Research Article
BibTex RIS Cite

Flotasyon Tesis Atıklarının Asit Üretme Potansiyeli ve Kirliliğin Önlenmesi, Gümüşhane, KD Türkiye

Year 2020, , 56 - 85, 27.04.2020
https://doi.org/10.17824/yerbilimleri.693508

Abstract

Madencilik faaliyetlerindeki çevre kirliliğinin birincil kaynağını, çoğunlukla metalik, kömür ve asfaltit madenlerinde meydana gelen asit drenajı oluşturmaktadır. Bu çalışmada, Pb-Zn cevherleşmesinin flotasyon tesisi atıklarının asit üretme potansiyelleri jeokimyasal analizler, kısa-dönem temas sızıntı testleri ve Asit-Baz Muhasebesi (ABM) işlemlerini kapsayan statik testlerle incelenmiştir. İşlenen cevherin mineral parajenezini başlıca pirit, kalkopirit, sfalerit ve galen mineralleri oluşturmaktadır. Cevherli atık örneklerinin iz element konsantrasyonlarında, özellikle S, Zn, Cu, As, Sb, Cd, Hg, Ag ve Bi gibi potansiyel toksik metallerdeki yüksek zenginleşme cevherin türü ile doğrudan ilişkili olup, yeraltı suyunu kirletme potansiyeline sahiptir. Kısa-dönem temas sızıntı testlerine göre, örneklerin pH değerleri (9.55-10.60, n= 10), kıta içi su kaynaklarının kalite sınıflandırmasına göre, dördüncü-sınıf (IV) kalite sularını işaret etmektedir. Bununla birlikte, sülfit-sülfür (%S-2 : 2.92-3.98, n= 10), Net Nötralizasyon Potansiyeli (NNP; -32 kg CaCO3/t -149 kg CaCO3/t, n= 10) ve Nötralizasyon Potansiyel Oranı (NPO; 0.20-0.80, n= 10) değerleri cevherli atık malzemenin potansiyel asit üreticisi olduğunu göstermektedir. Baraj eksen yeri ve rezervuar alanında açılan sondaj kuyularında kaya kütle geçirimliliğini değerlendirmek için lugeon deneyleri yapılmış ve geçirgen özellikte (K= 2x10-6 m/s) olduğu belirlenmiştir. Rezervuar alanını geçirimsiz hale getirmek için 40-50 cm kalınlığında kil verilerek sıkıştırılmış, oluşan kesit sonlu elemanlar yöntemi ile modellenerek geçirimlilik ve atıksu deşarjları belirlenmiştir. Sonlu elemanlar sızma analizi ile yapılan modellemede, temel kaya üzerinde 5m derinlikte elde edilen deşarj değeri 5.63x10-8 m 3 /s ve temel kaya kütlesinin geçirimlilik değeri ise 9.79x10-10 m/s olarak belirlenmiştir. Buna ilaveten atık baraj alanı, jeosentetik kil membran, jeomembran ve drenaj jeokompozit gibi jeotekstiller kullanılarak tamamen geçirimsiz hale getirilmiştir. Bu uygulamalar sayesinde, flotasyon tesisi atıklarının olası asit üretme potansiyellerinden kaynaklanacak yüzey ve yeraltı suyu kirliliği önlenmiş olacaktır.

Supporting Institution

Gümüştaş Madencilik Tic. A.Ş. (Gümüşhane)

Thanks

Bu çalışmaya maddi destek sağlayan, sahadan numunelerin alınmasına ve analiz edilmesine yardımcı olan Gümüştaş Madencilik Tic. A.Ş. (Gümüşhane)’ye, özellikle Erdal GÜLDOĞAN ve Uğur ÖLGEN’e katkılarından dolayı teşekkür ederiz.

