Research Article
BibTex RIS Cite

The Study of Reliability and Validity of Guided-Inquiry Scale

Year 2017, Volume: 14 Issue: 1, 1 - 21, 30.12.2017

Abstract


The
aim of this study was to adapt the Guided-Inquiry Scale, developed by
Cheung
(2011)
,
to Turkish and conduct the reliability and validity studies. The
sample of this study consisted of 132 preservice teachers
attending
the faculty of education at
two
public universities. After translation procedures of the scale,
confirmatory factor analysis was conducted to determine the construct
validity and Cronbach Alpha internal consistency and McDonald’s
omega coefficients were calculated to identify reliability of the
scale. The results of confirmatory factor analysis revealed that the
adapted scale consisted of 12 items in 3 subscales and acceptable fit
indices belonged to the model measuring three correlated different
structures (the value of guided-inquiry labs, limitations of
cookbook-style labs, and implementation issues with guided-inquiry
labs)
(χ2/df=1,27,
RMSEA=.045, SRMR=.051, CFI=.98, GFI=.92, AGFI=.88, NFI=.93, NNFI=.97,
IFI=.98
).
The factor loadings obtained from confirmatory factor analysis were
statistically significant and ranged from .56 to .85. The
Cronbach
Alpha internal consistency coefficient
was
found to be
.81
for
the
value of guided-inquiry labs

dimension; .76 for
limitations
of cookbook-style labs dimension
;
.83 for
implementation
issues with guided-inquiry labs dimension.
These
results showed that the Turkish form of the
Guided-Inquiry
Scale
is
a valid and reliable instrument.

