Research Article
BibTex RIS Cite

Cip Baraj Gölü (Elazığ)’nde Sediment Gözenek Suyunda Fosforun Mevsimsel Değişimleri

Year 2016, Volume: 16 Issue: 4, 299 - 310, 06.11.2016
https://doi.org/10.17693/yunusae.v16i26717.281029

Abstract

Bu araştırma, Cip Baraj Gölü litoral sedimentinde fosforun mevsimsel değişiminin araştırılması amacıyla 2011 yılı kış, ilkbahar, yaz ve sonbahar mevsimlerinde alınan örneklerle yürütülmüştür. Gölde belirlenen istasyondan alınan sediment ve sediment üstü su örneklerinde toplam fosfor ve fraksiyonları başta olmak üzere bazı fiziksel ve kimyasal analizler yapılmıştır. Çalışmada sediment gözenek suyunda 32-82 μgL-1 arasında değişen TFF konsantrasyonları ve 20,60-32,35 μgL-1 arasında değişen TFO konsantrasyonları gölün ötrofik besin düzeyine yakın değerlerde seyrettiğini göstermiştir. Bu çalışmadaki TFO konsantrasyonunun sediment üstü sudaki fosfor derişimlerine oranı (yaklaşık 1,5-2 kat) sedimentten fosfor salınımını teşvik edecek ölçüde yüksek gözükmemektedir. Cip Baraj Gölü’nde sediment gözenek suyuna ait TFE/TFO değerleri 0,13-0,19 arasında değişmiş olup sedimentten fosfor salınımının engellenmediği ortaya konulmuştur. Cip Baraj Gölü sediment üstü su TFF değerleri, sediment gözenek suyu TFF değerleri ile paralel olarak mevsimsel farklılıklar göstermiş ve literatür değerlerden yaklaşık 1,5-2 kat fazla olduğu bulunmuştur. Bu durum ise sedimentten fosfor salınımının oldukça düşük kalmasında etkili gözükmektedir. Cip Baraj Gölü suyunda 50,08-83,24 µg P L-1 arasında tespit edilen toplam fosfor değerleri, literatürde yer alan indekslere göre gölün trofik durumunun mesoötrofik ve ötrofik sınıfına girdiğini göstermiştir. Gölün besin seviyesinin korunabilmesi için öncelikle dış kaynaklı fosfor yükünün kontrol altına alınarak azaltılması gerekliliği belirlenmiştir.

