Review
BibTex RIS Cite

Kanser İlişkili Yeni Hedef Molekül SLAMF7

Year 2024, Volume: 5 Issue: 1, 1 - 7, 30.01.2024

Abstract

Kanser hücre için kontrolsüz büyüme getirisi sağlayan, geniş bir çeşitlilik ve karmaşık süreçlerle karakterize edilir.
Hastalığın erken teşhisi, prognozun iyileştirilmesi, sağkalım süresinin ve tedavi şansının artırılması gibi hedeflere
ulaşmak için bu karmaşık süreçlerin aydınlatılması gerekmektedir. Bu nedenle kanserin, nasıl ve neden başladığını,
metastazın ve nüksün nasıl oluştuğunu anlamak önemlidir. Biyobelirteçler, kanser hücrelerinin varlığını, türünü
ve agresifliğini belirlemekte ve kişiye özel, hedefe yönelik
tedavi ajanlarının seçilmesinde yardımcı olmaktadır.
Sinyalleme lenfositik aktivasyon molekülü aile üyesi 7
(SLAMF7 [CD319, CS1, CRACC]), çok çeşitli hücre tiplerinde bulunan bir yüzey glikoproteini olup, farklı kanser türlerinde ekspresyon göstermektedir. Bu ekspresyonun hastalığın seyri ve tedavi yanıtları ile ilişkili olduğu
düşünülmektedir. SLAMF7’nin immün hücrelerle olan
etkileşimleri, kanser hücrelerinin büyümesi, yayılması ve
hayatta kalmasıyla ilişkilidir. Ayrıca, SLAMF7’nin kanser
mekanizmasındaki rolü, hedefe yönelik tedavi stratejilerinin geliştirilmesi için daha iyi anlaşılmalıdır.
Bu derleme, SLAMF7’nin özelliklerini detaylı bir şekilde
ele alırken, kanser biyolojisi ve tedavisindeki potansiyel
önemini vurgulamakta ve bu alanda gelecekte yapılacak
araştırmalar için bir temel oluşturmaktadır.