References

  • Backus, L. (2005). A year without procedures. The Science Teacher, 72(7), 54-58.
  • Bayram, Z. (2015). Öğretmen adaylarının rehberli sorgulamaya dayalı fen etkinlikleri tasarlarken karşılaştıkları zorlukların incelenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 30(2), 15-29.
  • Bayram, Z., Oskay, Ö. Ö., Erdem, E., Özgür, S. D., & Şen, Ş. (2013). Effect of Inquiry Based Learning Method on Students’ Motivation. Procedia-Social and Behavioral Sciences, 106, 988-996.
  • Beck, C., Butler, A., & da Silva, K. B. (2014). Promoting inquiry-based teaching in laboratory courses: are we meeting the grade? CBE-Life Sciences Education, 13(3), 444-452.
  • Çelik, H. E., & Yılmaz, V. (2013). Lisrel 9.1 ile Yapısal Eşitlik Modellemesi (Yenilenmiş 2. Baskı). Ankara: Anı Yayıncılık.
  • Cheung, D. (2007). Facilitating chemistry teachers to implement inquiry-based laboratory work. International Journal of Science and Mathematics Education, 6 (1), 107-130.
  • Cheung, D. (2011). Teacher beliefs about implementing guided-inquiry laboratory experiments for secondary school chemistry. Journal of Chemical Education, 88(11), 1462-1468.
  • Çokluk, Ö., Şekercioğlu, G., & Büyüköztürk, Ş. (2012). Sosyal Bilimler için Çok Değişkenli İstatistik SPSS ve Lisrel Uygulamaları (2. Baskı). Ankara: Pegem Akademi.
  • Colburn, A. (2000). An inquiry primer. Science Scope, 23(6), 42-44.
  • Deters, K.M. (2005). Student opinions regarding inquiry-based labs. Journal of Chemical Education, 82, 1178-1180.
  • Dori, Y.J., Sasson, I., Kaberman, Z., & Herscovitz, O. (2004). Integrating case-based computerized laboratories into high school chemistry. The Chemical Educator, 9, 1-5.
  • Duran, M. (2015). Araştırmaya dayalı öğrenme yaklaşımına uygun rehber materyal geliştirme süreci ve öğrenci görüşleri. International Online Journal of Educational Sciences, 7(3), 179 – 200.
  • Friel, R. F., Albaugh, C.E., & Marawi, I. (2005). Students prefer a guided-inquiry format for general chemistry laboratory. The Chemical Educator, 10, 176–178.
  • Gibson, H.L., & Chase, C. (2002). Longitudinal impact of an inquiry-based science program on middle school students’ attitudes toward science. Science Education, 86, 693-705.
  • Hodson, D. (1990). A critical look at practical working school science. School Science Review, 70, 33-40.
  • Hofstein, A., & Lunetta, V.N. (1982). The role of the laboratory in science teaching: Neglected aspects of research. Review of Educational Research, 52, 201-217.
  • Hofstein, A., & Lunetta, V.N. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education, 88(1), 28-54.
  • Hofstein, A., & Walberg, H.J. (1995). Instructional strategies. In B.J. Fraser & H.J. Walberg (Eds.), Improving science education (pp. 70-89). Chicago: National Society for the Study of Education.
  • Llewellyn, D. (2002). Inquiry within: Implementing inquiry-based science standards. USA: Corwinn Press.
  • Lord, T., & Orkwiszewski, T. (2006). Moving from didactic to inquiry-based instruction in a science laboratory. American Biology Teacher, 68(6), 342-345.
  • Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry‐based science instruction - what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of research in science teaching, 47(4), 474-496.
  • Montes, I., Lai, C., & Sanabria, D. (2003). Like dissolves like: A guided inquiry experiment for organic chemistry. Journal of Chemical Education, 80, 447-449.
  • National Research Council (1996). NationalScienceEducationStandards. National Academy of Science, Washington DC.
  • Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg-Henriksson, H., & Hemmo, V. (2007). Science education now: A renewed pedagogy for the future of Europe. Brussels, Belgium: Directorate-General for Research, European Commission.
  • Roehrig, G.H., & Luft, J.A. (2004). Constraints experienced by beginning secondary science teachers in implementing scientific inquiry lessons. International Journal of Science Education, 26, 3-24.
  • Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research-Online, 8(2), 23-74.
  • Şen, Ş., Yılmaz, A., & Erdoğan, Ü. I. (2016). Sorgulamaya Dayalı Laboratuvarlara İlişkin Öğretmen Adaylarının Görüşleri. İlköğretim Online, 15(2), 443-468. doi:http://dx.doi.org/10.17051/io.2016.25448 .
  • Şeşen, B. A., & Tarhan, L. (2013). Inquiry-based laboratory activities in electrochemistry: High School Students’ Achievements and Attitudes. Research in Science Education, 43(1), 413-435.
  • Sümer, N. (2000). Yapısal eşitlik modelleri: Temel kavramlar ve örnek uygulamalar. Türk Psikoloji Yazıları, 3(6), 49-74.
  • Tobin, K. (1990). Research on science laboratory activities: In pursuit of better questions and answers to improve learning. School Science and Mathematics, 90, 403-418.
  • Tuan, H. L., Chin, C. C., Tsai, C. C., & Cheng, S. F. (2005). Investigating the effectiveness of inquiry instruction on the motivation of different learning styles students. International Journal of Science and Mathematics Education, 3, 541–566.
  • Welch, W., Klopfer, L., Aikenhead, G., & Robinson, J. (1981). The role of inquiry in science education: Analysis and recommendations. Science Education, 65, 33-50.
  • Windschitl, M. (2003). Inquiry projects in science teacher education: What can investigative experiences reveal about teacher thinking and eventual classroom practice? Science education, 87(1), 112-143.
  • Yakar, Z., & Baykara, H. (2014). Inquiry-based laboratory practices in a science teacher training program. Eurasia Journal of Mathematics, Science & Technology Education, 10(2), 173-183.

Rehberli Sorgulama Ölçeğinin Geçerlik ve Güvenirlik Çalışması.

