Research Article
BibTex RIS Cite

Duman Solüsyonlarına Maruz Kalan Bazı Çim Türlerinin Çimlenme ve Fide Büyümesi

Year 2021, Volume: 26 Issue: 3, 114 - 122, 31.12.2021
https://doi.org/10.53433/yyufbed.932611

Abstract

Bu çalışmada, bitki kaynaklı duman solüsyonları ile priming uygulamasının üç farklı çim türünde (Lolium perenne, Festuca arundinacea ve Poa pratensis) çimlenme, fide büyümesi ve kimyasal içeriği üzerindeki etkisinin araştırılması amaçlanmıştır. Duman solüsyonları petri ve saksı koşullarında altı konsantrasyonda (%0, 0.5, 1, 5, 10 ve 20) uygulanmıştır. Petri koşulunda, duman solüsyonları çimlenme hızını teşvik etmemiş ve en yüksek konsantrasyonlar (%20) kontrolden daha düşük değerlere yol açmıştır. Saksı koşullarında ise fide büyümesi ve kimyasal içerik duman solüsyonları tarafından önemli ölçüde teşvik edilmiştir. Duman solüsyonunun olumlu etkisi türe ve konsantrasyonlara bağlı olarak değişiklik göstermiştir. P. pratensis’ nin sürgün uzunluğu hariç tüm türlerde sürgün ve kök uzunluğu duman solüsyonları tarafından pozitif yönde etkilenmiştir. Kontrol ile karşılaştırıldığında, belirli konsantrasyonlarda F. arundinacea' da daha yüksek sürgün (%1) ve kök kuru ağırlığı (%0.5) ve L. perenne’ de daha yüksek kök kuru ağırlığı (%5) belirlenmiştir. Bu sonuçlar, uygun konsantrasyonlarda bitkisel kaynaklı duman solüsyonları ile priming uygulamasının çim türlerinde sağlıklı ve kuvvetli fideler oluşturulabileceğini göstermiştir. Fide canlılığı ve görselliği birlikte değerlendirildiğinde %0.5 ve 1 gibi düşük solüsyon konsantrasyonları ile priming işleminin daha güçlü fideler sağlayabileceği tespit edilmiştir.

