Research Article
BibTex RIS Cite

Prediction of major earthquakes that may affect İzmir using machine learning methods

Year 2024, , 93 - 106, 26.08.2024
https://doi.org/10.17824/yerbilimleri.1402618

Abstract

Earthquakes are among the most devastating natural disasters worldwide, causing significant loss of life and property throughout history. Therefore, numerous earthquake prediction studies have been conducted, and precautions have been taken. However, due to our planet's complex geological structure and various dynamics, predicting earthquakes remains challenging. New solutions have emerged in various fields thanks to recent advancements in artificial intelligence research. In this study, we predict the focal locations and depths of earthquakes of magnitude 6 or greater, which could impact the İzmir province in the future. We utilize machine learning techniques, specifically Random Forest (RF), Decision Tree (DT), Light Gradient Boosting Machine (LGBM), Category Boosting (CB), and Support Vector Machine (SVM) methods to make these predictions. The study utilized earthquake catalog data collected between 1900 and 2023, and a and b coefficients generated from this data based on the Gutenberg-Richter law. The evaluation of the results was carried out using RMSE, MAE, and R2 metrics. The map showcases the predicted focal locations and depths of future earthquakes that could impact İzmir.

References

  • Ahamed, S.,Daub, E. G., 2019. Machine learning approach to earthquake rupture dynamics. arXiv preprint arXiv:1906.06250.
  • Asencio-Cortés, G., Martínez-Álvarez, F., Troncoso, A.,Morales-Esteban, A., 2017. Medium–large earthquake magnitude prediction in Tokyo with artificial neural networks. Neural Computing and Applications, 28(5), 1043-1055. https://doi.org/10.1007/s00521-015-2121-7
  • Baik, S. M., Hong, K. S.,Park, D. J., 2023. Application and utility of boosting machine learning model based on laboratory test in the differential diagnosis of non-COVID-19 pneumonia and COVID-19. Clinical Biochemistry, 118, 110584. https://doi.org/10.1016/j.clinbiochem.2023.05.003
  • Barsukov, V. L., Varshal, G. M.,Zamokina, N. S., 1984. Recent results of hydrogeochemical studies for earthquake prediction in the USSR. Pure and Applied Geophysics 122(2), 143-156. https://doi.org/10.1007/BF00874588
  • Bayrak, E., Yılmaz, Ş.,Bayrak, Y., 2017. Temporal and spatial variations of Gutenberg-Richter parameter and fractal dimension in Western Anatolia, Turkey. Journal of Asian Earth Sciences, 138, 1-11. https://doi.org/10.1016/j.jseaes.2017.01.031
  • Berhich, A., Belouadha, F.-Z.,Kabbaj, M. I., 2022. A location-dependent earthquake prediction using recurrent neural network algorithms. Soil Dynamics and Earthquake Engineering, 161, 107389. https://doi.org/10.1016/j.soildyn.2022.107389
  • Berhich, A., Belouadha, F.-Z.,Kabbaj, M. I., 2023. An attention-based LSTM network for large earthquake prediction. Soil Dynamics and Earthquake Engineering, 165, 107663. https://doi.org/10.1016/j.soildyn.2022.107663
  • Breiman, L., 2001. Random forests. Machine Learning, 45, 5-32.
  • Bulbul, S., 2023. Investigation of possible causes of ionospheric anomalies pre/post-earthquakes based on space weather conditions (SWC). Indian Journal of Physics. 10.1007/s12648-023-02866-x
  • Correa Bahnsen, A., Aouada, D.,Ottersten, B., 2015. Example-dependent cost-sensitive decision trees. Expert Systems with Applications, 42(19), 6609-6619. https://doi.org/10.1016/j.eswa.2015.04.042
  • Cortes, C.,Vapnik, V., 1995. Support-vector networks. Machine Learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018

İzmir'i etkileyebilecek büyük depremlerin makine öğrenimi yöntemleriyle tahmin edilmesi