References

  • 1.World Health Organization. Erişim adresi: https://www.who.int/health-topics/ cancer Erişim tarihi: 08.09.2023.
  • 2. GLOBOCAN 2020. Erişim adresi: https://gco.iarc.fr/today/data/factsheets/cancers/39-All-cancers-fact-sheet.pdf Erişim tarihi: 08.09.2023
  • 3. Yin W, Wang J, Jiang L, James Kang Y. Cancer and stem cells. Exp Biol Med (Maywood). 2021;246(16):1791-801.
  • 4. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12(1):31-46.
  • 5. Hristova VA, Chan DW. Cancer biomarker discovery and translation: proteomics and beyond. Expert Rev Proteomics. 2019;16(2):93-103.
  • 6. Zou J, Wang E. Cancer Biomarker Discovery for Precision Medicine: New Progress. Curr Med Chem. 2019;26(42):7655-71.
  • 7. Roh SA, Kwon YH, Lee JL, Kim SK, Kim JC. SLAMF7 and TREM1 Mediate Immunogenic Cell Death in Colorectal Cancer Cells: Focus on Microsatellite Stability. Anticancer Res. 2021;41(11):5431-44.
  • 8. Assidi M. Strong prognostic value of SLAMF7 protein expression in patients with lymph node-positive breast cancer. Oncol Lett. 2022;24(6):433.
  • 9. Ishibashi M, Morita R, Tamura H. Immune Functions of Signaling Lymphocytic Activation Molecule Family Molecules in Multiple Myeloma. Cancers (Basel). 2021;13(2).
  • 10. Farhangnia P, Ghomi SM, Mollazadehghomi S, Nickho H, Akbarpour M, Delbandi AA. SLAM-family receptors come of age as a potential molecular target in cancer immunotherapy. Front Immunol. 2023;14:1174138.
  • 11. Cannons JL, Tangye SG, Schwartzberg PL. SLAM family receptors and SAP adaptors in immunity. Annu Rev Immunol. 2011;29:665-705.
  • 12. McArdel SL, Terhorst C, Sharpe AH. Roles of CD48 in regulating immunity and tolerance. Clinical Immunology. 2016;164:10-20.
  • 13. Fouquet G, Marcq I, Debuysscher V, Bayry J, Singh AR, Bengrine A, et al. Signaling lymphocytic activation molecules Slam and cancers: friends or foes? Oncotarget. 2018;9(22).
  • 14. Wilson TJ, Clare S, Mikulin J, Johnson CM, Harcourt K, Lyons PA, et al. Signalling lymphocyte activation molecule family member 9 is found on select subsets of antigen-presenting cells and promotes resistance to Salmonella infection. Immunology. 2020;159(4):393-403.
  • 15. Wu N, Veillette A. SLAM family receptors in normal immunity and immune pathologies. Current Opinion in Immunology. 2016;38:45-51.
  • 16. Zhang Y, Zhang Q, Han X, Han L, Wang T, Hu J, et al. SLAMF8, a potential new immune checkpoint molecule, is associated with the prognosis of colorectal cancer. Transl Oncol. 2023;31:101654.
  • 17. Agresta L, Lehn M, Lampe K, Cantrell R, Hennies C, Szabo S, et al. CD244 represents a new therapeutic target in head and neck squamous cell carcinoma. J Immunother Cancer. 2020;8(1).
  • 18.Kumaresan PR, Lai WC, Chuang SS, Bennett M, Mathew PA. CS1, a novel member of the CD2 family, is homophilic and regulates NK cell function. Mol Immunol. 2002;39(1-2):1-8.
  • 19. Campbell KS, Cohen AD, Pazina T. Mechanisms of NK Cell Activation and Clinical Activity of the Therapeutic SLAMF7 Antibody, Elotuzumab in Multiple Myeloma. Front Immunol. 2018;9:2551.
  • 20. Guo H, Cruz-Munoz ME, Wu N, Robbins M, Veillette A. Immune cell inhibition by SLAMF7 is mediated by a mechanism requiring src kinases, CD45, and SHIP1 that is defective in multiple myeloma cells. Mol Cell Biol. 2015;35(1):41-51.
  • 21. Perez-Quintero LA, Roncagalli R, Guo H, Latour S, Davidson D, Veillette A. EAT-2, a SAP-like adaptor, controls NK cell activation through phospholipase Cgamma, Ca++, and Erk, leading to granule polarization. J Exp Med. 2014;211(4):727-42.
  • 22. Wilson TJ, Garner LI, Metcalfe C, King E, Margraf S, Brown MH. Fine specificity and molecular competition in SLAM family receptor signalling. PLoS One. 2014;9(3):e92184.
