Research Article
BibTex RIS Cite

Tahribatsız yöntemlerle tarihsel yapılarda ayrışmanın belirlenmesi: Türkmenistan'ın Merv şehrine ait uygulama

Year 2019, , 210 - 233, 15.08.2019
https://doi.org/10.17824/yerbilimleri.533430

Abstract

Arkeolojik alanlar, tarihsel yapılar ve sit alanları yasa ve yönetmeliklerle korumaya alınmış ve
izinsiz herhangi bir değişiklik veya restorasyon yapılması da yasal sınırlarla engellenmiştir.
Tarihsel bir miras olarak günümüze kadar özelliklerini koruyan mimarı yapılar ve yerleşim
alanlarında zamanla doğal veya yapay etkenlerle meydana gelen hasar, fiziksel ve iklim
koşulları nedeniyle meydana gelen mukavemet kaybının tespiti önemlidir. Ancak bu tür
çalışmalar yapılırken yapılarda kalıcı deformasyona neden olacak karot numunesi alma,
sıyırma vb. uygulamalardan kaçınılması istenir. Bu nedenle hasarsız yöntemlerin kullanılması
öncelikli ve zorunludur. Bu çalışma kapsamında Türkmenistan’ın antik şehri olan Merv’de
sahabelerden Hakem El Gıfari ve Bureyde el-Eslemi’nin bulunduğu 2 kule ve 2 türbe üzerinde
ultrasonik hız, çatlak derinliği ve basınç mukavemetlerinin hesaplanmasıyla yenileme yapılacak
alanlar hakkında bilgiler elde edilmiştir. Hızların Uluslarası Atom Enerjisi Ajansı tarafından
önerilen sınıflandırmaya göre çok kötü ve kötü kaliteye sahip olduğu, çatlak derinliği
sınıflamasına göre II ve III derece çatlak sınıfına girdiği ve basınç mukavemetlerinin kulelerde
2-8 MPa arasında değiştiği, türbelerde ise 20 MPa değerlerine sahip olduğu görülmüştür. Beton
kalitesinin dayanımındaki bu farklılıklar, kuzeybatıdan esen rüzgarlar ve alanın tarihin farklı
dönemlerde restore edilmesinde işçilik farklılıklarından kaynaklı olabileceği düşünülmüştür.
Elde edilen sonuçlar kullanılarak yapıda güçlendirme yapıldığında, hem daha iyi korunacak
hem de bütçe azaltılacaktır.