References

  • Anonim, 1995. Standart methods for the examination of water and wastewater. 19th edition. Jonn D., Ducas Co., USA.
  • Arthington, A. H., Miller, G. J. ve Outrige, P. M. 1989. Water quality, phosphorus budgetsand management of Dune Lakes recreation in Queensland (Australia) Water Sci.Tech 21(2):111-118.
  • Auer, M. T., Kreser, M. S. ve Canale, R. P. 1986. Identification of critical nutrient levels through field verification of models for phosphorus and phytoplankton growth.Can. J. Fish. Aquat. Sci., 43:379-388.
  • Boström, B., Andersen, J. M., Fleischer, S. ve Jansson, M. 1988. Exchange of phosphorus across the sediment-water interface. Hydrobiologia, 170: 229-244.
  • Boyd, C. E., Taner, M. E., Madkour, M. ve Masuda, K. 1994. Chemical characteristics of bottom soils from freshwater and brackishwater aquaculture ponds. Journal of the World Aquaculture Society, 25(4): 517-534.
  • Carignan, R. 1984. Sediment geochemistry in a eutrophic lake colonized by the submersed macrophyte. Myriophyllum spicatum. Verh. Int. Ver. Limnol., 22: 355- 370.
  • Carignan, R. 1985. Nutrient Dynamics in a Littoral Sediment Colonized by the Submersed Macrophyte Myriophyllum spicatum. Can. J. Fish. Aquat. Sci., 42: 1303-1311.
  • Christensen T. H., Bjerg P. L., Banwart S., Jakobsen R., Heron G. ve Albrechtsen H. J. 2000. Characterization of Redox conditions in groundwater contaminant plumes. J. Contamin Hydrol. 45: 165-241.
  • Drake, J. C. ve Heaney, S. I. 1987. Occurence of phosphorus and its potential remobilization in the littoral sediments of a productive English lake. Freshwater Biology, 17: 513-523.
  • Eckert, W., Nishri, A. ve Parparova, R. 1997. Factors Regulating the Flux of Phosphate at the Sediment-Water Interface of a Subtropical Calcareous Lake: A Simulation Study With Intact Sediment Cores. Water, Air and Soil Pollution, 99: 401-409.
  • Enell, M. ve Löfgren, S. 1988. Phosphorus in interstitial water: methods and dynamics. Hydrobiologia, 170: 103-132.
  • Fraser, P. C. ve Trew, D. O. 1990. A compendium of limnological data for 23 lakes in the Beaver river watershed - environmental quality monitoring branch. Environmental Protection Services, Edmonton, Alberta.
  • Hakanson, L. ve Jansson, M. 1983. Principles of Lake Sedimentology. Springer, Berlin, pp.316.
  • Istvanovics, V., Herodek, S. ve Szılagyi, F. 1989. Phosphate Adsorbtion by Different Sediment Fractions In Lake Balaton And Its Protecting Reservoirs. Wat.Res., 23 (11): 1357-1366.
  • Istvanovics, V. 1994. Fractional composition, adsorbtion and release of sediemt phosphorus in the Kiss-Balaton Reservoir. Wat. Res., Vol.28. No:3, pp 717-726.
  • James, W. F., Best, E. P. ve Barko, J. W. 2004. Sediment resuspension and light attenuation in Peoria Lake: can macrophytes improve water quality in this shallow system? Hydrobiologia, 515: 193-201.
  • Kaçar, B. 1995. Bitki ve Toprağın Kimyasal Analizleri 3: Toprak Analizleri Ankara Üniversitesi Ziraat Fakültesi Eğitim Araştırma ve Geliştirme Vakfı Yayınları, No:3.
  • Kisand, A. 2005. Distribution of sediment phosphorus fractions in
  • hypertrophic strongly stratified Lake Verevi. Hydrobiologia. 547: 33-39.
  • Lau, S. S. S. ve Chu, L. M. 1999. Contaminant release from sediments in a coastal wetland. Wat. Res., 33(4): 909-918.
  • Lehtoranta, J. ve Heiskanen, A. S. 2003. Dissolved iron-phosphate ratio as an indicator of phosphate release to oxic water of the iner and outer coastal Baltic Sea. Hydrobiologia, 492: 69-84.
  • Marsden, Martin, W. 1989. Lake restoration by reducing external phosphorus loading: the influence of sediment phosphorus release. Freshwater Biology, 21:139-162.
  • Mayer, T. D. ve Jarrell, W. M. 2000. Phosphorus sorption during iron (II) oxidation in the presence of dissolved silica. Wat. Res., 34: 16, 3949-3956.
  • Nguyen, L. M., Cooke, J. G. ve McBride, G. B. 1997. Phosphorus Retention andCharacteristics of Sewage-Impacted Wetland Sediments. Water, Air and Soil Pollution, 100: 163-179.
  • Nürnberg, G. K. 1996. Trophic state of clear and colored, soft and hardwater lakes with special consideration of nutrients, anoxia, phytoplankton and fish, J. Lake and Reservoir Management 12: 432–447.
  • OECD, 1982. Eutrophication of waters. Monitoring, assessment and control. OECD Cooperative programme on monitoring of inland waters (Eutrophication control), Environment Directorate, OECD, Paris.
  • Outridge, P. M., Mitler, G. J. ve Arttington, A. H. 1989. Limnology of naturally acidic, oligotrophic dune lakes in su btropical Australia, including chlorophyll phosphorus relationships. Hydrobiologia, 179: 39-51.
  • Quigley, M. A. ve Robbins, J. A. 1986. Phosphorus release processes in nearshore Southern Lake Michigan. Can. J. Fish. Aquat. Sci., 43: 1201-1207.
  • Ramm, K. ve Scheps, V. 1997. Phosphorus balance of a polytrophic shallow lake with the consideration of phosphorus release. Hydrobiologia, 342/343: 43-53.
  • Riley, E. T. ve Prepas, E. E. 1984. Role of internal phosphorus loading into shallow, productive lakes in Alberto, Canada. Can. J. Fish. Aquat. Sci., 41: 845-855.
  • Ruban, V. ve Demare, D. 1998. Sediment Phosphorus and Internal Phosphate Flux in the Hydroelectric Reservoir of Bort-ls-Orgues, France. Hydrobiologia, 373/3374: 349-359.
  • Schelske, C. L. 1989. Assesment of nutrient effects and nutrient limitation in lake Okeechobee. Water Research Bulletin., Vol. 25(6): 1119-1130.
  • Schneider, S. ve Melzer, A. 2004. Sediment and water nutrient characteristics in patches of submerged macrophytes in running waters. Hydrobiologia, 527: 195- 207.
  • Shaw, J. F. H. ve Prepas, E. E. 1989., Temporal and Spatial Patterns of Porewater Phosphorus in Shallow Sediments, and its Potential Transport into Narrow Lake, Alberta. Can. J. Fish. Aquat. Sci., Vol. 46.
  • Shaw, J. F. H. ve Prepas, E. E. 1990. Relationships between phosphorus in shallow sediements and in the trophogenic zone of seven Alberta Lakes. Wat. Res., 24: 5, 551-556.
  • Shrestha, M. K. ve Lin, C. K. 1996. Determination of Phosphorus Saturation Level in Relation to Clay Content in Formulated Pond Muds. Aquacultural Engineering, 15 (6):441-459.
  • Sondergaard, M., Jensen, J. P. ve Jeppesen, E. 1999. Internal phosphorus loading in shallow Danish Lakes. Hydrobiologia, 408 /409. 145 –152.
  • Sondergaard, M. 1989. Phosphorus release from a hypertrophic lake sediment: Experiments with intact sediment cores in a continuous flow system. Arch. Hydrobiologia, 116 (1): 45-59.
  • Taylor W. D., Lambou V. W., Williams L. R. ve Hern, S. C. 1980. Trophic state of lakes and reservoirs. USEPA Technical Report E-80-3.
  • Topçu, A. 2006. Mogan Gölü Litoral Sedimentte Fosforun Mevsimsel ve Yersel Değişimi ile Göle Salınım Potansiyelinin Araştırılması, Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • URL, 1. 2016. http://www2.dsi.gov.tr/baraj/detay.cfm?BarajID=19 (erişim tarihi 01.11.2016).
  • Uslu, O. ve Türkman, A. 1987. Su kirliliği ve kontrolü. TC. Başbakanlık Çevre Genel Müdürlüğü Yayınları Eğitim Dizisi 1, İzmir.
  • Vollenweider, R. A. 1989. Global problems of eutrophication and its control, Symp. Biol. Hung., 38: 19-41.
  • Wetzel, R. G. 1975. Limnology, W. B. Sounders Company, London.
  • Wetzel, R. G. 1983. Limnology. W.B. Saunders Co., Philadelphia.
  • Whittaker, R. H. 1975. Communities and Ecosystems, Second edition, MacMillan Pub. Co., New York.

