Research Article
BibTex RIS Cite

UÇAK ELEKTRİK-ELEKTRONİĞİNDE GaAs YARIİLETKENLERİNDE AZOT-ARSENİK YER DEĞİŞİMİNİN ELEKTRONİK VE OPTİK ÖZELLİKLER ÜZERİNDEKİ ETKİLERİ

Year 2024, , 129 - 137, 30.10.2024
https://doi.org/10.57120/yalvac.1553785

Abstract

Bu çalışma, uçak teknolojisinde kullanılan GaAs yarıiletkenlerinde azot (N) katkısının elektronik ve optik özellikler üzerindeki etkilerini incelemiştir. GaAs'ın yüksek performanslı elektronik ve optoelektronik uygulamalardaki rolü göz önüne alındığında, azot katkısının etkileri teorik olarak değerlendirilmiştir. Çalışma, WIEN2k yazılımı kullanılarak Yoğunluk Fonksiyonel Teorisi (DFT) ile gerçekleştirilmiştir. GaAs’ın örgü sabitinin 5,7515 Å, GaAs0,75N0,25’in ise 5,5413 Å olduğunu göstermiştir. Azot katkısının örgü parametresinde belirgin bir azalmaya yol açtığı gözlemlenmiştir. Elektronik özelliklerde, yasak band enerjisinin katkısız GaAs için 1,63 eV, azot katkılı GaAs0,75N0,25 için ise 0,61 eV olduğu hesaplanmıştır. Bu, malzemenin yüksek hızlı ve verimli elektronik devrelerde daha etkili performans sağlama potansiyelini ortaya koymaktadır. Optik özelliklerde, GaAs’ın dielektrik sabiti 11,68, GaAs0,75N0,25’in ise 9,64 olarak hesaplanmıştır. Azot katkısının dielektrik fonksiyonları ve yansıma katsayılarında belirgin değişikliklere yol açtığı, özellikle yansıma katsayısında azalmaya neden olduğu bulunmuştur. Bu bulgular, uçak teknolojisindeki optik kaplamalar ve radar gizlilik uygulamaları için önemli olabilir. Bu çalışma, GaAs ve GaAs0,75N0,25 bileşiklerinin uçak teknolojisinde yüksek performanslı yarıiletkenler için potansiyelini değerlendirmektedir. Azot katkısının etkileri, malzemelerin optimize edilmesi ve performanslarının artırılması için faydalı bilgiler sunmaktadır.