References

  • Akaryalı, E. and Akbulut, K., 2016. Constraints of C-O-S isotope compositions and the origin of the Ünlüpınar volcanic-hosted epithermal Pb-Zn±Au deposit, Gümüşhane, NE Turkey. Journal of Asian Earth Sciences, 117, 119-134.
  • Akaryalı, E., 2016. Geochemical, fluid inclusion and isotopic (O, H and S) constraints on the origin of Pb-Zn±Au vein-type mineralizations in the Eastern Pontides Orogenic Belt (NE Turkey). Ore Geology Reviews, 74, 1-14.
  • Akaryalı, E. and Tüysüz, N., 2013. The genesis of the slab window-related Arzular lowsulfidation epithermal gold mineralization (Eastern Pontides, NE Turkey. Geoscience Frontiers, 4, 409-421.
  • Akaryalı, E., Gücer, M.A., ve Alemdag, S., 2018. Atık Barajı Rezervuarı ve Cevher Stok Alanlarında Asit Maden Drenajı (AMD) Oluşumunun Değerlendirilmesi: Gümüşhane Örneği. Doğal Afetler ve Çevre Dergisi, 4 (2), 192-209.
  • Alemdag, S., Gurocak, Z., Solanki, P., Zaman, M., 2008. Estimation of bearing capacity of basalts at Atasu dam site, Turkey. Bulletin of Engineering Geology and the Environment, 67, 1, 79-85.
  • Alemdag, S., 2015. Assessment of bearing capacity and permeability of foundation rocks at the Gumustas waste dam site, (Turkey) using empirical and numerical analysis. Arabian Journal of Geosciences, 8, 1099-1110.
  • Alemdag, S., Zeybek, H.I., Kulekci, G., 2019. Stability evaluation of the Gümüşhane-Akçakale cave by numerical analysis method. Journal of Mountain Science, 16(9), 2150-2158.
  • Arslan, M., Tüysüz, N., Korkmaz, S. and Kurt, H., 1997. Geochemistry and Petrogenesis of the Eastern Pontide Volcanic Rocks, Northeast Turkey, Chemie der Erde Geochemistry, 57, 157-187.
  • Aslan, Z., 2010. U–Pb zircon SHRIMP age, geochemical and petrographical characteristics of tuffs within calc-alkaline Eocene volcanics around Gümüșhane (NE Turkey. Eastern Pontides, Neues Jahrbuch für Mineralogie – Abhandlungen, 187 (3), 329–346.
  • Aydınçakır, E., 2012. Borçka (Artvin, KD-Türkiye) yöresi Tersiyer volkanitlerinin petrografisi, jeokimyası ve petrojenezi. Doktora Tezi, KTÜ, Fen Bilimleri Enstitüsü, Trabzon, Türkiye.
  • Blowes, D.W. and Jambor, J.L., 1990. The pore-water geochemistry and the mineralogy of the vadose zone of sulfide tailings, Waite amulet, Quebec, Canada. Applied Geochemistry 5, 327-346.
  • Boon, M. and Heijnen, J.J., 1998. Chemical oxidation kinetics of pyrite in bioleaching processes. Hydrometallurgy, 48, 27-41.
  • Brodie, M.J., Broughton, L.M. and Robertson, A., 1991. A conceptual rock classification system for waste management and a laboratory method for ARD prediction from rock piles. Proc 2nd ICARD 3, 119-135.
  • Brunner, B., Yu, J-Y., Mielke, R.E., MacAskill, J.A., Madzunkov, S., McGenity, T.J. and Coleman, M., 2008. Different isotope and chemical patterns of pyrite oxidation related to lag and exponential growth phases of Acidithiobacillus ferrooxidans reveal a microbial growth strategy. Earth and Planetary Science Letters, 270, 63-72.
  • Cidu, R. and Frau, F., 2009. Abandoned and active mining sites: From contamination to remediation, IMWA Symposium Water in mining environments. Journal of Geochemical Exploration, 100 (2-3), doi: 10.1016/j.gexplo.2008.06.002.
  • Day, S.J., 1989. Comments after presentation of: A practical approach to testing for acid mine drainage in the mine planning and approval process. At the Thirteenth Annual British Columbia Mine Reclamation Symposium. June 7-9, Vernon, British Columbia.
  • Demir, Y. and Dişli, A., 2020. Fluid inclusion and stable isotope constraints (C, O, H) on the Dağbaşı Fe–Cu–Zn skarn mineralization (Trabzon, NE Turkey). Ore Geology Reviews, 116, 103235.
  • Demir, Y., Uysal, İ. and Sadıklar, M.B., 2013. Mineral Chemical Investigation on Sulfide Mineralization of the Istala Deposit, Gümüşhane, NE-Turkey. Ore Geology Reviews, 53, 306-317.
  • Demir, Y., Uysal, İ., Sadiklar, M.B. and Sipahi, F., 2008. Mineralogy, Mineral Chemistry, and Fluid Inclusion Investigation of Köstere Hydrothermal Vein-Type Deposit (Gümüşhane, NE-Turkey. Neues Jahrbuch für Mineralogie - Abhandlungen, 185 (2), 215-232.
  • Descostes, M., Vitorge, P. and Beaucaire, C., 2004. Pyrite dissolution in acidic media. Geochimica et Cosmochimica Acta, 68, 4559-4569.
  • Dold, B., 2014. Evolution of acid mine drainage formation in sulphidic mine tailings. Minerals, 4 (2), 621-641.
  • Dold, B., 2017. Acid rock drainage prediction: A critical review. Journal of Geochemical Exploration, 172, 120-132.