References

  • Aköz, F. 2005. Yığma yapılarda hasar tespiti deney ve ölçüm yöntemleri. YDGA2005 Yığma Yapılarda Deprem Güvenliğinin Arttırılması Çalıştayı (in Turkish).
  • Demirboğa, R., Türkmen, I., and Karakoç, M. B. 2004. Relationship between Ultrasonic Velocity and Compressive Strength for High-Volume Mineral-Admixtured Concrete. Cement and Concrete Research 34: 2329-36.
  • Gladwin, M.T. 1982. Ultrasonic stress monitoring in underground mining. Int. J. Rock Mech. Miner. Sci. 19, 221 – 228.
  • Herrmann, G. 1999. Monuments of Merv. Traditional Buildings of the Karakum. London: Society of Antiquaries London.
  • Herrmann, G. Coffey H., Laidlaw S., and Kurbansakhatov. K., 2002. The Monuments of Merv - A scanned archive of photographs and plans. London: University College London and British Institute of Persian Studies.
  • Hornibrook, F.B. 1939. Application of sonic method to freezing and thawing studies of concrete, ASTM Bull., 101, 5.
  • Hudson, T.A., Jones, E.T.W. 1980. New, B.M., P-wave velocity measurements in a machine bored chalk tunnels. Q. J. Eng. Geol. 13, 33 – 43.Jones, R. 1948. The Application of Ultrasonic to the Testing of Concrete, Research, London, 383.
  • IAEA (International Atom Energy Agency), 2002. Guidebook on non-destructive testing of concrete structures. International Atomic Energy Agency, Vienna.
  • Khan, S. R. M., Noorzaei, J., Kadir, M. R. A., Waleed, A. M. T., and Jaafar, M. S. 2007. UPV Method for Strength Detection of High Performance Concrete. Structural Survey 25 (1): 61-73.
  • Leslie, J.R. and Cheesman, W.J. 1949. An ultrasonic method of studying deterioration and cracking in concrete structures, ACI J. Proc., 46(1), 17.
  • Lin, Y., Lai, C. P., and Yen, T. 2003. Prediction of Ultrasonic Pulse Velocity (UPV) in Concrete. ACI Materials Journal 100 (1): 21-8.
  • Malhotra, V.M. 1976. Testing Hardened Concrete: Nondestructive Methods, ACI Monograph 9, American Concrete Institute, Detroit, MI.
  • Malhotra, VM., and Carino, NJ., 2004. Handbook On Non-destructive Testing of Concrete, CRC Press.
  • Meneghetti, L. C., Padaratz, I. J., Steil, R. O. 1999. 'Use of Ultrasound to Evaluate Concrete Strength in the Early Ages'. Proceedings of International Symposium on Nondestructive Testing Contribution to the Infrastructure Safety Systems in the 21st Century, pp 42-47.
  • Mix, P.E. 2005. Introductıon to Non-destructive Testing, a Training Guide, Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
  • Neville, A. M. and Brooks, J. J. 1997. Concrete Technology. 6. ed. Singapore: Longman Singapor Publishers Pte.
  • Obert, L.1939. Sonic method of determining the modulus of elasticity of building materials under pressure, Proc. ASTM, 39, 987.
  • Onodera, T.F. 1963. Dynamic investigation of foundation rocks, in situ. Proc. 5th Symp. Rock Mech., Minnesota. Pergamon, New York, pp. 517 – 533.
  • Popovics, S. 1998. Strength and Related Properties of Concrete-A Quantitative Approach. Nova York: John Wiley and Sons.
  • Powers, T.C. 1938. Measuring Young’s modulus of elasticity by means of sonic vibrations, Proc. ASTM, 38 (Part II), 460.
  • Proceq, 2017. Operating Instructions Pundit Lab/Pundit Lab+ Ultrasonic Instrument, Pundit Lab complies with the following standards: EN 12504-4 (Europe), ASTM C597-02 (North America), BS 1881 Part 203 (UK), ISO1920-7:2004 (International), IS13311 (India), CECS21 (China).
  • Pucinotti, R. 2005. Pathology and diagnostics of reinforced concrete, Dario Flaccovio Editore, Palermo, Italia.
  • Sheen, N. Y., Huang, J. L., and Le, D. H. 2013. Predicting Strength Development of RMSM Using Ultrasonic Pulse Velocity and Artificial Neural Network. Computers and Concrete 12 (6): 785-802.
  • Smith R.T., and Stephens, R.W.B. 1964. Effects of Anisotropy on Ultrasonic Propagation in Solids, Progress in Applied Materials Research, E.G. Stanford, J.H. Fearon, and W.J. McGonnagle, Ed., Vol 5, Gordon and Breach, London, p 39-64.
  • Thomson, W.T. 1940. Measuring changes in physical properties of concrete by the dynamic method, Proc. ASTM, 40, 1113.
  • Tarun R. Naik, T.R., Malhotra, V.M., Popovics, J.S., 2004. The Ultrasonic Pulse Velocity Method, In: V.M. MALHOTRA and N.J. CARINO, Edited 2004, Handbook On Non-destructive Testing of Concrete, CRC Press.
  • Yusuf, I. T., and Jimoh, Y. A. 2014. Correlation of Pundit Ultrasonic Pulse Velocity with Strength of Palm Kernel Shell Concrete. Annals of Faculty Engineering Hunedoara-International Journal of Engineering 2: 51-7.

Non-destructive methods for determining weathering in historical monuments: a case study from Merv City, Turkmenistan

Year 2019, , 210 - 233, 15.08.2019
https://doi.org/10.17824/yerbilimleri.533430

Abstract

Any changes or restorations to archaeological sites or historical buildings that are protected by
law are prohibited without permission. In order to preserve the architectural heritage of a
structure or a residential area that has retained its original character as a historical legacy, it is
important to identify the weathering of used structural material or deterioration of strength,
which can occur due to environmental conditions, or damage caused by natural or artificial
factors over time. It is desirable, however, to avoid applications that will cause permanent
damage in the structures, such as core sampling or stripping, when such studies are made.
Non-destructive methods can eliminate this problem, but must be investigated to show their
applicability. In this study, ultrasonic velocity and crack depth compressive strength
determinations are applied to assess the integrity of brick structures in Merv, an ancient city of
Turkmenistan. Two towers and two mausoleums are investigated, where Hakem El Gifari and
Bureyde el-Eslemi are lying. The structural integrity of the towers and mausoleums are
classified as weak and poor, respectively, according to classifications of the International
Atomic Energy Agency. Crack depth classification infer class II and III for the structures, and
the compressive strengths show a variation between 2-8 MPa in towers and 20 MPa in
mausoleums. This variation in brick performance can be attributed to winds that blow from NW
direction and the differences in the workmanship in the restoration over the buildings’ history.
When restoration shall be conducted according to the results obtained, both historical heritage
can be better preserved and any budget for structural reinforcement could be reduced. 