References

  • [1] Gao, X. Z., Hou, Z. X., Guo, Z., Chen, X. Q. (2015). Reviews of methods to extract and store energy for solar-powered aircraft. Renewable and Sustainable Energy Reviews, 44, 96-108. https://doi.org/10.1016/j.rser.2014.11.025
  • [2] Chen, H. C., Lin, C. C., Han, H. V., Chen, K. J., Tsai, Y. L., Chang, Y. A., ... Yu, P. (2012). Enhancement of power conversion efficiency in GaAs solar cells with dual-layer quantum dots using flexible PDMS film. Solar Energy Materials and Solar Cells, 104, 92-96. https://doi.org/10.1016/j.solmat.2012.05.003
  • [3] Geisz, J. F., Friedman, D. J. (2002). III–N–V semiconductors for solar photovoltaic applications. Semiconductor Science and Technology, 17(8), 769. https://doi.org/10.1088/0268-1242/17/8/305
  • [4] Kosa, A., Stuchlikova, L., Harmatha, L., Mikolasek, M., Kovac, J., Sciana, B., ... Tlaczala, M. (2016). Defect distribution in InGaAsN/GaAs multilayer solar cells. Solar Energy, 132, 587-590. https://doi.org/10.1016/j.solener.2016.03.057
  • [5] Kurtz, S. R., Allerman, A. A., Jones, E. D., Gee, J. M., Banas, J. J., Hammons, B. E. (1999). InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs. Applied Physics Letters, 74(5), 729-731. https://doi.org/10.1063/1.123105
  • [6] Aissat, A., Bestam, R., Alshehri, B., Vilcot, J. P. (2015). Modeling of the absorption properties of Ga1−xInxAs1−yNy/GaAs quantum well structures for photodetection applications. Superlattices and Microstructures, 82, 623-629. https://doi.org/10.1016/j.spmi.2015.01.019
  • [7] Kondow, M., Uomi, K., Niwa, A., Kitatani, T., Watahiki, S., Yazawa, Y. (1996). GaInNAs: A novel material for long-wavelength-range laser diodes with excellent high-temperature performance. Japanese Journal Of Applied Physics, 35(2S), 1273. https://doi.org/10.1143/JJAP.35.1273
  • [8] Mal, I., Jayarubi, J., Das, S., Sharma, A. S., Peter, A. J., Samajdar, D. P. (2019). Hydrostatic pressure dependent optoelectronic properties of InGaAsN/GaAs spherical quantum dots for laser diode applications. Physica Status Solidi (b), 256(3), 1800395. https://doi.org/10.1002/pssb.201800395
  • [9] Ali, A., Anwar, A. W., Moin, M., Babar, M., & Thumu, U. (2024). Investigation of structural, mechanical, electronic and optical responses of Ga doped aluminum arsenide for optoelectronic applications: By first principles. Heliyon, 10(2). https://doi.org/10.1016/j.heliyon.2024.e24597 [10] Kumar, A., Gupta, H., Kumar, A., Kumar, A., Sharma, S. K., Lal, B., & Iram, N. (2024). Optoelectronic properties of Sb doped GaAs: DFT investigation. Indian Journal of Physics, 1-10. https://doi.org/10.1007/s12648-024-03273-6
  • [11] Abera, B., & Mekuye, B. (2024). Effects of manganese concentration and temperature on the ferromagnetism of manganese‐doped gallium arsenide semiconductor. Nano Select, 5(3), 2300084. https://doi.org/10.1002/nano.202300084 [12] Cai, B., Wu, L., Zhu, X., Cheng, Z., & Cheng, Y. (2024). Ultra-broadband and wide-angle plasmonic light absorber based on all-dielectric gallium arsenide (GaAs) metasurface in visible and near-infrared region. Results in Physics, 58, 107509. https://doi.org/10.1016/j.rinp.2024.107509
  • [13] Wu, L., Yang, L., Zhu, X., Cai, B., & Cheng, Y. (2024). Ultra-broadband and wide-angle plasmonic absorber based on all-dielectric gallium arsenide pyramid nanostructure for full solar radiation spectrum range. International Journal of Thermal Sciences, 201, 109043. https://doi.org/10.1016/j.ijthermalsci.2024.109043
  • [14] Schwarz, K., Blaha, P., Madsen, G. K. (2002). Electronic structure calculations of solids using the WIEN2k package for material sciences. Computer Physics Communications, 147(1-2), 71-76. https://doi.org/10.1016/S0010-4655(02)00206-0
  • [15] Schwarz, K., Blaha, P. (2003). Solid state calculations using WIEN2k. Computational Materials Science, 28(2), 259-273. https://doi.org/10.1016/S0927-0256(03)00112-5
  • [16] Schwarz, K., Blaha, P., Trickey, S. B. (2010). Electronic structure of solids with WIEN2k. Molecular Physics, 108(21-23), 3147-3166. https://doi.org/10.1080/00268976.2010.506451
  • [17] Perdew, J. P., Burke, K., Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  • [18] Chmill, V. (2006). Radiation tests of semiconductor detectors (Doctoral dissertation, KTH). Erişim Adresi: https://www.diva-portal.org/smash/get/diva2:10452/FULLTEXT01.pdf.
  • [19] Murnaghan, F. D. (1944). The compressibility of media under extreme pressures. Proceedings of the National Academy of Sciences, 30(9), 244-247.
  • [20] Tran, F., Blaha, P. (2009). Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Physical Review Letters, 102(22), 226401. https://doi.org/10.1103/PhysRevLett.102.226401
  • [21] Adewale, A. A., Yahaya, A. A., Agbolade, L. O., Yusuff, O. K., Azeez, S. O., Babalola, K. K., ... Chik, A. (2024). Optoelectronic and mechanical properties of gallium arsenide alloys: Based on density functional theory. Chemical Physics Impact, 8, 100594. https://doi.org/10.1016/j.chphi.2024.100594
  • [22] Hachemi, M. H., Benchehima, M., Bencherif, K., Abid, H. (2022). The effect of N-incorporation on the structural and optoelectronic properties of GaP and GaAs for optical telecommunication applications: first-principles study. Optik, 262, 169282. https://doi.org/10.1016/j.ijleo.2022.169282
  • [23] Adachi, S. (1987). Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb: Key properties for a variety of the 2–4‐μm optoelectronic device applications. Journal of Applied Physics, 61(10), 4869-4876. https://doi.org/10.1063/1.338352
  • [24] De L. Kronig, R. (1926). On the theory of dispersion of x-rays. Journal of the Optical Society of America, 12(6), 547-557.
  • [25] Ambrosch-Draxl, C., & Sofo, J. O. (2006). Linear optical properties of solids within the full-potential linearized augmented planewave method. Computer physics communications, 175(1), 1-14. https://doi.org/10.1016/j.cpc.2006.03.005
  • [26] Hadjab, M., Berrah, S., Abid, H., Ziane, M. I., Bennacer, H., & Yalcin, B. G. (2016). Full-potential calculations of structural and optoelectronic properties of cubic indium gallium arsenide semiconductor alloys. Optik, 127(20), 9280-9294. https://doi.org/10.1016/j.ijleo.2016.07.018
  • [27] Ziane, M. I., Bensaad, Z., Labdelli, B., & Bennacer, H. (2014). First-principles study of structural, electronic and optical properties of III-arsenide binary GaAs and InAs, and III-nitrides binary GaN and InN: Improved density-functional-theory Study. Sensors & transducers, 27(5), 374.
  • [28] Othman, M., Kasap, E. R. G. Ü. N., & Korozlu, N. (2010). Ab-initio investigation of structural, electronic and optical properties of InxGa1−xAs, GaAs1−yPy ternary and InxGa1− xAs1− yPy quaternary semiconductor alloys. Journal of Alloys and Compounds, 496(1-2), 226-233. https://doi.org/10.1016/j.jallcom.2009.12.109
Year 2024, , 129 - 137, 30.10.2024
https://doi.org/10.57120/yalvac.1553785

