Mühendislik Fakültesi Dergisi, 2(1), 1-13.