A Comparison of Academic Staff's Scientific Habits of Mind Regarding Socioscientific Issues
Year 2019,
Volume: 9 Issue: 1, 67 - 74, 24.04.2019
Ali Kolomuç
,
Muammer Çalık
Abstract
The aim of this study was to compare academic staff's (from sciences and social sciences) scientific habits of mind regarding socio-scientific issues. The sample consisted of 310 academic staff from six universities using convenient sampling method. The data were collected with the 32-item- Scientific Habits of Mind Scale developed by Çalık and Coll (2012) who ensured its validity and reliability for sciences and social sciences. The results of the independent samples t-test showed significant differences in 'skepticism, rationality, and objectivity' sub-factors in favor of the academic staff in social sciences. In light of the results, the current study recommends that interdisciplinary studies bridging sciences and social sciences should be carried out to develop various socioscientific viewpoints and scientific habits of mind.
References
- Acar, Ö. (2016). Examination of science learning equity by argumentation instruction between students having different socio-economic status and attending different achievement level schools. Journal of Turkish Science Education, 13(4), 262–280.
- Albe, V. (2008). When scientific knowledge, daily life experience, epistemological and social considerations intersect: Students’ argumentation in group discussions on a socioscientific issue. Research in Science Education, 38(1), 67–90.
- Aytar, A. (2011). Sınıf öğretmen adaylarının öğretmenlik uygulaması sürecinde insanın çevreye etkisi konusuyla ilgili pedagojik alan bilgilerinin araştırılması. Yayımlanmamış yüksek lisans tezi, Karadeniz Teknik Üniversitesi, Eğitim Bilimleri Enstitüsü, Trabzon.
- Borgerding, L. A., & Dagistan, M. (2018). Preservice science teachers’ concerns and approaches for teaching socioscientific and controversial issues. Journal of Science Teacher Education, 29(4), 283–306.
- Christensen, C. K. (2007). Waiting for certainty: Young people, mobile phones and uncertain science. Published PhD thesis, Centre for Learning Innovation, Queensland University of Technology, Brisbane, Australia.
- Coll, R. K., Lay, M. C., & Taylor, N. (2008). Scientists and scientific thinking: Understanding scientific thinking through an investigation of scientists views about superstitions and religious beliefs. Eurasia Journal of Mathematics, Science and Technology Education, 4(3), 197–214.
- Çalık, M., & Coll, R. K. (2012). Investigating socioscientific issues via scientific habits of mind: Development and validation of the scientific habits of mind survey (SHOMS). International Journal of Science Education, 34(12), 1909–1930.
- Çalık, M., Turan, B., & Coll, R. K. (2014). A cross-age study of elementary student teachers’ scientific habits of mind concerning socio-scientific issues. International Journal of Science and Mathematics Education, 12(6), 1315–1340.
- Çalık, M., & Cobern, W. M. (2017). A cross-cultural study of CKCM efficacy in an undergraduate chemistry classroom. Chemistry Education Research and Practice, 18(4), 691–709.
- Ercoşkun, H., & Nalçacı, A. (2009). Sınıf öğretmeni adaylarının ÖSS, akademik ve KPSS başarılarının çeşitli değişkenler açısından incelenmesi. Kastamonu E¤itim Dergisi, 17(2), 479–486.
- Fortner, R. W., Lee, J. Y., Corney, J. R., Romanello, S., Bonnell, J., Luthy, B., ... Ntsiko, N. (2000). Public understanding of climate change: Certainty and willingness to act. Environmental Education Research, 6(2), 127–141.
- Gauld, C. F. (1982). The scientific attitude and science education: A critical reappraisal. Science Education, 66(1), 109–121.
- Hair, J. F. Jr, Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis (6th ed.). Mahwah, NJ: Prentice-Hall.
- Hare, W. (1987). Russell’s contribution to philosophy of education. Russell, 7(1), 25–41.
- Hare, W. (2001). Bertrand Russell and the ideal of critical receptiveness. Skeptical Inquirer, 25(3): 40–44.
- Hodson, D. (2006). Why we should prioritize learning about science. Canadian Journal of Science, Mathematics and Technology Education, 6(3), 293–311.
- Irzik, G., & Nola, R. (2011). A family resemblance approach to the nature of science for science education. Science and Education, 20(7–8), 591–607.