Abstract

References

  • [1] Gao, X. Z., Hou, Z. X., Guo, Z., Chen, X. Q. (2015). Reviews of methods to extract and store energy for solar-powered aircraft. Renewable and Sustainable Energy Reviews, 44, 96-108. https://doi.org/10.1016/j.rser.2014.11.025
  • [2] Chen, H. C., Lin, C. C., Han, H. V., Chen, K. J., Tsai, Y. L., Chang, Y. A., ... Yu, P. (2012). Enhancement of power conversion efficiency in GaAs solar cells with dual-layer quantum dots using flexible PDMS film. Solar Energy Materials and Solar Cells, 104, 92-96. https://doi.org/10.1016/j.solmat.2012.05.003
  • [3] Geisz, J. F., Friedman, D. J. (2002). III–N–V semiconductors for solar photovoltaic applications. Semiconductor Science and Technology, 17(8), 769. https://doi.org/10.1088/0268-1242/17/8/305
  • [4] Kosa, A., Stuchlikova, L., Harmatha, L., Mikolasek, M., Kovac, J., Sciana, B., ... Tlaczala, M. (2016). Defect distribution in InGaAsN/GaAs multilayer solar cells. Solar Energy, 132, 587-590. https://doi.org/10.1016/j.solener.2016.03.057
  • [5] Kurtz, S. R., Allerman, A. A., Jones, E. D., Gee, J. M., Banas, J. J., Hammons, B. E. (1999). InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs. Applied Physics Letters, 74(5), 729-731. https://doi.org/10.1063/1.123105
  • [6] Aissat, A., Bestam, R., Alshehri, B., Vilcot, J. P. (2015). Modeling of the absorption properties of Ga1−xInxAs1−yNy/GaAs quantum well structures for photodetection applications. Superlattices and Microstructures, 82, 623-629. https://doi.org/10.1016/j.spmi.2015.01.019
  • [7] Kondow, M., Uomi, K., Niwa, A., Kitatani, T., Watahiki, S., Yazawa, Y. (1996). GaInNAs: A novel material for long-wavelength-range laser diodes with excellent high-temperature performance. Japanese Journal Of Applied Physics, 35(2S), 1273. https://doi.org/10.1143/JJAP.35.1273
  • [8] Mal, I., Jayarubi, J., Das, S., Sharma, A. S., Peter, A. J., Samajdar, D. P. (2019). Hydrostatic pressure dependent optoelectronic properties of InGaAsN/GaAs spherical quantum dots for laser diode applications. Physica Status Solidi (b), 256(3), 1800395. https://doi.org/10.1002/pssb.201800395
  • [9] Ali, A., Anwar, A. W., Moin, M., Babar, M., & Thumu, U. (2024). Investigation of structural, mechanical, electronic and optical responses of Ga doped aluminum arsenide for optoelectronic applications: By first principles. Heliyon, 10(2). https://doi.org/10.1016/j.heliyon.2024.e24597 [10] Kumar, A., Gupta, H., Kumar, A., Kumar, A., Sharma, S. K., Lal, B., & Iram, N. (2024). Optoelectronic properties of Sb doped GaAs: DFT investigation. Indian Journal of Physics, 1-10. https://doi.org/10.1007/s12648-024-03273-6
  • [11] Abera, B., & Mekuye, B. (2024). Effects of manganese concentration and temperature on the ferromagnetism of manganese‐doped gallium arsenide semiconductor. Nano Select, 5(3), 2300084. https://doi.org/10.1002/nano.202300084 [12] Cai, B., Wu, L., Zhu, X., Cheng, Z., & Cheng, Y. (2024). Ultra-broadband and wide-angle plasmonic light absorber based on all-dielectric gallium arsenide (GaAs) metasurface in visible and near-infrared region. Results in Physics, 58, 107509. https://doi.org/10.1016/j.rinp.2024.107509
  • [13] Wu, L., Yang, L., Zhu, X., Cai, B., & Cheng, Y. (2024). Ultra-broadband and wide-angle plasmonic absorber based on all-dielectric gallium arsenide pyramid nanostructure for full solar radiation spectrum range. International Journal of Thermal Sciences, 201, 109043. https://doi.org/10.1016/j.ijthermalsci.2024.109043
  • [14] Schwarz, K., Blaha, P., Madsen, G. K. (2002). Electronic structure calculations of solids using the WIEN2k package for material sciences. Computer Physics Communications, 147(1-2), 71-76. https://doi.org/10.1016/S0010-4655(02)00206-0