  • Dold, B., Wade, C. and Fontboté, L., 2009. Water management for acid mine drainage control at the polymetallic Zn–Pb–(Ag–Bi–Cu) deposit Cerro de Pasco, Peru. Journal of Geochemical Exploration, 100, 133-141.
  • EPA (U.S. Environmental Protection Agency), 1994b. Acid Mine Drainage Prediction, USEPA, Office of Solid Waste, Special Wastes Branch (Washington DC), December, EPA 530-R-94-036.
  • Eyüboğlu, Y., Santosh, M., Dudas, O.F., Akaryalı, E., Chung, S.L., Akdağ, K. and Bektaş, O., 2013. The nature of transition from adakitic to non-adakitic magmatism in a slab window setting: A synthesis from the Eastern Pontides, NE Turkey, Geoscience Frontiers, 4, 353-375.
  • Ferguson, K.D. and Morin, K.A., 1991. The prediction of acid rock drainage-lessons from the database. In: Proceedings of the 2nd ICARD, vol 1-4. Montréal, QC, Canada, pp 83-106.
  • Ficklin, W.H., Plumlee, G.S., Smith, K.S. and McHugh, J.B., 1992. Geochemical classification of mine drainages and natural drainages in mineralized areas. In: Kharaka, Y.K. and Maest, A.S. (eds). Proceedings of water-rock interaction no 7. Balkema, Rotterdam, pp 381-384.
  • Gleisner, M., Herbert, R.B. and Kockum, P.C.F., 2006. Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen. Chemical Geology, 225,16-29.
  • Gray, N., 1997. Environmental impact and remediation of acid mine drainage: a management problem. Environmental Geology, 30, 62-71.
  • Gurocak, Z., Alemdag, S., Zaman, M., 2008. Rock slope stability and excavatability assessment of rocks at the Kapikaya Dam site, Eastern Turkey, Engineering Geology, 96(1-2), 17-27.
  • Gurocak, Z., Alemdag, S., 2012. Assessment of permeability and injection depth at the Atasu dam site (Turkey) based on experimental and numerical analyses, Bulletin of Engineering Geology and the Environment, 71, 221-229.
  • Gücer, M.A., Aydınçakır, E., Yücel, C. Akaryalı, E., 2017. Tersiyer Yaşlı Altınpınar Hornblendli Andezitlerinin (Torul-Gümüşhane) Petrografisi, Mineral Kimyası ve P-T Kristalleşme Koşulları. Gümüşhane Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 7 (2), 236-267.
  • Güven, İ.H., 1993. Doğu Karadeniz Bölgesi’nin 1/25.000 ölçekli jeolojisi ve komplikasyonu, MTA, Ankara. Holmes, P.R. and Crundwell, F.K., 2000. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study. Geochimica et Cosmochimica Acta, 64, 263-274.
  • Hossner, L.R. and Brandt, J.E., 1997. Acid/Base Account and Minesoils: A Review. Proceedings of 14th Annual Meeting of the ASSMR. America Society of Mining and Reclamation, pp 128-140.
  • Jia, Y., Tan, Q., Sun, H., Zhang, Y., Gao, H. and Ruan, R., 2018. Sulfide mineral dissolution microbes: Community structure and function inindustrial bioleaching heaps. Green Energy and Environment, 4 (1), 29-37.
  • Lapakko, K., 1992. Characterization and Static Testing of Ten Gold Mine Tailings. Proceedings America Society of Mining and Reclamation, pp 370-384, doi: 10.21000/JASMR92010370.
  • Lapakko, K.A., 2002. Metal mine rock and waste characterization tools: an overview, mining, minerals and sustainable development. Report 67, Acid Drainage Technology Initiative, http://pubs.iied.org/pdfs/G00559.pdf
  • Lawrence, R.W., Poling, G.W., Ritcey, G.M. and Marchant, P.B., 1989. Assessment of predictive methods for the determination of AMD potential in mine tailings and waste rock, tailings and effluent management, New York: Pergamon Press, pp. 317-331.
  • Lermi, A., 2003. Midi (Karamustafa/Gümüşhane, KD Türkiye) Zn-Pb Yatağının Jeolojik, Mineralojik, Jeokimyasal ve Kökensel İncelemesi, Doktora Tezi, Karadeniz Teknik Üniversitesi, Trabzon.
  • Lottermoser, B.G., 2010. Mine Wastes: Characterization, Treatment and Environmental Impacts, Third Edition. Springer, Berlin, Heidelberg, 400 p.
  • Lugeon, M., 1933. Barrages et Geologie, vol. 1, Librairie de l'Université. F. Rouge & Cie, S.A., Lausanne, 138ss.
  • Ma, Y. and Lin, C., 2013. Microbial oxidation of Fe and pyrite exposed to flux of micromolar H2O2 in acidic media. Scientific Reports, 3, 1350-1352.
  • Morin, K.A. and Hutt, N.M., 2001. Environmental geochemistry of minesite drainage: practical theory and case studies. MDAG Publishing, Vancouver, 333 p.
  • Nonveiller, E., 1989. Grouting, Theory and Practice, Elsevier, Amsterdam, 250ss.
  • Okay, A.İ., Tüysüz, O., 1999. Tethyan Sutures of Northern Turkey. The Mediterranean Basin: Tertiary Extension within the Alpine Orogen. Geological Society, London, Special Publications, 156, 475-515.