The Seasonal Variations of Phosphorus in Sediment Pore Water of Cip Dam (Elazığ)

Year 2016, Volume: 16 Issue: 4, 299 - 310, 06.11.2016
https://doi.org/10.17693/yunusae.v16i26717.281029

Abstract

Samples were taken from Cip Dam in winter, spring, summer and autumn seasons of the year 2011 for determining the seasonal changes in littoral sediment’s phosphorus level. Sediment and episediment water samples were taken from determined station, and then some physical and chemical analysis were performed firstly on the phosphorus and its fractions. In this study, TFF concentrations of sediment pore water varied between 32-82 μg L-1 and TFO between 20,60-32,35 μg L-1; these values showed that the lake has eutrophic characteristics. The ratio of TFO concentration to the episediment water (approximately1.5-2 times) could not be seen in high enough to stimulate phosphorus oscillations. In Cip Dam TFE/TFO values of sediment pore water varied between 0.13-0.19, and these results were put in no inhibition of phosphorus oscillation has been occurred. TFF values of episediment of Cip Dam Lake were showed parallel seasonal differences with TFF values of sediment, and were found to be 1.5 - 2 times higher than the values in literature. This would seem that this status has got a low effect on sediment phosphorus oscillation In Cip Dam phosphorus values of lake water were determined to be 50,08-83,24 µg P L-1 and according to releated literatere  (indices) the trophic status of the lake could be evaluated as mesotrophic and eutrophic. To protect the lake nutrient level first of all allocthonus phosphorus entrances had to be reduced and taken under control.