Year 2017, Volume: 14 Issue: 1, 1 - 21, 30.12.2017

Abstract

Bu çalışmanın amacı Cheung (2011) tarafından geliştirilen Rehberli Sorgulama Ölçeğini
Türkçeye uyarlamak, geçerlik ve güvenirlik çalışmalarını yapmaktır. Çalışmaya iki devlet
üniversitesinin eğitim fakültesine devam etmekte olan 132 öğretmen adayı katılmıştır. Ölçek
için çeviri işlemleri yapıldıktan sonra geçerlik çalışmaları için doğrulayıcı faktör analizi ve
güvenirlik çalışmaları için ise Cronbach Alfa iç tutarlılık ve McDonald‟ın Omega katsayıları
hesaplanmıştır. Doğrulayıcı faktör analizi sonucunda 12 madde ve ilişkili üç alt boyuttan
oluşan (rehberli sorgulamaya dayalı laboratuvarların önemi, geleneksel doğrulama
laboratuvarlarının sınırlılıkları, rehberli sorgulamaya dayalı laboratuvarlarla ilgili uygulama
sorunları) modelin iyi uyum gösterdiği belirlenmiştir (χ
2
/sd=1.27, RMSEA=.045,
SRMR=.051, CFI=.98, GFI=.92, AGFI=.88, NFI=.93, NNFI=.97, IFI=.98). Ölçekte yer
alan maddelerin, faktör yüklerinin istatistiksel olarak anlamlı ve.56 ile .85 arasında değerler
aldığı tespit edilmiştir. Cronbach Alfa iç tutarlılık katsayısı rehberli sorgulamaya dayalı
laboratuvarların önemi boyutu için .81, geleneksel doğrulama laboratuvarlarının sınırlılıkları
boyutu için .76 ve son olarak rehberli sorgulamaya dayalı laboratuvarlarla ilgili uygulama
sorunları boyutu için .83 olarak hesaplanmıştır. Sonuç olarak Rehberli Sorgulama Ölçeğinin
Türkçe formunun geçerli ve güvenilir bir ölçek olduğu ifade edilebilir. 