  • Plumlee, G.S., Smith K.S., Montour, M.R., Ficklin, W.H. and Mosier, E.L., 1999. Geologic controls on the composition of natural waters and mine waters draining diverse mineral-deposit types. In: Filipek, L.H., Plumlee, G.S. (eds). The environmental geochemistry of mineral deposits. Part B: case studies and research topics, vol 6B. Society of Economic Geologists, Littleton, pp 373-432.
  • Plumlee, G.S., Smith, K.S., Ficklin, W.H. and Briggs, P.H., 1992. Geological and geochemical controls on the composition of mine drainages and natural drainages in mineralized areas: Proceedings, 7th International Water-Rock Interaction Conference, Park City, Utah, pp. 419-422.
  • Price, W.A., 2003. Challenges posed by metal leaching and acid rock drainage and approaches used to address them. In: Jambor, J.L., Blowes, D.W., Ritchie, A.I.M. (eds.), Environmental aspects of mine wastes. Mineralogical Association of Canada, Short Course Series, 31, 15-30.
  • Price, W.A., Errington, J. and Koyanagi, V., 1997. Guidelines for the prediction of acid rock drainage and metal leaching for mines in British Columbia: part I. General procedures and information requirements. In: Proc, 4th ICARD, Natural Resources Canada, Ottawa, 1, 1-14.
  • RG (Resmi Gazete) 28483 (değişik ibare: RG-15/4/2015-29327), 2012. Yerüstü Su Kalitesi Yönetimi Yönetmeliği, Orman ve Su İşleri Bakanlığın, Ankara.
  • Rocscience, 2011. Phase2 8.0 finite element groundwater seepage, Geomech Software and Res. Rocsci, Toronto.
  • Siddharth, S., Jamal, A., Dhar, B.B. and Shukla, R., 2002. Acid-Base Accounting: A Geochemical Tool for Management of Acid Drainage in Coal Mines. Mine Water and the Environment, 21, 106-110.
  • Singer, P.C. and Stumm, W., 1970. Acidic Mine Drainage: The rate-determining step. Science, 167, 1121-1123.
  • Sipahi F., 2011. Formation of Skarns at Gümüşhane (Northeastern Turkey), Neues Jahrbuch für Mineralogie-Abhandlungen, 188 (2), 169-190.
  • Sipahi, F., Gücer, M.A. and Sadıklar, M.B., 2019. Zigana Dağı (Gümüşhane, KD Türkiye) Dayklarının Jeokimyası ve Jeolojik Anlamı. Yerbilimleri, 40 (3), 293-325.
  • Sipahi, F., Gücer, M.A. and Saydam Eker, Ç., 2020. Geochemical composition of magnetite from different iron skarn mineralizations in NE Turkey: implication for source of ore forming fluids. Arabian Journal of Geosciences, 13 (2), 70.
  • Skousen, J.G., Sencindiver, J.C. and Smith, R.M., 1987. A Review of Procedures for Surface Mining and Reclamation in Areas with Acid-Producing Materials. EWRC 871, West Virginia University, Morgantown, WV, 40 pp.
  • Skousen, J.G., Sexstone, A. and Ziemkiewicz, P.F., 2000. Acid mine drainage control and treatment. In: Hartfield, J.L., Volenec, J.G., Dick, W.A. (eds), Reclamation of drastically disturbed lands. American Society of Agronomy and American Society for Surface Mining and Reclamation. Agronomy No. 41pp 131-169.
  • Smith, R.M., Grube, W.E.Jr., Arkele, T.Jr., Sobek, A.A., 1974. Mine spoil potentials for soil and water quality. West Virginia University. EPA-670/2-74-070, 303 p.
  • Smith, R.M., Sobek, A.A., Arkle, T., Sencindiver, J.C. and Freeman, J.R., 1976. Extensive overburden potentials for soil and water quality. EPA-600/2-76-184. USEPA, Cincinnati, OH.
  • Sobek, A.A., Schuller, W.A., Freeman, J.R. and Smith, R.M., 1978. Field and laboratory methods applicable to overburdens and minesoils. EPA-600/2-78-054. US Govt Printing Office, Washington, DC.
  • Soregaroli, B.A. and Lawrence, R.W., 1998. Update on waste characterisation studies. In: Proc. mine design, operations and closure conference, Polson, MT, USA.
  • Şahin, K. and Kaygusuz, A., 2016. Mescitli (Torul/Gümüşhane) ve Çevresindeki Eosen Yaşlı Volkanik Kayaçların Petrografik, Jeokimyasal ve Petrolojik Özellikleri. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6 (2), 89-116.
  • Tokel, S., 1972. Stratigraphical and volcanic history of the Gümüşhane region (Ne Turkey), PhD. Thesis, University College, London.
  • Tüysüz, N., 2000. Geology, Lithogeochemistry and Genesis of the Murgul Massive Sulfide Deposit, NE Turkey. Chemie der Erde - Geochemistry, 60, 231-250.
  • Yaroshevsky, A.A., 2006. Abundances of chemical elements in the Earth’s crust. Geochemistry International, 44 (1), 54-62.
  • Yücel, C., Arslan, M., Temizel, İ., Abdioğlu Yazar, E. and Ruffet, G., 2017. Evolution of K-rich magmas derived from a net veined lithospheric mantle in an ongoing extensional setting: Geochronology and geochemistry of Eocene and Miocene volcanic rocks from Eastern Pontides (Turkey). Gondwana Research, 45, 65-86.