  • 23. Malaer JD, Mathew PA. CS1 (SLAMF7, CD319) is an effective immunotherapeutic target for multiple myeloma. Am J Cancer Res. 2017;7(8):1637-41.
  • 24. Cho SF, Xing L, Anderson KC, Tai YT. Promising Antigens for the New Frontier of Targeted Immunotherapy in Multiple Myeloma. Cancers (Basel). 2021;13(23).
  • 25. Lu Y, Huntoon K, Lee D, Wang Y, Ha J, Qie Y, et al. Immunological conversion of solid tumours using a bispecific nanobioconjugate for cancer immunotherapy. Nat Nanotechnol. 2022;17(12):1332-41.
  • 26. Kim JR, Horton NC, Mathew SO, Mathew PA. CS1 (SLAMF7) inhibits production of proinflammatory cytokines by activated monocytes. Inflamm Res. 2013;62(8):765-72.
  • 27. Choe U, Pham Q, Kim YS, Yu L, Wang TTY. Identification and elucidation of cross talk between SLAM Family Member 7 (SLAMF7) and Toll-like receptor (TLR) pathways in monocytes and macrophages. Sci Rep. 2023;13(1):11007.
  • 28. Simmons DP, Nguyen HN, Gomez-Rivas E, Jeong Y, Jonsson AH, Chen AF, et al. SLAMF7 engagement superactivates macrophages in acute and chronic inflammation. Sci Immunol. 2022;7(68):eabf2846.
  • 29. Cerwenka A, Lanier LL. Natural killer cell memory in infection, inflammation and cancer. Nat Rev Immunol. 2016;16(2):112-23.
  • 30. Gutierrez-Guerrero A, Mancilla-Herrera I, Maravillas-Montero JL, Martinez-Duncker I, Veillette A, Cruz-Munoz ME. SLAMF7 selectively favors degranulation to promote cytotoxicity in human NK cells. Eur J Immunol. 2022;52(1):62-74.
  • 31. Hsi ED, Steinle R, Balasa B, Szmania S, Draksharapu A, Shum BP, et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res. 2008;14(9):2775-84.
  • 32. Ishibashi M, Soeda S, Sasaki M, Handa H, Imai Y, Tanaka N, et al. Clinical impact of serum soluble SLAMF7 in multiple myeloma. Oncotarget. 2018;9(78):34784- 93
  • 33. Powers SB, Ahmed NG, Jose R, Brezgiel M, Aryal S, Bowman WP, et al. Differential Expression of LLT1, SLAM Receptors CS1 and 2B4 and NCR Receptors NKp46 and NKp30 in Pediatric Acute Lymphoblastic Leukemia (ALL). Int J Mol Sci. 2023;24(4).
  • 34. von Wenserski L, Schultheiss C, Bolz S, Schliffke S, Simnica D, Willscher E, et al. SLAMF receptors negatively regulate B cell receptor signaling in chronic lymphocytic leukemia via recruitment of prohibitin-2. Leukemia. 2021;35(4):1073-86.
  • 35. Elmaagacli AH, Salwender H, Jehn C, Dahmash F, Singh A, Wilson O, et al. Strong expression of SLAMF7 in natural killer/T-cell lymphoma and large granular lymphocyte leukemia - a prominent biomarker and potential target for anti-SLAMF7 antibody therapy. Leuk Lymphoma. 2019;60(13):3335-8.
  • 36. Elmaagacli AH, Jehn C, Shikova Y, Huber M, Salwender H, Dahmash F, et al. Advanced systemic mastocytosis with strong expression of signaling lymphocyte activation marker family member 7 (SLAMF7) responsive to therapy with elotuzumab and lenalidomide. Leuk Lymphoma. 2020;61(2):485-7.
  • 37. Zhuang L, Huang C, Ning Z, Yang L, Zou W, Wang P, et al. Circulating tumor-associated autoantibodies as novel diagnostic biomarkers in pancreatic adenocarcinoma. Int J Cancer. 2023;152(5):1013-24.
  • 38. Wang S, Fu J, Fang X. A novel DNA methylation-related gene signature for the prediction of overall survival and immune characteristics of ovarian cancer patients. J Ovarian Res. 2023;16(1):62.
  • 39. Shi J, Bodo J, Zhao X, Durkin L, Goyal T, Meyerson H, et al. SLAMF7 (CD319/ CS1) is expressed in plasmablastic lymphoma and is a potential diagnostic marker and therapeutic target. British Journal of Haematology. 2019;185(1):145-7.