  • [15] Schwarz, K., Blaha, P. (2003). Solid state calculations using WIEN2k. Computational Materials Science, 28(2), 259-273. https://doi.org/10.1016/S0927-0256(03)00112-5
  • [16] Schwarz, K., Blaha, P., Trickey, S. B. (2010). Electronic structure of solids with WIEN2k. Molecular Physics, 108(21-23), 3147-3166. https://doi.org/10.1080/00268976.2010.506451
  • [17] Perdew, J. P., Burke, K., Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  • [18] Chmill, V. (2006). Radiation tests of semiconductor detectors (Doctoral dissertation, KTH). Erişim Adresi: https://www.diva-portal.org/smash/get/diva2:10452/FULLTEXT01.pdf.
  • [19] Murnaghan, F. D. (1944). The compressibility of media under extreme pressures. Proceedings of the National Academy of Sciences, 30(9), 244-247.
  • [20] Tran, F., Blaha, P. (2009). Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Physical Review Letters, 102(22), 226401. https://doi.org/10.1103/PhysRevLett.102.226401
  • [21] Adewale, A. A., Yahaya, A. A., Agbolade, L. O., Yusuff, O. K., Azeez, S. O., Babalola, K. K., ... Chik, A. (2024). Optoelectronic and mechanical properties of gallium arsenide alloys: Based on density functional theory. Chemical Physics Impact, 8, 100594. https://doi.org/10.1016/j.chphi.2024.100594
  • [22] Hachemi, M. H., Benchehima, M., Bencherif, K., Abid, H. (2022). The effect of N-incorporation on the structural and optoelectronic properties of GaP and GaAs for optical telecommunication applications: first-principles study. Optik, 262, 169282. https://doi.org/10.1016/j.ijleo.2022.169282
  • [23] Adachi, S. (1987). Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb: Key properties for a variety of the 2–4‐μm optoelectronic device applications. Journal of Applied Physics, 61(10), 4869-4876. https://doi.org/10.1063/1.338352
  • [24] De L. Kronig, R. (1926). On the theory of dispersion of x-rays. Journal of the Optical Society of America, 12(6), 547-557.
  • [25] Ambrosch-Draxl, C., & Sofo, J. O. (2006). Linear optical properties of solids within the full-potential linearized augmented planewave method. Computer physics communications, 175(1), 1-14. https://doi.org/10.1016/j.cpc.2006.03.005
  • [26] Hadjab, M., Berrah, S., Abid, H., Ziane, M. I., Bennacer, H., & Yalcin, B. G. (2016). Full-potential calculations of structural and optoelectronic properties of cubic indium gallium arsenide semiconductor alloys. Optik, 127(20), 9280-9294. https://doi.org/10.1016/j.ijleo.2016.07.018
  • [27] Ziane, M. I., Bensaad, Z., Labdelli, B., & Bennacer, H. (2014). First-principles study of structural, electronic and optical properties of III-arsenide binary GaAs and InAs, and III-nitrides binary GaN and InN: Improved density-functional-theory Study. Sensors & transducers, 27(5), 374.
  • [28] Othman, M., Kasap, E. R. G. Ü. N., & Korozlu, N. (2010). Ab-initio investigation of structural, electronic and optical properties of InxGa1−xAs, GaAs1−yPy ternary and InxGa1− xAs1− yPy quaternary semiconductor alloys. Journal of Alloys and Compounds, 496(1-2), 226-233. https://doi.org/10.1016/j.jallcom.2009.12.109
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering (Other), Solar Energy Systems
Journal Section Articels
Authors

İsmail Yücel 0000-0002-8660-3931

Early Pub Date October 24, 2024
Publication Date October 30, 2024
Submission Date September 21, 2024
Acceptance Date September 29, 2024
Published in Issue Year 2024

Cite

APA Yücel, İ. (2024). UÇAK ELEKTRİK-ELEKTRONİĞİNDE GaAs YARIİLETKENLERİNDE AZOT-ARSENİK YER DEĞİŞİMİNİN ELEKTRONİK VE OPTİK ÖZELLİKLER ÜZERİNDEKİ ETKİLERİ. Yalvaç Akademi Dergisi, 9(2), 129-137. https://doi.org/10.57120/yalvac.1553785

http://www.yalvacakademi.org/