Acid Production Potential of Flotation Plant Tailings and Pollution Prevention, Gumushane, Turkey NE

Year 2020, , 56 - 85, 27.04.2020
https://doi.org/10.17824/yerbilimleri.693508

Abstract

The primary source of environmental pollution in mining activity is acid drainage, which mostly occurring metallic, coal, and asphaltite mines. In this study, the acid producing potential of Pb-Zn mineralization from flotation plant tailings was investigated by geochemical analysis and static tests including short-term contact leakage tests and Acid-Base Accounting (ABM) processes. The mineral assemblage of the processed ore mainly consists of pyrite, chalcopyrite, sphalerite, and galena minerals. The high enrichment in trace element concentrations of ore-bearing tailings samples, especially in potentially toxic metals such as S, Zn, Cu, As, Sb, Cd, Hg, Ag, and Bi is directly related to the type of mineralizations, and they have the potential to contaminate groundwater. According to short-term contact leaching tests, the pH (9.55-10.60, n= 10) values of samples indicated that they are four-class (IV) quality by classification of the intra-continental water resources. Besides, sulphide-sulfur (%S-2: 2.92-3.98, n= 10), Net Neutralization Potential (NNP; -32 kg CaCO3/t -149 kg CaCO3/t, n= 10), and Neutralization Potential Ratio (NPR; 0.20-0.80, n= 10) values show that the ore-bearing tailings material has an acid production potential. Lugeon tests were carried out to evaluate rock mass permeability in drilling wells drilled in the dam axis location and reservoir area and it was determined to be permeable (K= 2x10-6 m/s). In order to make the reservoir impermeable, 40-50 cm thick clay was laid and compacted, and the formed section was modeled by finite elements method, and permeability and wastewater discharges were determined. In the modeling with finite element seepage analysis, the wastewater discharge value obtained at a depth of 5m from the foundation excavation was determined as 5.63x10-8 m3/s. Also, the permeability value for the reservoir area was determined as 9.79x10-10 m/s after the applied clay compaction process. In addition, the environment will be completely impermeable as a result of laying geotextiles such as geosynthetic clay membrane, geomembrane and drainage geocomposite on the bottom of the reservoir area to prevent a possible chemical leakage. Thanks to these applications, surface and groundwater pollution will be prevented due to the potential of acid production of flotation plant tailings.