  • 40. Li X, Zhou H, Huang W, Wang X, Meng M, Hou Z, et al. Retrospective analysis of the efficacy of adjuvant cytokine-induced killer cell immunotherapy combined with chemotherapy in colorectal cancer patients after surgery. Clin Transl Immunology. 2022;11(1):e1368.
  • 41. Blaye C, Darbo E, Debled M, Brouste V, Velasco V, Pinard C, et al. An immunological signature to predict outcome in patients with triple-negative breast cancer with residual disease after neoadjuvant chemotherapy. ESMO Open. 2022;7(4):100502.
  • 42. O’Connell P, Hyslop S, Blake MK, Godbehere S, Amalfitano A, Aldhamen YA. SLAMF7 Signaling Reprograms T Cells toward Exhaustion in the Tumor Microenvironment. J Immunol. 2021;206(1):193-205.
  • 43. Drgona L, Gudiol C, Lanini S, Salzberger B, Ippolito G, Mikulska M. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Agents targeting lymphoid or myeloid cells surface antigens [II]: CD22, CD30, CD33, CD38, CD40, SLAMF-7 and CCR4). Clin Microbiol Infect. 2018;24 Suppl 2:S83-S94.
  • 44. Zagouri F, Terpos E, Kastritis E, Dimopoulos MA. Emerging antibodies for the treatment of multiple myeloma. Expert Opin Emerg Drugs. 2016;21(2):225-37.
  • 45. Tai YT, Dillon M, Song W, Leiba M, Li XF, Burger P, et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood. 2008;112(4):1329-37.
  • 46. Pazina T, James AM, Colby KB, Yang Y, Gale A, Jhatakia A, et al. Enhanced SLAMF7 Homotypic Interactions by Elotuzumab Improves NK Cell Killing of Multiple Myeloma. Cancer Immunol Res. 2019;7(10):1633-46.
  • 47. Cachot A, Bilous M, Liu YC, Li X, Saillard M, Cenerenti M, et al. Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer. Sci Adv. 2021;7(9).
  • 48. van Rhee F, Szmania SM, Dillon M, van Abbema AM, Li X, Stone MK, et al. Combinatorial efficacy of anti-CS1 monoclonal antibody elotuzumab (HuLuc63) and bortezomib against multiple myeloma. Mol Cancer Ther. 2009;8(9):2616-24.
  • 49. Zonder JA, Mohrbacher AF, Singhal S, van Rhee F, Bensinger WI, Ding H, et al. A phase 1, multicenter, open-label, dose escalation study of elotuzumab in patients with advanced multiple myeloma. Blood. 2012;120(3):552-9.
  • 50. Jakubowiak A, Offidani M, Pégourie B, De La Rubia J, Garderet L, Laribi K, et al. Randomized phase 2 study: elotuzumab plus bortezomib/dexamethasone vs bortezomib/dexamethasone for relapsed/refractory MM. Blood. 2016;127(23):2833- 40.
  • 51. Jakubowiak AJ, Benson DM, Bensinger W, Siegel DS, Zimmerman TM, Mohrbacher A, et al. Phase I trial of anti-CS1 monoclonal antibody elotuzumab in combination with bortezomib in the treatment of relapsed/refractory multiple myeloma. J Clin Oncol. 2012;30(16):1960-5.
  • 52. Lonial S, Vij R, Harousseau JL, Facon T, Moreau P, Mazumder A, et al. Elotuzumab in combination with lenalidomide and low-dose dexamethasone in relapsed or refractory multiple myeloma. J Clin Oncol. 2012;30(16):1953-9.
  • 53. O’Neal J, Ritchey JK, Cooper ML, Niswonger J, Sofia Gonzalez L, Street E, et al. CS1 CAR-T targeting the distal domain of CS1 (SLAMF7) shows efficacy in high tumor burden myeloma model despite fratricide of CD8+CS1 expressing CAR-T cells. Leukemia. 2022;36(6):1625-34.
  • 54. van de Donk N, Usmani SZ, Yong K. CAR T-cell therapy for multiple myeloma: state of the art and prospects. Lancet Haematol. 2021;8(6):e446-e61.
  • 55. Liu D. Cancer biomarkers for targeted therapy. Biomark Res. 2019;7:25.
  • 56. Buller CW, Mathew PA, Mathew SO. Roles of NK Cell Receptors 2B4 (CD244), CS1 (CD319), and LLT1 (CLEC2D) in Cancer. Cancers (Basel). 2020;12(7).
  • 57. Wang SH, Chou WC, Huang HC, Lee TA, Hsiao TC, Wang LH, et al. Deglycosylation of SLAMF7 in breast cancers enhances phagocytosis. Am J Cancer Res. 2022;12(10):4721-36.
Year 2024, Volume: 5 Issue: 1, 1 - 7, 30.01.2024