References

  • Anonim, 1995. Standart methods for the examination of water and wastewater. 19th edition. Jonn D., Ducas Co., USA.
  • Arthington, A. H., Miller, G. J. ve Outrige, P. M. 1989. Water quality, phosphorus budgetsand management of Dune Lakes recreation in Queensland (Australia) Water Sci.Tech 21(2):111-118.
  • Auer, M. T., Kreser, M. S. ve Canale, R. P. 1986. Identification of critical nutrient levels through field verification of models for phosphorus and phytoplankton growth.Can. J. Fish. Aquat. Sci., 43:379-388.
  • Boström, B., Andersen, J. M., Fleischer, S. ve Jansson, M. 1988. Exchange of phosphorus across the sediment-water interface. Hydrobiologia, 170: 229-244.
  • Boyd, C. E., Taner, M. E., Madkour, M. ve Masuda, K. 1994. Chemical characteristics of bottom soils from freshwater and brackishwater aquaculture ponds. Journal of the World Aquaculture Society, 25(4): 517-534.
  • Carignan, R. 1984. Sediment geochemistry in a eutrophic lake colonized by the submersed macrophyte. Myriophyllum spicatum. Verh. Int. Ver. Limnol., 22: 355- 370.
  • Carignan, R. 1985. Nutrient Dynamics in a Littoral Sediment Colonized by the Submersed Macrophyte Myriophyllum spicatum. Can. J. Fish. Aquat. Sci., 42: 1303-1311.
  • Christensen T. H., Bjerg P. L., Banwart S., Jakobsen R., Heron G. ve Albrechtsen H. J. 2000. Characterization of Redox conditions in groundwater contaminant plumes. J. Contamin Hydrol. 45: 165-241.
  • Drake, J. C. ve Heaney, S. I. 1987. Occurence of phosphorus and its potential remobilization in the littoral sediments of a productive English lake. Freshwater Biology, 17: 513-523.
  • Eckert, W., Nishri, A. ve Parparova, R. 1997. Factors Regulating the Flux of Phosphate at the Sediment-Water Interface of a Subtropical Calcareous Lake: A Simulation Study With Intact Sediment Cores. Water, Air and Soil Pollution, 99: 401-409.
  • Enell, M. ve Löfgren, S. 1988. Phosphorus in interstitial water: methods and dynamics. Hydrobiologia, 170: 103-132.
  • Fraser, P. C. ve Trew, D. O. 1990. A compendium of limnological data for 23 lakes in the Beaver river watershed - environmental quality monitoring branch. Environmental Protection Services, Edmonton, Alberta.
  • Hakanson, L. ve Jansson, M. 1983. Principles of Lake Sedimentology. Springer, Berlin, pp.316.
  • Istvanovics, V., Herodek, S. ve Szılagyi, F. 1989. Phosphate Adsorbtion by Different Sediment Fractions In Lake Balaton And Its Protecting Reservoirs. Wat.Res., 23 (11): 1357-1366.
  • Istvanovics, V. 1994. Fractional composition, adsorbtion and release of sediemt phosphorus in the Kiss-Balaton Reservoir. Wat. Res., Vol.28. No:3, pp 717-726.
  • James, W. F., Best, E. P. ve Barko, J. W. 2004. Sediment resuspension and light attenuation in Peoria Lake: can macrophytes improve water quality in this shallow system? Hydrobiologia, 515: 193-201.
  • Kaçar, B. 1995. Bitki ve Toprağın Kimyasal Analizleri 3: Toprak Analizleri Ankara Üniversitesi Ziraat Fakültesi Eğitim Araştırma ve Geliştirme Vakfı Yayınları, No:3.
  • Kisand, A. 2005. Distribution of sediment phosphorus fractions in
  • hypertrophic strongly stratified Lake Verevi. Hydrobiologia. 547: 33-39.
  • Lau, S. S. S. ve Chu, L. M. 1999. Contaminant release from sediments in a coastal wetland. Wat. Res., 33(4): 909-918.
  • Lehtoranta, J. ve Heiskanen, A. S. 2003. Dissolved iron-phosphate ratio as an indicator of phosphate release to oxic water of the iner and outer coastal Baltic Sea. Hydrobiologia, 492: 69-84.
  • Marsden, Martin, W. 1989. Lake restoration by reducing external phosphorus loading: the influence of sediment phosphorus release. Freshwater Biology, 21:139-162.