References

  • Akaryalı, E. and Akbulut, K., 2016. Constraints of C-O-S isotope compositions and the origin of the Ünlüpınar volcanic-hosted epithermal Pb-Zn±Au deposit, Gümüşhane, NE Turkey. Journal of Asian Earth Sciences, 117, 119-134.
  • Akaryalı, E., 2016. Geochemical, fluid inclusion and isotopic (O, H and S) constraints on the origin of Pb-Zn±Au vein-type mineralizations in the Eastern Pontides Orogenic Belt (NE Turkey). Ore Geology Reviews, 74, 1-14.
  • Akaryalı, E. and Tüysüz, N., 2013. The genesis of the slab window-related Arzular lowsulfidation epithermal gold mineralization (Eastern Pontides, NE Turkey. Geoscience Frontiers, 4, 409-421.
  • Akaryalı, E., Gücer, M.A., ve Alemdag, S., 2018. Atık Barajı Rezervuarı ve Cevher Stok Alanlarında Asit Maden Drenajı (AMD) Oluşumunun Değerlendirilmesi: Gümüşhane Örneği. Doğal Afetler ve Çevre Dergisi, 4 (2), 192-209.
  • Alemdag, S., Gurocak, Z., Solanki, P., Zaman, M., 2008. Estimation of bearing capacity of basalts at Atasu dam site, Turkey. Bulletin of Engineering Geology and the Environment, 67, 1, 79-85.
  • Alemdag, S., 2015. Assessment of bearing capacity and permeability of foundation rocks at the Gumustas waste dam site, (Turkey) using empirical and numerical analysis. Arabian Journal of Geosciences, 8, 1099-1110.
  • Alemdag, S., Zeybek, H.I., Kulekci, G., 2019. Stability evaluation of the Gümüşhane-Akçakale cave by numerical analysis method. Journal of Mountain Science, 16(9), 2150-2158.
  • Arslan, M., Tüysüz, N., Korkmaz, S. and Kurt, H., 1997. Geochemistry and Petrogenesis of the Eastern Pontide Volcanic Rocks, Northeast Turkey, Chemie der Erde Geochemistry, 57, 157-187.
  • Aslan, Z., 2010. U–Pb zircon SHRIMP age, geochemical and petrographical characteristics of tuffs within calc-alkaline Eocene volcanics around Gümüșhane (NE Turkey. Eastern Pontides, Neues Jahrbuch für Mineralogie – Abhandlungen, 187 (3), 329–346.
  • Aydınçakır, E., 2012. Borçka (Artvin, KD-Türkiye) yöresi Tersiyer volkanitlerinin petrografisi, jeokimyası ve petrojenezi. Doktora Tezi, KTÜ, Fen Bilimleri Enstitüsü, Trabzon, Türkiye.
  • Blowes, D.W. and Jambor, J.L., 1990. The pore-water geochemistry and the mineralogy of the vadose zone of sulfide tailings, Waite amulet, Quebec, Canada. Applied Geochemistry 5, 327-346.
  • Boon, M. and Heijnen, J.J., 1998. Chemical oxidation kinetics of pyrite in bioleaching processes. Hydrometallurgy, 48, 27-41.
  • Brodie, M.J., Broughton, L.M. and Robertson, A., 1991. A conceptual rock classification system for waste management and a laboratory method for ARD prediction from rock piles. Proc 2nd ICARD 3, 119-135.
  • Brunner, B., Yu, J-Y., Mielke, R.E., MacAskill, J.A., Madzunkov, S., McGenity, T.J. and Coleman, M., 2008. Different isotope and chemical patterns of pyrite oxidation related to lag and exponential growth phases of Acidithiobacillus ferrooxidans reveal a microbial growth strategy. Earth and Planetary Science Letters, 270, 63-72.
  • Cidu, R. and Frau, F., 2009. Abandoned and active mining sites: From contamination to remediation, IMWA Symposium Water in mining environments. Journal of Geochemical Exploration, 100 (2-3), doi: 10.1016/j.gexplo.2008.06.002.
  • Day, S.J., 1989. Comments after presentation of: A practical approach to testing for acid mine drainage in the mine planning and approval process. At the Thirteenth Annual British Columbia Mine Reclamation Symposium. June 7-9, Vernon, British Columbia.
  • Demir, Y. and Dişli, A., 2020. Fluid inclusion and stable isotope constraints (C, O, H) on the Dağbaşı Fe–Cu–Zn skarn mineralization (Trabzon, NE Turkey). Ore Geology Reviews, 116, 103235.
  • Demir, Y., Uysal, İ. and Sadıklar, M.B., 2013. Mineral Chemical Investigation on Sulfide Mineralization of the Istala Deposit, Gümüşhane, NE-Turkey. Ore Geology Reviews, 53, 306-317.
  • Demir, Y., Uysal, İ., Sadiklar, M.B. and Sipahi, F., 2008. Mineralogy, Mineral Chemistry, and Fluid Inclusion Investigation of Köstere Hydrothermal Vein-Type Deposit (Gümüşhane, NE-Turkey. Neues Jahrbuch für Mineralogie - Abhandlungen, 185 (2), 215-232.
  • Descostes, M., Vitorge, P. and Beaucaire, C., 2004. Pyrite dissolution in acidic media. Geochimica et Cosmochimica Acta, 68, 4559-4569.
  • Dold, B., 2014. Evolution of acid mine drainage formation in sulphidic mine tailings. Minerals, 4 (2), 621-641.
  • Dold, B., 2017. Acid rock drainage prediction: A critical review. Journal of Geochemical Exploration, 172, 120-132.
  • Dold, B., Wade, C. and Fontboté, L., 2009. Water management for acid mine drainage control at the polymetallic Zn–Pb–(Ag–Bi–Cu) deposit Cerro de Pasco, Peru. Journal of Geochemical Exploration, 100, 133-141.