- Kaptan, S. (1993). Bilimsel araflt›rma ve istatistik teknikleri. Ankara: Tekışık Web Ofset Tesisleri.
- Karasar, N. (2003). Bilimsel araştırma yöntemi. Ankara: Nobel Yayın Dağıtım.
- Karışan, D., Yılmaz-Tüzün, Ö., & Zeidler, D. L. (2018). Pre-service teachers’ reflective judgment skills in the context of socio-scientific issues based inquiry laboratory course. Turkish Journal of Education, 7(2), 99–115.
- Kaya, Z., & Kaya, O. N. (2013). Öğretmen eğitiminde Vignette tekniği ve uygulamaları. Eğitim ve Bilim, 38(168), 129–142.
- Kolsto, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85(3), 291–310.
- Korolija, J. N., Rajic, S., & Mandic, L. M. (2008). Education about diet through chemistry learning. Problems of Education in the 21st Century, 9, 65–73.
- Levinson, R. (2006). Towards a theoretical framework for teaching controversial socio-scientific issues. International Journal of Science Education, 28(10), 1201–1224.
- Najmr, S., Chae, J., Greenberg, M. L., Bowman, C., Harkavy, I., & Maeyer, J. R. (2018). A service-learning chemistry course as a model to improve undergraduate scientific communication skills. Journal of Chemical Education, 95(4), 528–534.
- Ryder, J. (2002). School science education for citizenship: Strategies for teaching about the epistemology of science. Journal of Curriculum Studies, 34(6), 637–658.
- Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41(5), 513–536.
- Sadler, T. D. (2009). Socioscientific issues in science education: Labels, reasoning and transfer. Cultural Studies of Science Education, 4(3), 697–703.
- Salvucci, S., Walter, E., Conley, V., Fink, S., & Saba, M. (1997). Measurement error studies at the National Center for Education Statistics (NCES). Washington, DC: U. S. Department of Education.
- Sarıbaş, D., Doğança-Küçük, Z., & Ertepınar, H. (2016). Evaluating effects of an exhibition visit on pre-service elementary teachers’ understandings of climate change. Journal of Turkish Science Education, 13(1): 19–30.
- Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Boston, MA: Pearson.
- Tan, Ş. (2009). Misuses of KR-20 and Cronbach’s alpha reliability coefficients. Education and Science, 34(152), 101–112.
- Topçu, M. S. (2010). Development of attitudes towards socioscientific issues scale for undergraduate students. Evaluation and Research in Education, 23(1), 51–67.
- Topçu, M. S., Sadler, T. D., & Y›lmaz-Tüzün, O. (2010). Preservice science teachers’ informal reasoning about socioscientific issues: The influence of issue context. International Journal of Science Education, 32(18), 2475–2495.
- Topçu, M. S., Muğaloğlu, E. Z., & Güven, D. (2014). Fen eğitiminde sosyobilimsel konular: Türkiye örneği. Kuram ve Uygulamada Eğitim Bilimleri, 14(6), 1–22.
- Torres, N., & Cristancho, J. G. (2018). Analysis of the forms of argumentation of teachers in training in the context of a socio-scientific issue. Journal of Turkish Science Education, 15(1), 57–79.
- Trochim, W. M. (1999). The research methods knowledge base (2nd ed.). Cincinnati, OH: Atomic Dog.
- Walker, K. A. (2003). Students’ understanding of the nature of science and their reasoning on socioscientific issues: A web-based learning inquiry. Unpublished doctoral dissertation, University of South Florida, Tampa, FL, USA.
- Wu, Y. T., & Tsai, C. (2010). High school students’ informal reasoning regarding a socio-scientific issue, with relation to scientific epistemological
beliefs and cognitive structures. International Journal of Science Education, 33(3), 371–400.