  • Mayer, T. D. ve Jarrell, W. M. 2000. Phosphorus sorption during iron (II) oxidation in the presence of dissolved silica. Wat. Res., 34: 16, 3949-3956.
  • Nguyen, L. M., Cooke, J. G. ve McBride, G. B. 1997. Phosphorus Retention andCharacteristics of Sewage-Impacted Wetland Sediments. Water, Air and Soil Pollution, 100: 163-179.
  • Nürnberg, G. K. 1996. Trophic state of clear and colored, soft and hardwater lakes with special consideration of nutrients, anoxia, phytoplankton and fish, J. Lake and Reservoir Management 12: 432–447.
  • OECD, 1982. Eutrophication of waters. Monitoring, assessment and control. OECD Cooperative programme on monitoring of inland waters (Eutrophication control), Environment Directorate, OECD, Paris.
  • Outridge, P. M., Mitler, G. J. ve Arttington, A. H. 1989. Limnology of naturally acidic, oligotrophic dune lakes in su btropical Australia, including chlorophyll phosphorus relationships. Hydrobiologia, 179: 39-51.
  • Quigley, M. A. ve Robbins, J. A. 1986. Phosphorus release processes in nearshore Southern Lake Michigan. Can. J. Fish. Aquat. Sci., 43: 1201-1207.
  • Ramm, K. ve Scheps, V. 1997. Phosphorus balance of a polytrophic shallow lake with the consideration of phosphorus release. Hydrobiologia, 342/343: 43-53.
  • Riley, E. T. ve Prepas, E. E. 1984. Role of internal phosphorus loading into shallow, productive lakes in Alberto, Canada. Can. J. Fish. Aquat. Sci., 41: 845-855.
  • Ruban, V. ve Demare, D. 1998. Sediment Phosphorus and Internal Phosphate Flux in the Hydroelectric Reservoir of Bort-ls-Orgues, France. Hydrobiologia, 373/3374: 349-359.
  • Schelske, C. L. 1989. Assesment of nutrient effects and nutrient limitation in lake Okeechobee. Water Research Bulletin., Vol. 25(6): 1119-1130.
  • Schneider, S. ve Melzer, A. 2004. Sediment and water nutrient characteristics in patches of submerged macrophytes in running waters. Hydrobiologia, 527: 195- 207.
  • Shaw, J. F. H. ve Prepas, E. E. 1989., Temporal and Spatial Patterns of Porewater Phosphorus in Shallow Sediments, and its Potential Transport into Narrow Lake, Alberta. Can. J. Fish. Aquat. Sci., Vol. 46.
  • Shaw, J. F. H. ve Prepas, E. E. 1990. Relationships between phosphorus in shallow sediements and in the trophogenic zone of seven Alberta Lakes. Wat. Res., 24: 5, 551-556.
  • Shrestha, M. K. ve Lin, C. K. 1996. Determination of Phosphorus Saturation Level in Relation to Clay Content in Formulated Pond Muds. Aquacultural Engineering, 15 (6):441-459.
  • Sondergaard, M., Jensen, J. P. ve Jeppesen, E. 1999. Internal phosphorus loading in shallow Danish Lakes. Hydrobiologia, 408 /409. 145 –152.
  • Sondergaard, M. 1989. Phosphorus release from a hypertrophic lake sediment: Experiments with intact sediment cores in a continuous flow system. Arch. Hydrobiologia, 116 (1): 45-59.
  • Taylor W. D., Lambou V. W., Williams L. R. ve Hern, S. C. 1980. Trophic state of lakes and reservoirs. USEPA Technical Report E-80-3.
  • Topçu, A. 2006. Mogan Gölü Litoral Sedimentte Fosforun Mevsimsel ve Yersel Değişimi ile Göle Salınım Potansiyelinin Araştırılması, Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • URL, 1. 2016. http://www2.dsi.gov.tr/baraj/detay.cfm?BarajID=19 (erişim tarihi 01.11.2016).
  • Uslu, O. ve Türkman, A. 1987. Su kirliliği ve kontrolü. TC. Başbakanlık Çevre Genel Müdürlüğü Yayınları Eğitim Dizisi 1, İzmir.
  • Vollenweider, R. A. 1989. Global problems of eutrophication and its control, Symp. Biol. Hung., 38: 19-41.
  • Wetzel, R. G. 1975. Limnology, W. B. Sounders Company, London.
  • Wetzel, R. G. 1983. Limnology. W.B. Saunders Co., Philadelphia.
  • Whittaker, R. H. 1975. Communities and Ecosystems, Second edition, MacMillan Pub. Co., New York.
There are 46 citations in total.