Abstract

References

  • 1.World Health Organization. Erişim adresi: https://www.who.int/health-topics/ cancer Erişim tarihi: 08.09.2023.
  • 2. GLOBOCAN 2020. Erişim adresi: https://gco.iarc.fr/today/data/factsheets/cancers/39-All-cancers-fact-sheet.pdf Erişim tarihi: 08.09.2023
  • 3. Yin W, Wang J, Jiang L, James Kang Y. Cancer and stem cells. Exp Biol Med (Maywood). 2021;246(16):1791-801.
  • 4. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12(1):31-46.
  • 5. Hristova VA, Chan DW. Cancer biomarker discovery and translation: proteomics and beyond. Expert Rev Proteomics. 2019;16(2):93-103.
  • 6. Zou J, Wang E. Cancer Biomarker Discovery for Precision Medicine: New Progress. Curr Med Chem. 2019;26(42):7655-71.
  • 7. Roh SA, Kwon YH, Lee JL, Kim SK, Kim JC. SLAMF7 and TREM1 Mediate Immunogenic Cell Death in Colorectal Cancer Cells: Focus on Microsatellite Stability. Anticancer Res. 2021;41(11):5431-44.
  • 8. Assidi M. Strong prognostic value of SLAMF7 protein expression in patients with lymph node-positive breast cancer. Oncol Lett. 2022;24(6):433.
  • 9. Ishibashi M, Morita R, Tamura H. Immune Functions of Signaling Lymphocytic Activation Molecule Family Molecules in Multiple Myeloma. Cancers (Basel). 2021;13(2).
  • 10. Farhangnia P, Ghomi SM, Mollazadehghomi S, Nickho H, Akbarpour M, Delbandi AA. SLAM-family receptors come of age as a potential molecular target in cancer immunotherapy. Front Immunol. 2023;14:1174138.
  • 11. Cannons JL, Tangye SG, Schwartzberg PL. SLAM family receptors and SAP adaptors in immunity. Annu Rev Immunol. 2011;29:665-705.
  • 12. McArdel SL, Terhorst C, Sharpe AH. Roles of CD48 in regulating immunity and tolerance. Clinical Immunology. 2016;164:10-20.
  • 13. Fouquet G, Marcq I, Debuysscher V, Bayry J, Singh AR, Bengrine A, et al. Signaling lymphocytic activation molecules Slam and cancers: friends or foes? Oncotarget. 2018;9(22).
  • 14. Wilson TJ, Clare S, Mikulin J, Johnson CM, Harcourt K, Lyons PA, et al. Signalling lymphocyte activation molecule family member 9 is found on select subsets of antigen-presenting cells and promotes resistance to Salmonella infection. Immunology. 2020;159(4):393-403.
  • 15. Wu N, Veillette A. SLAM family receptors in normal immunity and immune pathologies. Current Opinion in Immunology. 2016;38:45-51.
  • 16. Zhang Y, Zhang Q, Han X, Han L, Wang T, Hu J, et al. SLAMF8, a potential new immune checkpoint molecule, is associated with the prognosis of colorectal cancer. Transl Oncol. 2023;31:101654.
  • 17. Agresta L, Lehn M, Lampe K, Cantrell R, Hennies C, Szabo S, et al. CD244 represents a new therapeutic target in head and neck squamous cell carcinoma. J Immunother Cancer. 2020;8(1).
  • 18.Kumaresan PR, Lai WC, Chuang SS, Bennett M, Mathew PA. CS1, a novel member of the CD2 family, is homophilic and regulates NK cell function. Mol Immunol. 2002;39(1-2):1-8.
  • 19. Campbell KS, Cohen AD, Pazina T. Mechanisms of NK Cell Activation and Clinical Activity of the Therapeutic SLAMF7 Antibody, Elotuzumab in Multiple Myeloma. Front Immunol. 2018;9:2551.
  • 20. Guo H, Cruz-Munoz ME, Wu N, Robbins M, Veillette A. Immune cell inhibition by SLAMF7 is mediated by a mechanism requiring src kinases, CD45, and SHIP1 that is defective in multiple myeloma cells. Mol Cell Biol. 2015;35(1):41-51.
  • 21. Perez-Quintero LA, Roncagalli R, Guo H, Latour S, Davidson D, Veillette A. EAT-2, a SAP-like adaptor, controls NK cell activation through phospholipase Cgamma, Ca++, and Erk, leading to granule polarization. J Exp Med. 2014;211(4):727-42.
  • 22. Wilson TJ, Garner LI, Metcalfe C, King E, Margraf S, Brown MH. Fine specificity and molecular competition in SLAM family receptor signalling. PLoS One. 2014;9(3):e92184.