Supporting Institution

yok

Project Number

yok

References

  • Adkins,W., & Peters, N. C. B. (2001). Smoke derived from burnt vegetation stimulates germination of arable weeds, Seed Science Research, 11, 213-222. doi: 10.1079/SSR200177.
  • Aslam, M. M., Jamil, M., Khatoon, A., El-Hendawy, S.E., AlSuhaibani, N.A., Shakirullah, S.S., Malook, I., & Rehman, S. (2015). Does weeds-derived smoke improve plant growth of wheat, Journal Bio-Molecular. Science, 3, 86-96.
  • Aslam, M. M., Rehman, S., Khatoon, A., Jamil, M., Yamaguchi, H., Hitachi, K., Tsuchida, K., Li, X., Sunohara, Y., Matsumoto, H., &Komatsu, S. (2019). Molecular Responses of Maize Shoot to a Plant Derived Smoke Solution, International Journal of Molecular Sciences, 20(6), 1319. doi:10.3390/ijms20061319.
  • Basaran, U., Copur Dogrusoz, M., Gulumser, E., & Mut, H. (2019). Using smoke solutions in grass pea (Lathyrus sativus L.) to improve germination and seedling growth and reduce toxic compound ODAP, Turkish Journal of Agriciculture Forest, 43, 518-526. doi:10.3906/tar-1809-66.
  • Baskin, C. C., & Baskin, J. M. (1998). Seeds: Ecology, Biogeography and Evolution of Dormancy and Germination, Academic Press, San Diego. 273. doi:10.1006/anbo.2000.1238.
  • Chumpookam J., Lin, H., & Shiesh, C. (2012). Effect of smoke-water on seed germination and seedling growth of Papaya (Carica papaya cv. tainung no.2), Horticultural Science, 47, 741-744. doi: 10.21273/HORTSCI.47.6.741.
  • Clarke, S., & French, K. (2005). Germination response to heat and smoke of 22 Poaceae species from grassy woodlands, Australian Journal of Botany 53, 445–454. DOI: 10.1071/BT04017.
  • Crosti, R., Ladd, P., Dixon, K., & Piotto, B. (2006). Post-fire germination: the effect of smoke on seeds of selected species from the central Mediterranean basin, Forage Ecololgy Management, 221, 306–312.d:10.1016/j.foreco.2005.10.005.
  • Dixon, K. W., Roche, S., & Pate, J. S. (1995). The promotive effect of smoke derived from burnt native vegetation on seed germination of Western Australian plants, Oecologia, 101, 185–192. doi:10.1007/BF00317282.
  • Elsadek, A. M., & Yousef, E. A. A. (2019). Smoke-Water Enhances Germination and Seedling Growth of Four, Horticultural Crops, 8, 104; doi:10.3390/plants8040104.
  • Ghebrehiwot, H. M., Kulkarni, G. M., Kirkman, K. P., & Van Staden, J. (2009). Smoke solutions and temperature influence the germination and seedling growth of South African mesic grassland species, Rangeland Ecol Management., 62, 572-578. doi:10.2111/08-246.1.
  • Ghebrehiwot, H. M., Kulkarni, G. M., Kirkman, K. P., & Van Staden, J. (2012). Smoke and heat: influence on seedling emergence from the germinable soil seed bank of mesic grassland in South Africa, Plant Growth Regulation, 66,119-127. doi: 10.1007/s10725-011-9635-5.
  • Gupta, S., Hrdlicka, J., Ngoroyemoto, N., Nemahunguni, N. K., Gucky, T., Novak, O., Kulkarni, M. J., Dolezal, K. & Van Staden, J., (2020). Preparation and Standardisation of Smoke-Water for Seed Germination and Plant Growth Stimulation, Journal Plant Growth Regulation, 39, 338–345. doi:10.1007/s00344-019-09985-y.