References

  • Aköz, F. 2005. Yığma yapılarda hasar tespiti deney ve ölçüm yöntemleri. YDGA2005 Yığma Yapılarda Deprem Güvenliğinin Arttırılması Çalıştayı (in Turkish).
  • Demirboğa, R., Türkmen, I., and Karakoç, M. B. 2004. Relationship between Ultrasonic Velocity and Compressive Strength for High-Volume Mineral-Admixtured Concrete. Cement and Concrete Research 34: 2329-36.
  • Gladwin, M.T. 1982. Ultrasonic stress monitoring in underground mining. Int. J. Rock Mech. Miner. Sci. 19, 221 – 228.
  • Herrmann, G. 1999. Monuments of Merv. Traditional Buildings of the Karakum. London: Society of Antiquaries London.
  • Herrmann, G. Coffey H., Laidlaw S., and Kurbansakhatov. K., 2002. The Monuments of Merv - A scanned archive of photographs and plans. London: University College London and British Institute of Persian Studies.
  • Hornibrook, F.B. 1939. Application of sonic method to freezing and thawing studies of concrete, ASTM Bull., 101, 5.
  • Hudson, T.A., Jones, E.T.W. 1980. New, B.M., P-wave velocity measurements in a machine bored chalk tunnels. Q. J. Eng. Geol. 13, 33 – 43.Jones, R. 1948. The Application of Ultrasonic to the Testing of Concrete, Research, London, 383.
  • IAEA (International Atom Energy Agency), 2002. Guidebook on non-destructive testing of concrete structures. International Atomic Energy Agency, Vienna.
  • Khan, S. R. M., Noorzaei, J., Kadir, M. R. A., Waleed, A. M. T., and Jaafar, M. S. 2007. UPV Method for Strength Detection of High Performance Concrete. Structural Survey 25 (1): 61-73.
  • Leslie, J.R. and Cheesman, W.J. 1949. An ultrasonic method of studying deterioration and cracking in concrete structures, ACI J. Proc., 46(1), 17.
  • Lin, Y., Lai, C. P., and Yen, T. 2003. Prediction of Ultrasonic Pulse Velocity (UPV) in Concrete. ACI Materials Journal 100 (1): 21-8.
  • Malhotra, V.M. 1976. Testing Hardened Concrete: Nondestructive Methods, ACI Monograph 9, American Concrete Institute, Detroit, MI.
  • Malhotra, VM., and Carino, NJ., 2004. Handbook On Non-destructive Testing of Concrete, CRC Press.
  • Meneghetti, L. C., Padaratz, I. J., Steil, R. O. 1999. 'Use of Ultrasound to Evaluate Concrete Strength in the Early Ages'. Proceedings of International Symposium on Nondestructive Testing Contribution to the Infrastructure Safety Systems in the 21st Century, pp 42-47.
  • Mix, P.E. 2005. Introductıon to Non-destructive Testing, a Training Guide, Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
  • Neville, A. M. and Brooks, J. J. 1997. Concrete Technology. 6. ed. Singapore: Longman Singapor Publishers Pte.
  • Obert, L.1939. Sonic method of determining the modulus of elasticity of building materials under pressure, Proc. ASTM, 39, 987.
  • Onodera, T.F. 1963. Dynamic investigation of foundation rocks, in situ. Proc. 5th Symp. Rock Mech., Minnesota. Pergamon, New York, pp. 517 – 533.
  • Popovics, S. 1998. Strength and Related Properties of Concrete-A Quantitative Approach. Nova York: John Wiley and Sons.
  • Powers, T.C. 1938. Measuring Young’s modulus of elasticity by means of sonic vibrations, Proc. ASTM, 38 (Part II), 460.
  • Proceq, 2017. Operating Instructions Pundit Lab/Pundit Lab+ Ultrasonic Instrument, Pundit Lab complies with the following standards: EN 12504-4 (Europe), ASTM C597-02 (North America), BS 1881 Part 203 (UK), ISO1920-7:2004 (International), IS13311 (India), CECS21 (China).
  • Pucinotti, R. 2005. Pathology and diagnostics of reinforced concrete, Dario Flaccovio Editore, Palermo, Italia.
  • Sheen, N. Y., Huang, J. L., and Le, D. H. 2013. Predicting Strength Development of RMSM Using Ultrasonic Pulse Velocity and Artificial Neural Network. Computers and Concrete 12 (6): 785-802.
  • Smith R.T., and Stephens, R.W.B. 1964. Effects of Anisotropy on Ultrasonic Propagation in Solids, Progress in Applied Materials Research, E.G. Stanford, J.H. Fearon, and W.J. McGonnagle, Ed., Vol 5, Gordon and Breach, London, p 39-64.
  • Thomson, W.T. 1940. Measuring changes in physical properties of concrete by the dynamic method, Proc. ASTM, 40, 1113.
  • Tarun R. Naik, T.R., Malhotra, V.M., Popovics, J.S., 2004. The Ultrasonic Pulse Velocity Method, In: V.M. MALHOTRA and N.J. CARINO, Edited 2004, Handbook On Non-destructive Testing of Concrete, CRC Press.
  • Yusuf, I. T., and Jimoh, Y. A. 2014. Correlation of Pundit Ultrasonic Pulse Velocity with Strength of Palm Kernel Shell Concrete. Annals of Faculty Engineering Hunedoara-International Journal of Engineering 2: 51-7.
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Savaş Karabulut 0000-0001-9574-1087

Publication Date August 15, 2019
Submission Date February 28, 2019
Acceptance Date August 15, 2019
Published in Issue Year 2019

Cite

EndNote Karabulut S (August 1, 2019) Non-destructive methods for determining weathering in historical monuments: a case study from Merv City, Turkmenistan. Yerbilimleri 40 2 210–233.