  • 23. Malaer JD, Mathew PA. CS1 (SLAMF7, CD319) is an effective immunotherapeutic target for multiple myeloma. Am J Cancer Res. 2017;7(8):1637-41.
  • 24. Cho SF, Xing L, Anderson KC, Tai YT. Promising Antigens for the New Frontier of Targeted Immunotherapy in Multiple Myeloma. Cancers (Basel). 2021;13(23).
  • 25. Lu Y, Huntoon K, Lee D, Wang Y, Ha J, Qie Y, et al. Immunological conversion of solid tumours using a bispecific nanobioconjugate for cancer immunotherapy. Nat Nanotechnol. 2022;17(12):1332-41.
  • 26. Kim JR, Horton NC, Mathew SO, Mathew PA. CS1 (SLAMF7) inhibits production of proinflammatory cytokines by activated monocytes. Inflamm Res. 2013;62(8):765-72.
  • 27. Choe U, Pham Q, Kim YS, Yu L, Wang TTY. Identification and elucidation of cross talk between SLAM Family Member 7 (SLAMF7) and Toll-like receptor (TLR) pathways in monocytes and macrophages. Sci Rep. 2023;13(1):11007.
  • 28. Simmons DP, Nguyen HN, Gomez-Rivas E, Jeong Y, Jonsson AH, Chen AF, et al. SLAMF7 engagement superactivates macrophages in acute and chronic inflammation. Sci Immunol. 2022;7(68):eabf2846.
  • 29. Cerwenka A, Lanier LL. Natural killer cell memory in infection, inflammation and cancer. Nat Rev Immunol. 2016;16(2):112-23.
  • 30. Gutierrez-Guerrero A, Mancilla-Herrera I, Maravillas-Montero JL, Martinez-Duncker I, Veillette A, Cruz-Munoz ME. SLAMF7 selectively favors degranulation to promote cytotoxicity in human NK cells. Eur J Immunol. 2022;52(1):62-74.
  • 31. Hsi ED, Steinle R, Balasa B, Szmania S, Draksharapu A, Shum BP, et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res. 2008;14(9):2775-84.
  • 32. Ishibashi M, Soeda S, Sasaki M, Handa H, Imai Y, Tanaka N, et al. Clinical impact of serum soluble SLAMF7 in multiple myeloma. Oncotarget. 2018;9(78):34784- 93
  • 33. Powers SB, Ahmed NG, Jose R, Brezgiel M, Aryal S, Bowman WP, et al. Differential Expression of LLT1, SLAM Receptors CS1 and 2B4 and NCR Receptors NKp46 and NKp30 in Pediatric Acute Lymphoblastic Leukemia (ALL). Int J Mol Sci. 2023;24(4).
  • 34. von Wenserski L, Schultheiss C, Bolz S, Schliffke S, Simnica D, Willscher E, et al. SLAMF receptors negatively regulate B cell receptor signaling in chronic lymphocytic leukemia via recruitment of prohibitin-2. Leukemia. 2021;35(4):1073-86.
  • 35. Elmaagacli AH, Salwender H, Jehn C, Dahmash F, Singh A, Wilson O, et al. Strong expression of SLAMF7 in natural killer/T-cell lymphoma and large granular lymphocyte leukemia - a prominent biomarker and potential target for anti-SLAMF7 antibody therapy. Leuk Lymphoma. 2019;60(13):3335-8.
  • 36. Elmaagacli AH, Jehn C, Shikova Y, Huber M, Salwender H, Dahmash F, et al. Advanced systemic mastocytosis with strong expression of signaling lymphocyte activation marker family member 7 (SLAMF7) responsive to therapy with elotuzumab and lenalidomide. Leuk Lymphoma. 2020;61(2):485-7.
  • 37. Zhuang L, Huang C, Ning Z, Yang L, Zou W, Wang P, et al. Circulating tumor-associated autoantibodies as novel diagnostic biomarkers in pancreatic adenocarcinoma. Int J Cancer. 2023;152(5):1013-24.
  • 38. Wang S, Fu J, Fang X. A novel DNA methylation-related gene signature for the prediction of overall survival and immune characteristics of ovarian cancer patients. J Ovarian Res. 2023;16(1):62.
  • 39. Shi J, Bodo J, Zhao X, Durkin L, Goyal T, Meyerson H, et al. SLAMF7 (CD319/ CS1) is expressed in plasmablastic lymphoma and is a potential diagnostic marker and therapeutic target. British Journal of Haematology. 2019;185(1):145-7.
  • 40. Li X, Zhou H, Huang W, Wang X, Meng M, Hou Z, et al. Retrospective analysis of the efficacy of adjuvant cytokine-induced killer cell immunotherapy combined with chemotherapy in colorectal cancer patients after surgery. Clin Transl Immunology. 2022;11(1):e1368.