  • Iqbal, M., Asif, S., Ilyas, N., Fayyaz-Ul-Hassan., Raja, N. I., Hussain, M., Ejaz, M., & Saira, H. (2017). Smoke produced from plants waste material elicits growth of wheat (Triticum aestivum L.) by improving morphological, physiological and biochemical activity, Biotechnology reports, 17, 35–44. doi: 10.1016/j.btre.2017.12.001.
  • Jeffrey, D. J., Holmes, P.M., & Rebelo, A.G. (1988). Effects of dry heat on seed germination in selected indigenous and alien legume species in South Africa, South African Journal of Botan, 54, 28-34. doi:10.1016/S0254-6299(16)31358-8.
  • Krol, P., Adamska, J., & Kępczyska, E. (2014). Enhancement of Festucarubra L. germination and seedling growth by seed treatment with pathogenic Agrobacterium rhizogenes, ActaPhysiol Plant, 36, 3263–3274. doi:10.1007/s11738-014-1692-8.
  • Kulkarni, M. G., Light, M. E., & Van Staden, J. (2011). Plant-derived smoke: old technology with possibilities for economic applications in agriculture and horticulture, South African Journal of Botanic. 77, 972–979, doi: 10.1016/j.sajb.2011.08.006.
  • Light, M. E., Gardner, M. J., Jager, A. K., & Van Staden, J. (2002). Dual regulation of seed germination by smoke solutions, Plant Growth Regulation., 37, 135-141. doi:10.1023/A:1020536711989.
  • Read, T. R., & Bellairs, S. M. (1999). Smoke affects the Germination of Native Grasses of New South Wales, Australian Journal of Botany, 47, 563-576. doi: 10.1071/BT97124.
  • Richardson, M. D. & Hignight, K.W. (2010). Seedling emergence of tall fescue and kentucky bluegrass, as affected by two seed coating techniques, Hort Technology, 20, 415 417. doi:10.21273/HORTTECH.20.2.415.
  • Salehi, H., & Khosh-Khuı, M. (2005). Effects of genotype and plant growth regulator on callus induction and plant regeneration in four important turfgrass genera: a comparative study, In In Vitro Cellular & Developmental Biology - Plant, 41, 157-161. doi:10.1079/IVP2004614.
  • Shiade, S. R. G., & Boelt, B. (2020). Seed germination and seedling growth parameters in nine tall fescue varieties under salinity stress, Acta Agriculturae Scandinavica, Section B Soil & Plant Science, 70 (6), 485-494. doi:10.1080/09064710.2020.1779338.
  • Sparg, S.G., Kulkarni, M.G., & Van Staden, J. (2006). Aerosol smoke and smoke-water stimulation of seedling vigor of a commercial maize cultivar. Crop Science, 46, 1336-1340. doi:10.2135/cropsci2005.07-0324.
  • Van Staden, J., Brown, N. A. C., Jäger, A. K., & Johnson, T. A. (2000). Smoke as a germination cue, Plant Species Biology, 15, 167-178. doi:10.1046/j.1442-1984.2000.00037.x.
  • Waheed, M. A., Muhammad, J., Muhammad, D. K., Shakirullah, K. S., & UrRehman, S. (2016). Effect of plant-derived smoke solutions on physiological and biochemical attributes of maize (Zea mays L.) under salt stress, Pak Journal Botanica., 48, 1763-1774.
  • Zhong, Z., Kobayashi T., Zhu, W., Imai H., Rongyi, Z., Ohno, T., Shafiq ur Rehman, Uemura M., Tian J., & Komatsu, S. (2020). Plant-derived smoke enhances plant growth through ornithine-synthesis pathway and ubiquitin-proteasome pathway in soybean, Journal of Proteomics. 221- 103781. doi: 10.1016/j.jprot.2020.103781.