Öğretim Elemanlarının Sosyobilimsel Konulara Yönelik Bilimsel Düşünme Alışkanlıklarının Karşılaştırılması
Year 2019,
Volume: 9 Issue: 1, 67 - 74, 24.04.2019
Ali Kolomuç
,
Muammer Çalık
Abstract
Bu çalışma, sosyal bilimler ve fen bilimleri alanlarındaki öğretim elemanlarının sosyobilimsel konulara yönelik bilimsel düşünme alışkanlıklarını karşılaştırmak amacıyla yapılmıştır. Çalışmaya 6 farklı üniversiteden kolay ulaşılabilir uygun örnekleme yöntemiyle ulaşılan 310 öğretim elemanı katılmıştır. Alan taraması yönteminin kullanıldığı bu çalışmanın verileri Çalık ve Coll (2012) tarafından geliştirilen, geçerliği ve güvenirliği sağlanmış olan ve Türkçe'ye uyarlanması yapılmış olan 32 maddelik Bilimsel Düşünme Alışkanlıkları Ölçeği ile toplanmıştır. Bağımsız gruplar t testi bulgularına göre, fen bilimleri ve sosyal bilimler alanlarındaki öğretim elemanlarının 'şüphecilik, mantıksallık ve nesnellik' alt faktörlerinde gruplar arasında istatistiksel olarak sosyal bilimler öğretim elemanları lehine farklılık bulunmuştur. Çalışmanın sonucunda, sosyobilimsel konularla ilgili farklı bakış açılarının ve bilimsel düşünme alışkanlıklarının geliştirilmesi için fen bilimleri ve sosyal bilimler alanlarındaki disiplinler arası çalışmaların yapılması önerilmektedir.
References
- Acar, Ö. (2016). Examination of science learning equity by argumentation instruction between students having different socio-economic status and attending different achievement level schools. Journal of Turkish Science Education, 13(4), 262–280.
- Albe, V. (2008). When scientific knowledge, daily life experience, epistemological and social considerations intersect: Students’ argumentation in group discussions on a socioscientific issue. Research in Science Education, 38(1), 67–90.
- Aytar, A. (2011). Sınıf öğretmen adaylarının öğretmenlik uygulaması sürecinde insanın çevreye etkisi konusuyla ilgili pedagojik alan bilgilerinin araştırılması. Yayımlanmamış yüksek lisans tezi, Karadeniz Teknik Üniversitesi, Eğitim Bilimleri Enstitüsü, Trabzon.
- Borgerding, L. A., & Dagistan, M. (2018). Preservice science teachers’ concerns and approaches for teaching socioscientific and controversial issues. Journal of Science Teacher Education, 29(4), 283–306.
- Christensen, C. K. (2007). Waiting for certainty: Young people, mobile phones and uncertain science. Published PhD thesis, Centre for Learning Innovation, Queensland University of Technology, Brisbane, Australia.
- Coll, R. K., Lay, M. C., & Taylor, N. (2008). Scientists and scientific thinking: Understanding scientific thinking through an investigation of scientists views about superstitions and religious beliefs. Eurasia Journal of Mathematics, Science and Technology Education, 4(3), 197–214.
- Çalık, M., & Coll, R. K. (2012). Investigating socioscientific issues via scientific habits of mind: Development and validation of the scientific habits of mind survey (SHOMS). International Journal of Science Education, 34(12), 1909–1930.
- Çalık, M., Turan, B., & Coll, R. K. (2014). A cross-age study of elementary student teachers’ scientific habits of mind concerning socio-scientific issues. International Journal of Science and Mathematics Education, 12(6), 1315–1340.
- Çalık, M., & Cobern, W. M. (2017). A cross-cultural study of CKCM efficacy in an undergraduate chemistry classroom. Chemistry Education Research and Practice, 18(4), 691–709.
- Ercoşkun, H., & Nalçacı, A. (2009). Sınıf öğretmeni adaylarının ÖSS, akademik ve KPSS başarılarının çeşitli değişkenler açısından incelenmesi. Kastamonu E¤itim Dergisi, 17(2), 479–486.
- Fortner, R. W., Lee, J. Y., Corney, J. R., Romanello, S., Bonnell, J., Luthy, B., ... Ntsiko, N. (2000). Public understanding of climate change: Certainty and willingness to act. Environmental Education Research, 6(2), 127–141.
- Gauld, C. F. (1982). The scientific attitude and science education: A critical reappraisal. Science Education, 66(1), 109–121.
- Hair, J. F. Jr, Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis (6th ed.). Mahwah, NJ: Prentice-Hall.
- Hare, W. (1987). Russell’s contribution to philosophy of education. Russell, 7(1), 25–41.