Details

Journal Section Research Articles
Authors

Serap Saler

Gökhan Karakaya This is me

Publication Date November 6, 2016
Published in Issue Year 2016 Volume: 16 Issue: 4

Cite

APA Saler, S., & Karakaya, G. (2016). The Seasonal Variations of Phosphorus in Sediment Pore Water of Cip Dam (Elazığ). Aquaculture Studies, 16(4), 299-310. https://doi.org/10.17693/yunusae.v16i26717.281029
AMA Saler S, Karakaya G. The Seasonal Variations of Phosphorus in Sediment Pore Water of Cip Dam (Elazığ). AquaST. November 2016;16(4):299-310. doi:10.17693/yunusae.v16i26717.281029
Chicago Saler, Serap, and Gökhan Karakaya. “The Seasonal Variations of Phosphorus in Sediment Pore Water of Cip Dam (Elazığ)”. Aquaculture Studies 16, no. 4 (November 2016): 299-310. https://doi.org/10.17693/yunusae.v16i26717.281029.
EndNote Saler S, Karakaya G (November 1, 2016) The Seasonal Variations of Phosphorus in Sediment Pore Water of Cip Dam (Elazığ). Aquaculture Studies 16 4 299–310.
IEEE S. Saler and G. Karakaya, “The Seasonal Variations of Phosphorus in Sediment Pore Water of Cip Dam (Elazığ)”, AquaST, vol. 16, no. 4, pp. 299–310, 2016, doi: 10.17693/yunusae.v16i26717.281029.
ISNAD Saler, Serap - Karakaya, Gökhan. “The Seasonal Variations of Phosphorus in Sediment Pore Water of Cip Dam (Elazığ)”. Aquaculture Studies 16/4 (November 2016), 299-310. https://doi.org/10.17693/yunusae.v16i26717.281029.
JAMA Saler S, Karakaya G. The Seasonal Variations of Phosphorus in Sediment Pore Water of Cip Dam (Elazığ). AquaST. 2016;16:299–310.
MLA Saler, Serap and Gökhan Karakaya. “The Seasonal Variations of Phosphorus in Sediment Pore Water of Cip Dam (Elazığ)”. Aquaculture Studies, vol. 16, no. 4, 2016, pp. 299-10, doi:10.17693/yunusae.v16i26717.281029.
Vancouver Saler S, Karakaya G. The Seasonal Variations of Phosphorus in Sediment Pore Water of Cip Dam (Elazığ). AquaST. 2016;16(4):299-310.