Germination and Seedling Growth of Some Turfgrass Species Exposed to Smoke Solutions

Year 2021, Volume: 26 Issue: 3, 114 - 122, 31.12.2021
https://doi.org/10.53433/yyufbed.932611

Abstract

This study aimed to investigate the effect of priming with plant-derived smoke solutions (SS) on the germination, seedling growth and chemical content of three turfgrass species (Lolium perenne, Festuca arundinacea, Poa pratensis). SS was applied at six concentrations (0, 0.5, 1, 5, 10 and 20%) in petri and pot conditions. In petri condition, SS did not stimulate the germination speed, and the highest concentrations (20%) led to lower values than control. In the pot conditions, seedling growth and chemical content were significantly stimulated by the SS. The effect of the SS varied depending on the species and concentrations. Shoot and root length in grass species were improved by the SS, except in P. pratensis for shoot length. Compared to control, higher shoot dry weight in F. arundinacea (1%) and higher root dry weight in L. perenne (5%) and F. arundinacea (0.5%) were determined at certain concentrations. These results showed that priming with SS at appropriate concentrations may lead to healthy and vigorous seedlings. When seedling vigor and visuality are evaluated together, it has been determined that priming with low concentrations of SS such as 0.5 and 1% can produce vigorous seedling.

Project Number

yok

References

  • Adkins,W., & Peters, N. C. B. (2001). Smoke derived from burnt vegetation stimulates germination of arable weeds, Seed Science Research, 11, 213-222. doi: 10.1079/SSR200177.
  • Aslam, M. M., Jamil, M., Khatoon, A., El-Hendawy, S.E., AlSuhaibani, N.A., Shakirullah, S.S., Malook, I., & Rehman, S. (2015). Does weeds-derived smoke improve plant growth of wheat, Journal Bio-Molecular. Science, 3, 86-96.
  • Aslam, M. M., Rehman, S., Khatoon, A., Jamil, M., Yamaguchi, H., Hitachi, K., Tsuchida, K., Li, X., Sunohara, Y., Matsumoto, H., &Komatsu, S. (2019). Molecular Responses of Maize Shoot to a Plant Derived Smoke Solution, International Journal of Molecular Sciences, 20(6), 1319. doi:10.3390/ijms20061319.
  • Basaran, U., Copur Dogrusoz, M., Gulumser, E., & Mut, H. (2019). Using smoke solutions in grass pea (Lathyrus sativus L.) to improve germination and seedling growth and reduce toxic compound ODAP, Turkish Journal of Agriciculture Forest, 43, 518-526. doi:10.3906/tar-1809-66.
  • Baskin, C. C., & Baskin, J. M. (1998). Seeds: Ecology, Biogeography and Evolution of Dormancy and Germination, Academic Press, San Diego. 273. doi:10.1006/anbo.2000.1238.
  • Chumpookam J., Lin, H., & Shiesh, C. (2012). Effect of smoke-water on seed germination and seedling growth of Papaya (Carica papaya cv. tainung no.2), Horticultural Science, 47, 741-744. doi: 10.21273/HORTSCI.47.6.741.
  • Clarke, S., & French, K. (2005). Germination response to heat and smoke of 22 Poaceae species from grassy woodlands, Australian Journal of Botany 53, 445–454. DOI: 10.1071/BT04017.
  • Crosti, R., Ladd, P., Dixon, K., & Piotto, B. (2006). Post-fire germination: the effect of smoke on seeds of selected species from the central Mediterranean basin, Forage Ecololgy Management, 221, 306–312.d:10.1016/j.foreco.2005.10.005.
  • Dixon, K. W., Roche, S., & Pate, J. S. (1995). The promotive effect of smoke derived from burnt native vegetation on seed germination of Western Australian plants, Oecologia, 101, 185–192. doi:10.1007/BF00317282.
  • Elsadek, A. M., & Yousef, E. A. A. (2019). Smoke-Water Enhances Germination and Seedling Growth of Four, Horticultural Crops, 8, 104; doi:10.3390/plants8040104.
  • Ghebrehiwot, H. M., Kulkarni, G. M., Kirkman, K. P., & Van Staden, J. (2009). Smoke solutions and temperature influence the germination and seedling growth of South African mesic grassland species, Rangeland Ecol Management., 62, 572-578. doi:10.2111/08-246.1.
  • Ghebrehiwot, H. M., Kulkarni, G. M., Kirkman, K. P., & Van Staden, J. (2012). Smoke and heat: influence on seedling emergence from the germinable soil seed bank of mesic grassland in South Africa, Plant Growth Regulation, 66,119-127. doi: 10.1007/s10725-011-9635-5.