- Hare, W. (2001). Bertrand Russell and the ideal of critical receptiveness. Skeptical Inquirer, 25(3): 40–44.
- Hodson, D. (2006). Why we should prioritize learning about science. Canadian Journal of Science, Mathematics and Technology Education, 6(3), 293–311.
- Irzik, G., & Nola, R. (2011). A family resemblance approach to the nature of science for science education. Science and Education, 20(7–8), 591–607.
- Kaptan, S. (1993). Bilimsel araflt›rma ve istatistik teknikleri. Ankara: Tekışık Web Ofset Tesisleri.
- Karasar, N. (2003). Bilimsel araştırma yöntemi. Ankara: Nobel Yayın Dağıtım.
- Karışan, D., Yılmaz-Tüzün, Ö., & Zeidler, D. L. (2018). Pre-service teachers’ reflective judgment skills in the context of socio-scientific issues based inquiry laboratory course. Turkish Journal of Education, 7(2), 99–115.
- Kaya, Z., & Kaya, O. N. (2013). Öğretmen eğitiminde Vignette tekniği ve uygulamaları. Eğitim ve Bilim, 38(168), 129–142.
- Kolsto, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85(3), 291–310.
- Korolija, J. N., Rajic, S., & Mandic, L. M. (2008). Education about diet through chemistry learning. Problems of Education in the 21st Century, 9, 65–73.
- Levinson, R. (2006). Towards a theoretical framework for teaching controversial socio-scientific issues. International Journal of Science Education, 28(10), 1201–1224.
- Najmr, S., Chae, J., Greenberg, M. L., Bowman, C., Harkavy, I., & Maeyer, J. R. (2018). A service-learning chemistry course as a model to improve undergraduate scientific communication skills. Journal of Chemical Education, 95(4), 528–534.
- Ryder, J. (2002). School science education for citizenship: Strategies for teaching about the epistemology of science. Journal of Curriculum Studies, 34(6), 637–658.
- Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41(5), 513–536.
- Sadler, T. D. (2009). Socioscientific issues in science education: Labels, reasoning and transfer. Cultural Studies of Science Education, 4(3), 697–703.
- Salvucci, S., Walter, E., Conley, V., Fink, S., & Saba, M. (1997). Measurement error studies at the National Center for Education Statistics (NCES). Washington, DC: U. S. Department of Education.
- Sarıbaş, D., Doğança-Küçük, Z., & Ertepınar, H. (2016). Evaluating effects of an exhibition visit on pre-service elementary teachers’ understandings of climate change. Journal of Turkish Science Education, 13(1): 19–30.
- Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Boston, MA: Pearson.
- Tan, Ş. (2009). Misuses of KR-20 and Cronbach’s alpha reliability coefficients. Education and Science, 34(152), 101–112.
- Topçu, M. S. (2010). Development of attitudes towards socioscientific issues scale for undergraduate students. Evaluation and Research in Education, 23(1), 51–67.
- Topçu, M. S., Sadler, T. D., & Y›lmaz-Tüzün, O. (2010). Preservice science teachers’ informal reasoning about socioscientific issues: The influence of issue context. International Journal of Science Education, 32(18), 2475–2495.
- Topçu, M. S., Muğaloğlu, E. Z., & Güven, D. (2014). Fen eğitiminde sosyobilimsel konular: Türkiye örneği. Kuram ve Uygulamada Eğitim Bilimleri, 14(6), 1–22.
- Torres, N., & Cristancho, J. G. (2018). Analysis of the forms of argumentation of teachers in training in the context of a socio-scientific issue. Journal of Turkish Science Education, 15(1), 57–79.
- Trochim, W. M. (1999). The research methods knowledge base (2nd ed.). Cincinnati, OH: Atomic Dog.
- Walker, K. A. (2003). Students’ understanding of the nature of science and their reasoning on socioscientific issues: A web-based learning inquiry. Unpublished doctoral dissertation, University of South Florida, Tampa, FL, USA.
- Wu, Y. T., & Tsai, C. (2010). High school students’ informal reasoning regarding a socio-scientific issue, with relation to scientific epistemological
beliefs and cognitive structures. International Journal of Science Education, 33(3), 371–400.