  • 41. Blaye C, Darbo E, Debled M, Brouste V, Velasco V, Pinard C, et al. An immunological signature to predict outcome in patients with triple-negative breast cancer with residual disease after neoadjuvant chemotherapy. ESMO Open. 2022;7(4):100502.
  • 42. O’Connell P, Hyslop S, Blake MK, Godbehere S, Amalfitano A, Aldhamen YA. SLAMF7 Signaling Reprograms T Cells toward Exhaustion in the Tumor Microenvironment. J Immunol. 2021;206(1):193-205.
  • 43. Drgona L, Gudiol C, Lanini S, Salzberger B, Ippolito G, Mikulska M. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Agents targeting lymphoid or myeloid cells surface antigens [II]: CD22, CD30, CD33, CD38, CD40, SLAMF-7 and CCR4). Clin Microbiol Infect. 2018;24 Suppl 2:S83-S94.
  • 44. Zagouri F, Terpos E, Kastritis E, Dimopoulos MA. Emerging antibodies for the treatment of multiple myeloma. Expert Opin Emerg Drugs. 2016;21(2):225-37.
  • 45. Tai YT, Dillon M, Song W, Leiba M, Li XF, Burger P, et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood. 2008;112(4):1329-37.
  • 46. Pazina T, James AM, Colby KB, Yang Y, Gale A, Jhatakia A, et al. Enhanced SLAMF7 Homotypic Interactions by Elotuzumab Improves NK Cell Killing of Multiple Myeloma. Cancer Immunol Res. 2019;7(10):1633-46.
  • 47. Cachot A, Bilous M, Liu YC, Li X, Saillard M, Cenerenti M, et al. Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer. Sci Adv. 2021;7(9).
  • 48. van Rhee F, Szmania SM, Dillon M, van Abbema AM, Li X, Stone MK, et al. Combinatorial efficacy of anti-CS1 monoclonal antibody elotuzumab (HuLuc63) and bortezomib against multiple myeloma. Mol Cancer Ther. 2009;8(9):2616-24.
  • 49. Zonder JA, Mohrbacher AF, Singhal S, van Rhee F, Bensinger WI, Ding H, et al. A phase 1, multicenter, open-label, dose escalation study of elotuzumab in patients with advanced multiple myeloma. Blood. 2012;120(3):552-9.
  • 50. Jakubowiak A, Offidani M, Pégourie B, De La Rubia J, Garderet L, Laribi K, et al. Randomized phase 2 study: elotuzumab plus bortezomib/dexamethasone vs bortezomib/dexamethasone for relapsed/refractory MM. Blood. 2016;127(23):2833- 40.
  • 51. Jakubowiak AJ, Benson DM, Bensinger W, Siegel DS, Zimmerman TM, Mohrbacher A, et al. Phase I trial of anti-CS1 monoclonal antibody elotuzumab in combination with bortezomib in the treatment of relapsed/refractory multiple myeloma. J Clin Oncol. 2012;30(16):1960-5.
  • 52. Lonial S, Vij R, Harousseau JL, Facon T, Moreau P, Mazumder A, et al. Elotuzumab in combination with lenalidomide and low-dose dexamethasone in relapsed or refractory multiple myeloma. J Clin Oncol. 2012;30(16):1953-9.
  • 53. O’Neal J, Ritchey JK, Cooper ML, Niswonger J, Sofia Gonzalez L, Street E, et al. CS1 CAR-T targeting the distal domain of CS1 (SLAMF7) shows efficacy in high tumor burden myeloma model despite fratricide of CD8+CS1 expressing CAR-T cells. Leukemia. 2022;36(6):1625-34.
  • 54. van de Donk N, Usmani SZ, Yong K. CAR T-cell therapy for multiple myeloma: state of the art and prospects. Lancet Haematol. 2021;8(6):e446-e61.
  • 55. Liu D. Cancer biomarkers for targeted therapy. Biomark Res. 2019;7:25.
  • 56. Buller CW, Mathew PA, Mathew SO. Roles of NK Cell Receptors 2B4 (CD244), CS1 (CD319), and LLT1 (CLEC2D) in Cancer. Cancers (Basel). 2020;12(7).
  • 57. Wang SH, Chou WC, Huang HC, Lee TA, Hsiao TC, Wang LH, et al. Deglycosylation of SLAMF7 in breast cancers enhances phagocytosis. Am J Cancer Res. 2022;12(10):4721-36.
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Allied Health and Rehabilitation Science (Other)
Journal Section Reviews
Authors

Seda Bulut

İlhan Yaylım

Publication Date January 30, 2024
Submission Date October 15, 2023
Acceptance Date January 10, 2024
Published in Issue Year 2024 Volume: 5 Issue: 1

Cite

AMA Bulut S, Yaylım İ. Kanser İlişkili Yeni Hedef Molekül SLAMF7. JMS. January 2024;5(1):1-7.