  • Gupta, S., Hrdlicka, J., Ngoroyemoto, N., Nemahunguni, N. K., Gucky, T., Novak, O., Kulkarni, M. J., Dolezal, K. & Van Staden, J., (2020). Preparation and Standardisation of Smoke-Water for Seed Germination and Plant Growth Stimulation, Journal Plant Growth Regulation, 39, 338–345. doi:10.1007/s00344-019-09985-y.
  • Iqbal, M., Asif, S., Ilyas, N., Fayyaz-Ul-Hassan., Raja, N. I., Hussain, M., Ejaz, M., & Saira, H. (2017). Smoke produced from plants waste material elicits growth of wheat (Triticum aestivum L.) by improving morphological, physiological and biochemical activity, Biotechnology reports, 17, 35–44. doi: 10.1016/j.btre.2017.12.001.
  • Jeffrey, D. J., Holmes, P.M., & Rebelo, A.G. (1988). Effects of dry heat on seed germination in selected indigenous and alien legume species in South Africa, South African Journal of Botan, 54, 28-34. doi:10.1016/S0254-6299(16)31358-8.
  • Krol, P., Adamska, J., & Kępczyska, E. (2014). Enhancement of Festucarubra L. germination and seedling growth by seed treatment with pathogenic Agrobacterium rhizogenes, ActaPhysiol Plant, 36, 3263–3274. doi:10.1007/s11738-014-1692-8.
  • Kulkarni, M. G., Light, M. E., & Van Staden, J. (2011). Plant-derived smoke: old technology with possibilities for economic applications in agriculture and horticulture, South African Journal of Botanic. 77, 972–979, doi: 10.1016/j.sajb.2011.08.006.
  • Light, M. E., Gardner, M. J., Jager, A. K., & Van Staden, J. (2002). Dual regulation of seed germination by smoke solutions, Plant Growth Regulation., 37, 135-141. doi:10.1023/A:1020536711989.
  • Read, T. R., & Bellairs, S. M. (1999). Smoke affects the Germination of Native Grasses of New South Wales, Australian Journal of Botany, 47, 563-576. doi: 10.1071/BT97124.
  • Richardson, M. D. & Hignight, K.W. (2010). Seedling emergence of tall fescue and kentucky bluegrass, as affected by two seed coating techniques, Hort Technology, 20, 415 417. doi:10.21273/HORTTECH.20.2.415.
  • Salehi, H., & Khosh-Khuı, M. (2005). Effects of genotype and plant growth regulator on callus induction and plant regeneration in four important turfgrass genera: a comparative study, In In Vitro Cellular & Developmental Biology - Plant, 41, 157-161. doi:10.1079/IVP2004614.
  • Shiade, S. R. G., & Boelt, B. (2020). Seed germination and seedling growth parameters in nine tall fescue varieties under salinity stress, Acta Agriculturae Scandinavica, Section B Soil & Plant Science, 70 (6), 485-494. doi:10.1080/09064710.2020.1779338.
  • Sparg, S.G., Kulkarni, M.G., & Van Staden, J. (2006). Aerosol smoke and smoke-water stimulation of seedling vigor of a commercial maize cultivar. Crop Science, 46, 1336-1340. doi:10.2135/cropsci2005.07-0324.
  • Van Staden, J., Brown, N. A. C., Jäger, A. K., & Johnson, T. A. (2000). Smoke as a germination cue, Plant Species Biology, 15, 167-178. doi:10.1046/j.1442-1984.2000.00037.x.
  • Waheed, M. A., Muhammad, J., Muhammad, D. K., Shakirullah, K. S., & UrRehman, S. (2016). Effect of plant-derived smoke solutions on physiological and biochemical attributes of maize (Zea mays L.) under salt stress, Pak Journal Botanica., 48, 1763-1774.
  • Zhong, Z., Kobayashi T., Zhu, W., Imai H., Rongyi, Z., Ohno, T., Shafiq ur Rehman, Uemura M., Tian J., & Komatsu, S. (2020). Plant-derived smoke enhances plant growth through ornithine-synthesis pathway and ubiquitin-proteasome pathway in soybean, Journal of Proteomics. 221- 103781. doi: 10.1016/j.jprot.2020.103781.
There are 26 citations in total.

Details

Primary Language English
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Articles
Authors

Ahmet Özbek This is me 0000-0002-0875-9973

Ugur Başaran 0000-0002-6644-5892

Medine Çopur Doğrusöz 0000-0002-9159-1699

Project Number yok
Publication Date December 31, 2021
Submission Date May 5, 2021
Published in Issue Year 2021 Volume: 26 Issue: 3

Cite

APA Özbek, A., Başaran, U., & Çopur Doğrusöz, M. (2021). Germination and Seedling Growth of Some Turfgrass Species Exposed to Smoke Solutions. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(3), 114-122. https://doi.org/10.53433/yyufbed.932611