References

  • Backus, L. (2005). A year without procedures. The Science Teacher, 72(7), 54-58.
  • Bayram, Z. (2015). Öğretmen adaylarının rehberli sorgulamaya dayalı fen etkinlikleri tasarlarken karşılaştıkları zorlukların incelenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 30(2), 15-29.
  • Bayram, Z., Oskay, Ö. Ö., Erdem, E., Özgür, S. D., & Şen, Ş. (2013). Effect of Inquiry Based Learning Method on Students’ Motivation. Procedia-Social and Behavioral Sciences, 106, 988-996.
  • Beck, C., Butler, A., & da Silva, K. B. (2014). Promoting inquiry-based teaching in laboratory courses: are we meeting the grade? CBE-Life Sciences Education, 13(3), 444-452.
  • Çelik, H. E., & Yılmaz, V. (2013). Lisrel 9.1 ile Yapısal Eşitlik Modellemesi (Yenilenmiş 2. Baskı). Ankara: Anı Yayıncılık.
  • Cheung, D. (2007). Facilitating chemistry teachers to implement inquiry-based laboratory work. International Journal of Science and Mathematics Education, 6 (1), 107-130.
  • Cheung, D. (2011). Teacher beliefs about implementing guided-inquiry laboratory experiments for secondary school chemistry. Journal of Chemical Education, 88(11), 1462-1468.
  • Çokluk, Ö., Şekercioğlu, G., & Büyüköztürk, Ş. (2012). Sosyal Bilimler için Çok Değişkenli İstatistik SPSS ve Lisrel Uygulamaları (2. Baskı). Ankara: Pegem Akademi.
  • Colburn, A. (2000). An inquiry primer. Science Scope, 23(6), 42-44.
  • Deters, K.M. (2005). Student opinions regarding inquiry-based labs. Journal of Chemical Education, 82, 1178-1180.
  • Dori, Y.J., Sasson, I., Kaberman, Z., & Herscovitz, O. (2004). Integrating case-based computerized laboratories into high school chemistry. The Chemical Educator, 9, 1-5.
  • Duran, M. (2015). Araştırmaya dayalı öğrenme yaklaşımına uygun rehber materyal geliştirme süreci ve öğrenci görüşleri. International Online Journal of Educational Sciences, 7(3), 179 – 200.
  • Friel, R. F., Albaugh, C.E., & Marawi, I. (2005). Students prefer a guided-inquiry format for general chemistry laboratory. The Chemical Educator, 10, 176–178.
  • Gibson, H.L., & Chase, C. (2002). Longitudinal impact of an inquiry-based science program on middle school students’ attitudes toward science. Science Education, 86, 693-705.
  • Hodson, D. (1990). A critical look at practical working school science. School Science Review, 70, 33-40.
  • Hofstein, A., & Lunetta, V.N. (1982). The role of the laboratory in science teaching: Neglected aspects of research. Review of Educational Research, 52, 201-217.
  • Hofstein, A., & Lunetta, V.N. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education, 88(1), 28-54.
  • Hofstein, A., & Walberg, H.J. (1995). Instructional strategies. In B.J. Fraser & H.J. Walberg (Eds.), Improving science education (pp. 70-89). Chicago: National Society for the Study of Education.
  • Llewellyn, D. (2002). Inquiry within: Implementing inquiry-based science standards. USA: Corwinn Press.
  • Lord, T., & Orkwiszewski, T. (2006). Moving from didactic to inquiry-based instruction in a science laboratory. American Biology Teacher, 68(6), 342-345.
  • Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry‐based science instruction - what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of research in science teaching, 47(4), 474-496.
  • Montes, I., Lai, C., & Sanabria, D. (2003). Like dissolves like: A guided inquiry experiment for organic chemistry. Journal of Chemical Education, 80, 447-449.
  • National Research Council (1996). NationalScienceEducationStandards. National Academy of Science, Washington DC.
  • Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg-Henriksson, H., & Hemmo, V. (2007). Science education now: A renewed pedagogy for the future of Europe. Brussels, Belgium: Directorate-General for Research, European Commission.
  • Roehrig, G.H., & Luft, J.A. (2004). Constraints experienced by beginning secondary science teachers in implementing scientific inquiry lessons. International Journal of Science Education, 26, 3-24.
  • Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research-Online, 8(2), 23-74.
  • Şen, Ş., Yılmaz, A., & Erdoğan, Ü. I. (2016). Sorgulamaya Dayalı Laboratuvarlara İlişkin Öğretmen Adaylarının Görüşleri. İlköğretim Online, 15(2), 443-468. doi:http://dx.doi.org/10.17051/io.2016.25448 .
  • Şeşen, B. A., & Tarhan, L. (2013). Inquiry-based laboratory activities in electrochemistry: High School Students’ Achievements and Attitudes. Research in Science Education, 43(1), 413-435.
  • Sümer, N. (2000). Yapısal eşitlik modelleri: Temel kavramlar ve örnek uygulamalar. Türk Psikoloji Yazıları, 3(6), 49-74.
  • Tobin, K. (1990). Research on science laboratory activities: In pursuit of better questions and answers to improve learning. School Science and Mathematics, 90, 403-418.
  • Tuan, H. L., Chin, C. C., Tsai, C. C., & Cheng, S. F. (2005). Investigating the effectiveness of inquiry instruction on the motivation of different learning styles students. International Journal of Science and Mathematics Education, 3, 541–566.
  • Welch, W., Klopfer, L., Aikenhead, G., & Robinson, J. (1981). The role of inquiry in science education: Analysis and recommendations. Science Education, 65, 33-50.
  • Windschitl, M. (2003). Inquiry projects in science teacher education: What can investigative experiences reveal about teacher thinking and eventual classroom practice? Science education, 87(1), 112-143.
  • Yakar, Z., & Baykara, H. (2014). Inquiry-based laboratory practices in a science teacher training program. Eurasia Journal of Mathematics, Science & Technology Education, 10(2), 173-183.
There are 34 citations in total.

Details

Journal Section Articles
Authors

Şenol Şen

Ayhan Yılmaz

Publication Date December 30, 2017
Published in Issue Year 2017 Volume: 14 Issue: 1

Cite

APA Şen, Ş., & Yılmaz, A. (2017). Rehberli Sorgulama Ölçeğinin Geçerlik ve Güvenirlik Çalışması. Van Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 14(1), 1-21.