  • EPA (U.S. Environmental Protection Agency), 1994b. Acid Mine Drainage Prediction, USEPA, Office of Solid Waste, Special Wastes Branch (Washington DC), December, EPA 530-R-94-036.
  • Eyüboğlu, Y., Santosh, M., Dudas, O.F., Akaryalı, E., Chung, S.L., Akdağ, K. and Bektaş, O., 2013. The nature of transition from adakitic to non-adakitic magmatism in a slab window setting: A synthesis from the Eastern Pontides, NE Turkey, Geoscience Frontiers, 4, 353-375.
  • Ferguson, K.D. and Morin, K.A., 1991. The prediction of acid rock drainage-lessons from the database. In: Proceedings of the 2nd ICARD, vol 1-4. Montréal, QC, Canada, pp 83-106.
  • Ficklin, W.H., Plumlee, G.S., Smith, K.S. and McHugh, J.B., 1992. Geochemical classification of mine drainages and natural drainages in mineralized areas. In: Kharaka, Y.K. and Maest, A.S. (eds). Proceedings of water-rock interaction no 7. Balkema, Rotterdam, pp 381-384.
  • Gleisner, M., Herbert, R.B. and Kockum, P.C.F., 2006. Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen. Chemical Geology, 225,16-29.
  • Gray, N., 1997. Environmental impact and remediation of acid mine drainage: a management problem. Environmental Geology, 30, 62-71.
  • Gurocak, Z., Alemdag, S., Zaman, M., 2008. Rock slope stability and excavatability assessment of rocks at the Kapikaya Dam site, Eastern Turkey, Engineering Geology, 96(1-2), 17-27.
  • Gurocak, Z., Alemdag, S., 2012. Assessment of permeability and injection depth at the Atasu dam site (Turkey) based on experimental and numerical analyses, Bulletin of Engineering Geology and the Environment, 71, 221-229.
  • Gücer, M.A., Aydınçakır, E., Yücel, C. Akaryalı, E., 2017. Tersiyer Yaşlı Altınpınar Hornblendli Andezitlerinin (Torul-Gümüşhane) Petrografisi, Mineral Kimyası ve P-T Kristalleşme Koşulları. Gümüşhane Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 7 (2), 236-267.
  • Güven, İ.H., 1993. Doğu Karadeniz Bölgesi’nin 1/25.000 ölçekli jeolojisi ve komplikasyonu, MTA, Ankara. Holmes, P.R. and Crundwell, F.K., 2000. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study. Geochimica et Cosmochimica Acta, 64, 263-274.
  • Hossner, L.R. and Brandt, J.E., 1997. Acid/Base Account and Minesoils: A Review. Proceedings of 14th Annual Meeting of the ASSMR. America Society of Mining and Reclamation, pp 128-140.
  • Jia, Y., Tan, Q., Sun, H., Zhang, Y., Gao, H. and Ruan, R., 2018. Sulfide mineral dissolution microbes: Community structure and function inindustrial bioleaching heaps. Green Energy and Environment, 4 (1), 29-37.
  • Lapakko, K., 1992. Characterization and Static Testing of Ten Gold Mine Tailings. Proceedings America Society of Mining and Reclamation, pp 370-384, doi: 10.21000/JASMR92010370.
  • Lapakko, K.A., 2002. Metal mine rock and waste characterization tools: an overview, mining, minerals and sustainable development. Report 67, Acid Drainage Technology Initiative, http://pubs.iied.org/pdfs/G00559.pdf
  • Lawrence, R.W., Poling, G.W., Ritcey, G.M. and Marchant, P.B., 1989. Assessment of predictive methods for the determination of AMD potential in mine tailings and waste rock, tailings and effluent management, New York: Pergamon Press, pp. 317-331.
  • Lermi, A., 2003. Midi (Karamustafa/Gümüşhane, KD Türkiye) Zn-Pb Yatağının Jeolojik, Mineralojik, Jeokimyasal ve Kökensel İncelemesi, Doktora Tezi, Karadeniz Teknik Üniversitesi, Trabzon.
  • Lottermoser, B.G., 2010. Mine Wastes: Characterization, Treatment and Environmental Impacts, Third Edition. Springer, Berlin, Heidelberg, 400 p.
  • Lugeon, M., 1933. Barrages et Geologie, vol. 1, Librairie de l'Université. F. Rouge & Cie, S.A., Lausanne, 138ss.
  • Ma, Y. and Lin, C., 2013. Microbial oxidation of Fe and pyrite exposed to flux of micromolar H2O2 in acidic media. Scientific Reports, 3, 1350-1352.
  • Morin, K.A. and Hutt, N.M., 2001. Environmental geochemistry of minesite drainage: practical theory and case studies. MDAG Publishing, Vancouver, 333 p.
  • Nonveiller, E., 1989. Grouting, Theory and Practice, Elsevier, Amsterdam, 250ss.
  • Okay, A.İ., Tüysüz, O., 1999. Tethyan Sutures of Northern Turkey. The Mediterranean Basin: Tertiary Extension within the Alpine Orogen. Geological Society, London, Special Publications, 156, 475-515.
  • Plumlee, G.S., Smith K.S., Montour, M.R., Ficklin, W.H. and Mosier, E.L., 1999. Geologic controls on the composition of natural waters and mine waters draining diverse mineral-deposit types. In: Filipek, L.H., Plumlee, G.S. (eds). The environmental geochemistry of mineral deposits. Part B: case studies and research topics, vol 6B. Society of Economic Geologists, Littleton, pp 373-432.