Year 2024, , 93 - 106, 26.08.2024
https://doi.org/10.17824/yerbilimleri.1402618

Abstract

Deprem, üzerinde yaşadığımız dünya üzerindeki en büyük doğal afetlerdendir. İnsanlık tarihten günümüze depremlerden dolayı çok sayıda can ve mal kaybı yaşamıştır. Bu nedenle tarih boyunca insanlar depremleri önceden tahmin edebilmek ve önlemler alabilmek için çeşitli çalışmalar yapagelmiştir. Ancak dünyamızın karmaşık jeolojik yapısı ve çeşitli dinamikleri nedeniyle depremleri tahmin etmek oldukça zordur. Yapay zeka çalışmalarında son yıllarda meydana gelen gelişmeler sayesinde birçok alanda yeni çözümler ortaya çıkmaya başlamıştır. Bu çalışmada diğer çalışmalardan farklı olarak gelecekte İzmir ilini etkileyebilecek 6 ve üzeri büyüklükteki depremlerin odak konumları ve odak derinlikleri Random Forest (RF), Decision Tree (DT), Light Gradient Boosting Machine (LGBM), Category Boosting (CB), Support Vector Machine (SVM) makine öğrenimi yöntemleri kullanılarak tahmin edilmiştir. Girdi verisi olarak 1900-2023 arasındaki deprem katalog verileri ile Gutenberg-Richter yasasına göre bu verilerden üretilen a ve b katsayıları birlikte kullanılmıştır. Sonuçlar RMSE, MAE ve R2 metrikleriyle değerlendirilmiştir. Gelecekte İzmir’i etkileyebilecek depremlerin tahmin edilen odak konumları ve derinlikleri tablo halinde verilmiş ve harita üzerinde gösterilmiştir.

References

  • Ahamed, S.,Daub, E. G., 2019. Machine learning approach to earthquake rupture dynamics. arXiv preprint arXiv:1906.06250.
  • Asencio-Cortés, G., Martínez-Álvarez, F., Troncoso, A.,Morales-Esteban, A., 2017. Medium–large earthquake magnitude prediction in Tokyo with artificial neural networks. Neural Computing and Applications, 28(5), 1043-1055. https://doi.org/10.1007/s00521-015-2121-7
  • Baik, S. M., Hong, K. S.,Park, D. J., 2023. Application and utility of boosting machine learning model based on laboratory test in the differential diagnosis of non-COVID-19 pneumonia and COVID-19. Clinical Biochemistry, 118, 110584. https://doi.org/10.1016/j.clinbiochem.2023.05.003
  • Barsukov, V. L., Varshal, G. M.,Zamokina, N. S., 1984. Recent results of hydrogeochemical studies for earthquake prediction in the USSR. Pure and Applied Geophysics 122(2), 143-156. https://doi.org/10.1007/BF00874588
  • Bayrak, E., Yılmaz, Ş.,Bayrak, Y., 2017. Temporal and spatial variations of Gutenberg-Richter parameter and fractal dimension in Western Anatolia, Turkey. Journal of Asian Earth Sciences, 138, 1-11. https://doi.org/10.1016/j.jseaes.2017.01.031
  • Berhich, A., Belouadha, F.-Z.,Kabbaj, M. I., 2022. A location-dependent earthquake prediction using recurrent neural network algorithms. Soil Dynamics and Earthquake Engineering, 161, 107389. https://doi.org/10.1016/j.soildyn.2022.107389
  • Berhich, A., Belouadha, F.-Z.,Kabbaj, M. I., 2023. An attention-based LSTM network for large earthquake prediction. Soil Dynamics and Earthquake Engineering, 165, 107663. https://doi.org/10.1016/j.soildyn.2022.107663
  • Breiman, L., 2001. Random forests. Machine Learning, 45, 5-32.
  • Bulbul, S., 2023. Investigation of possible causes of ionospheric anomalies pre/post-earthquakes based on space weather conditions (SWC). Indian Journal of Physics. 10.1007/s12648-023-02866-x
  • Correa Bahnsen, A., Aouada, D.,Ottersten, B., 2015. Example-dependent cost-sensitive decision trees. Expert Systems with Applications, 42(19), 6609-6619. https://doi.org/10.1016/j.eswa.2015.04.042
  • Cortes, C.,Vapnik, V., 1995. Support-vector networks. Machine Learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018
There are 11 citations in total.

Details

Primary Language Turkish
Subjects Seismology, Geological Sciences and Engineering (Other)
Journal Section Articles
Authors

Ayhan Doğan 0000-0002-9872-8889

Publication Date August 26, 2024
Submission Date December 9, 2023
Acceptance Date April 16, 2024
Published in Issue Year 2024

Cite

EndNote Doğan A (August 1, 2024) İzmir’i etkileyebilecek büyük depremlerin makine öğrenimi yöntemleriyle tahmin edilmesi. Yerbilimleri 45 2 93–106.