  • Plumlee, G.S., Smith, K.S., Ficklin, W.H. and Briggs, P.H., 1992. Geological and geochemical controls on the composition of mine drainages and natural drainages in mineralized areas: Proceedings, 7th International Water-Rock Interaction Conference, Park City, Utah, pp. 419-422.
  • Price, W.A., 2003. Challenges posed by metal leaching and acid rock drainage and approaches used to address them. In: Jambor, J.L., Blowes, D.W., Ritchie, A.I.M. (eds.), Environmental aspects of mine wastes. Mineralogical Association of Canada, Short Course Series, 31, 15-30.
  • Price, W.A., Errington, J. and Koyanagi, V., 1997. Guidelines for the prediction of acid rock drainage and metal leaching for mines in British Columbia: part I. General procedures and information requirements. In: Proc, 4th ICARD, Natural Resources Canada, Ottawa, 1, 1-14.
  • RG (Resmi Gazete) 28483 (değişik ibare: RG-15/4/2015-29327), 2012. Yerüstü Su Kalitesi Yönetimi Yönetmeliği, Orman ve Su İşleri Bakanlığın, Ankara.
  • Rocscience, 2011. Phase2 8.0 finite element groundwater seepage, Geomech Software and Res. Rocsci, Toronto.
  • Siddharth, S., Jamal, A., Dhar, B.B. and Shukla, R., 2002. Acid-Base Accounting: A Geochemical Tool for Management of Acid Drainage in Coal Mines. Mine Water and the Environment, 21, 106-110.
  • Singer, P.C. and Stumm, W., 1970. Acidic Mine Drainage: The rate-determining step. Science, 167, 1121-1123.
  • Sipahi F., 2011. Formation of Skarns at Gümüşhane (Northeastern Turkey), Neues Jahrbuch für Mineralogie-Abhandlungen, 188 (2), 169-190.
  • Sipahi, F., Gücer, M.A. and Sadıklar, M.B., 2019. Zigana Dağı (Gümüşhane, KD Türkiye) Dayklarının Jeokimyası ve Jeolojik Anlamı. Yerbilimleri, 40 (3), 293-325.
  • Sipahi, F., Gücer, M.A. and Saydam Eker, Ç., 2020. Geochemical composition of magnetite from different iron skarn mineralizations in NE Turkey: implication for source of ore forming fluids. Arabian Journal of Geosciences, 13 (2), 70.
  • Skousen, J.G., Sencindiver, J.C. and Smith, R.M., 1987. A Review of Procedures for Surface Mining and Reclamation in Areas with Acid-Producing Materials. EWRC 871, West Virginia University, Morgantown, WV, 40 pp.
  • Skousen, J.G., Sexstone, A. and Ziemkiewicz, P.F., 2000. Acid mine drainage control and treatment. In: Hartfield, J.L., Volenec, J.G., Dick, W.A. (eds), Reclamation of drastically disturbed lands. American Society of Agronomy and American Society for Surface Mining and Reclamation. Agronomy No. 41pp 131-169.
  • Smith, R.M., Grube, W.E.Jr., Arkele, T.Jr., Sobek, A.A., 1974. Mine spoil potentials for soil and water quality. West Virginia University. EPA-670/2-74-070, 303 p.
  • Smith, R.M., Sobek, A.A., Arkle, T., Sencindiver, J.C. and Freeman, J.R., 1976. Extensive overburden potentials for soil and water quality. EPA-600/2-76-184. USEPA, Cincinnati, OH.
  • Sobek, A.A., Schuller, W.A., Freeman, J.R. and Smith, R.M., 1978. Field and laboratory methods applicable to overburdens and minesoils. EPA-600/2-78-054. US Govt Printing Office, Washington, DC.
  • Soregaroli, B.A. and Lawrence, R.W., 1998. Update on waste characterisation studies. In: Proc. mine design, operations and closure conference, Polson, MT, USA.
  • Şahin, K. and Kaygusuz, A., 2016. Mescitli (Torul/Gümüşhane) ve Çevresindeki Eosen Yaşlı Volkanik Kayaçların Petrografik, Jeokimyasal ve Petrolojik Özellikleri. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6 (2), 89-116.
  • Tokel, S., 1972. Stratigraphical and volcanic history of the Gümüşhane region (Ne Turkey), PhD. Thesis, University College, London.
  • Tüysüz, N., 2000. Geology, Lithogeochemistry and Genesis of the Murgul Massive Sulfide Deposit, NE Turkey. Chemie der Erde - Geochemistry, 60, 231-250.
  • Yaroshevsky, A.A., 2006. Abundances of chemical elements in the Earth’s crust. Geochemistry International, 44 (1), 54-62.
  • Yücel, C., Arslan, M., Temizel, İ., Abdioğlu Yazar, E. and Ruffet, G., 2017. Evolution of K-rich magmas derived from a net veined lithospheric mantle in an ongoing extensional setting: Geochronology and geochemistry of Eocene and Miocene volcanic rocks from Eastern Pontides (Turkey). Gondwana Research, 45, 65-86.
There are 67 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Selçuk Alemdağ 0000-0003-2893-3681

Enver Akaryalı 0000-0003-1495-9186

Mehmet Ali Gücer 0000-0002-9075-3350

Publication Date April 27, 2020
Submission Date February 24, 2020
Acceptance Date April 27, 2020
Published in Issue Year 2020

Cite

EndNote Alemdağ S, Akaryalı E, Gücer MA (April 1, 2020) Flotasyon Tesis Atıklarının Asit Üretme Potansiyeli ve Kirliliğin Önlenmesi, Gümüşhane, KD Türkiye. Yerbilimleri 41 1 56–85.